1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
Wang C, Teng L, Liu ZS, Kamalova A, McMenimen KA. HspB5 Chaperone Structure and Activity Are Modulated by Chemical-Scale Interactions in the ACD Dimer Interface. Int J Mol Sci 2023; 25:471. [PMID: 38203641 PMCID: PMC10778692 DOI: 10.3390/ijms25010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that function as "holdases" and prevent protein aggregation due to changes in temperature, pH, or oxidation state. sHsps have a conserved α-crystallin domain (ACD), which forms the dimer building block, flanked by variable N- and C-terminal regions. sHsps populate various oligomeric states as a function of their sequestrase activity, and these dynamic structural features allow the proteins to interact with a plethora of cellular substrates. However, the molecular mechanisms of their dynamic conformational assembly and the interactions with various substrates remains unclear. Therefore, it is important to gain insight into the underlying physicochemical properties that influence sHsp structure in an effort to understand their mechanism(s) of action. We evaluated several disease-relevant mutations, D109A, F113Y, R116C, R120G, and R120C, in the ACD of HspB5 for changes to in vitro chaperone activity relative to that of wildtype. Structural characteristics were also evaluated by ANS fluorescence and CD spectroscopy. Our results indicated that mutation Y113F is an efficient holdase, while D109A and R120G, which are found in patients with myofibrillar myopathy and cataracts, respectively, exhibit a large reduction in holdase activity in a chaperone-like light-scattering assay, which indicated alterations in substrate-sHsp interactions. The extent of the reductions in chaperone activities are different among the mutants and specific to the substrate protein, suggesting that while sHsps are able to interact with many substrates, specific interactions provide selectivity for some substrates compared to others. This work is consistent with a model for chaperone activity where key electrostatic interactions in the sHsp dimer provide structural stability and influence both higher-order sHsp interactions and facilitate interactions with substrate proteins that define chaperone holdase activity.
Collapse
Affiliation(s)
- Chenwei Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Lilong Teng
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Zhiyan Silvia Liu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
| | - Aichurok Kamalova
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Kathryn A. McMenimen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA; (C.W.); (L.T.); (Z.S.L.)
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA;
- Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
3
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
4
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
5
|
Yousefi R. Crystallins as Important Pathogenic Targets for Accumulation of Structural Damages Resulting in Protein Aggregation and Cataract Development: Introduction to This Special Issue of Biochemistry (Moscow). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:87-90. [PMID: 35508904 DOI: 10.1134/s0006297922020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This issue of Biochemistry (Moscow) is dedicated to the role of protein misfolding and aggregation in cataract development. In fact, many genetic mutations or chemical and physical deleterious factors can initiate alterations in the macrostructural order and proper folding of eye lens proteins, which in some cases result in the formation of large light-scattering aggregates, affecting the quality of vision and making lens more prone to cataract development. Diabetes mellitus, which is associated with oxidative stress and mass production of highly reactive compounds, can accelerate unfolding and aggregation of eye lens proteins. This journal issue contains reviews and research articles that describe the destructive effects of mutations and highly reactive metabolites on the structure and function of lens crystallin proteins, as well important molecules in the lens's natural defense system involved in protection against deleterious effects of the physical and chemical factors.
Collapse
Affiliation(s)
- Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
- Protein Chemistry Laboratory, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Degrugillier F, Aissat A, Prulière-Escabasse V, Bizard L, Simonneau B, Decrouy X, Jiang C, Rotin D, Fanen P, Simon S. Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR. Int J Mol Sci 2020; 21:ijms21144844. [PMID: 32650630 PMCID: PMC7402320 DOI: 10.3390/ijms21144844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic Fibrosis is a lethal monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. The most frequent mutation is the deletion of phenylalanine at position 508 of the protein. This F508del-CFTR mutation leads to misfolded protein that is detected by the quality control machinery within the endoplasmic reticulum and targeted for destruction by the proteasome. Modulating quality control proteins as molecular chaperones is a promising strategy for attenuating the degradation and stabilizing the mutant CFTR at the plasma membrane. Among the molecular chaperones, the small heat shock protein HspB1 and HspB4 were shown to promote degradation of F508del-CFTR. Here, we investigated the impact of HspB5 expression and phosphorylation on transport to the plasma membrane, function and stability of F508del-CFTR. We show that a phosphomimetic form of HspB5 increases the transport to the plasma membrane, function and stability of F508del-CFTR. These activities are further enhanced in presence of therapeutic drugs currently used for the treatment of cystic fibrosis (VX-770/Ivacaftor, VX-770+VX-809/Orkambi). Overall, this study highlights the beneficial effects of a phosphorylated form of HspB5 on F508del-CFTR rescue and its therapeutic potential in cystic fibrosis.
Collapse
Affiliation(s)
- Fanny Degrugillier
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
| | - Abdel Aissat
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
- AP-HP, Hôpital Henri Mondor, Département de Génétique, F-94010 Creteil, France
| | - Virginie Prulière-Escabasse
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
- Centre Hospitalier Intercommunal de Creteil, Service d’ORL et de Chirurgie Cervico-Faciale, F-94010 Creteil, France
| | - Lucie Bizard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
| | - Benjamin Simonneau
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
| | - Xavier Decrouy
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
| | - Chong Jiang
- The Hospital for Sick Children and the University of Toronto, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.)
| | - Daniela Rotin
- The Hospital for Sick Children and the University of Toronto, Toronto, ON M5G 0A4, Canada; (C.J.); (D.R.)
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
- AP-HP, Hôpital Henri Mondor, Département de Génétique, F-94010 Creteil, France
| | - Stéphanie Simon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (F.D.); (A.A.); (V.P.-E.); (L.B.); (B.S.); (X.D.); (P.F.)
- Correspondence: ; Tel.: +33-1-49-81-68-55
| |
Collapse
|
7
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
8
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
9
|
Exploring the multifaceted roles of heat shock protein B8 (HSPB8) in diseases. Eur J Cell Biol 2018; 97:216-229. [PMID: 29555102 DOI: 10.1016/j.ejcb.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
HSPB8 is a member of ubiquitous small heat shock protein (sHSP) family, whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. Investigation of HSPB8 structure indicated that HSPB8 belongs to the group of so-called intrinsically disordered proteins and possesses a highly flexible structure. Unlike most other sHSPs, HSPB8 tends to form small-molecular-mass oligomers and exhibits substrate-dependent chaperone activity. In cooperation with BAG3, the chaperone activity of HSPB8 was reported to be involved in the delivery of misfolded proteins to the autophagy machinery. Through this way, HSPB8 interferes with pathological processes leading to neurodegenerative diseases. Accordingly, published studies have identified genetic links between mutations of HSPB8 and some kind of neuromuscular diseases, further supporting its important role in neurodegenerative disorders. In addition to their anti-aggregation properties, HSPB8 is indicated to interact with a wide range of client proteins, modulating their maturations and activities, and therefore, regulates a large repertoire of cellular functions, including apoptosis, proliferation, inflammation and etc. As a result, HSPB8 has key roles in cancer biology, autoimmune diseases, cardiac diseases and cerebral vascular diseases.
Collapse
|
10
|
Mishra S, Wu SY, Fuller AW, Wang Z, Rose KL, Schey KL, Mchaourab HS. Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart. J Biol Chem 2017; 293:740-753. [PMID: 29162721 DOI: 10.1074/jbc.m117.808634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in the human small heat shock protein αB-crystallin have been implicated in autosomal cataracts and skeletal myopathies, including heart muscle diseases (cardiomyopathy). Although these mutations lead to modulation of their chaperone activity in vitro, the in vivo functions of αB-crystallin in the maintenance of both lens transparency and muscle integrity remain unclear. This lack of information has hindered a mechanistic understanding of these diseases. To better define the functional roles of αB-crystallin, we generated loss-of-function zebrafish mutant lines by utilizing the CRISPR/Cas9 system to specifically disrupt the two αB-crystallin genes, αBa and αBb We observed lens abnormalities in the mutant lines of both genes, and the penetrance of the lens phenotype was higher in αBa than αBb mutants. This finding is in contrast with the lack of a phenotype previously reported in αB-crystallin knock-out mice and suggests that the elevated chaperone activity of the two zebrafish orthologs is critical for lens development. Besides its key role in the lens, we uncovered another critical role for αB-crystallin in providing stress tolerance to the heart. The αB-crystallin mutants exhibited hypersusceptibility to develop pericardial edema when challenged by crowding stress or exposed to elevated cortisol stress, both of which activate glucocorticoid receptor signaling. Our work illuminates the involvement of αB-crystallin in stress tolerance of the heart presumably through the proteostasis network and reinforces the critical role of the chaperone activity of αB-crystallin in the maintenance of lens transparency.
Collapse
Affiliation(s)
- Sanjay Mishra
- From the Departments of Molecular Physiology and Biophysics and
| | - Shu-Yu Wu
- From the Departments of Molecular Physiology and Biophysics and
| | | | - Zhen Wang
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kristie L Rose
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kevin L Schey
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
11
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
12
|
Avila-Smirnow D, Gueneau L, Batonnet-Pichon S, Delort F, Bécane HM, Claeys K, Beuvin M, Goudeau B, Jais JP, Nelson I, Richard P, Ben Yaou R, Romero NB, Wahbi K, Mathis S, Voit T, Furst D, van der Ven P, Gil R, Vicart P, Fardeau M, Bonne G, Behin A. Cardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNC. Rev Neurol (Paris) 2016; 172:594-606. [PMID: 27633507 DOI: 10.1016/j.neurol.2016.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Abstract
Myofibrillar myopathies (MFM) are mostly adult-onset diseases characterized by progressive morphological alterations of the muscle fibers beginning in the Z-disk and the presence of protein aggregates in the sarcoplasm. They are mostly caused by mutations in different genes that encode Z-disk proteins, including DES, CRYAB, LDB3, MYOT, FLNC and BAG3. A large family of French origin, presenting an autosomal dominant pattern, characterized by cardiac arrhythmia associated to late-onset muscle weakness, was evaluated to clarify clinical, morphological and genetic diagnosis. Muscle weakness began during adult life (over 30 years of age), and had a proximal distribution. Histology showed clear signs of a myofibrillar myopathy, but with unusual, large inclusions. Subsequently, genetic testing was performed in MFM genes available for screening at the time of clinical/histological diagnosis, and desmin (DES), αB-crystallin (CRYAB), myotilin (MYOT) and ZASP (LDB3), were excluded. LMNA gene screening found the p.R296C variant which did not co-segregate with the disease. Genome wide scan revealed linkage to 7q.32, containing the FLNC gene. FLNC direct sequencing revealed a heterozygous c.3646T>A p.Tyr1216Asn change, co-segregating with the disease, in a highly conserved amino acid of the protein. Normal filamin C levels were detected by Western-blot analysis in patient muscle biopsies and expression of the mutant protein in NIH3T3 showed filamin C aggregates. This is an original FLNC mutation in a MFM family with an atypical clinical and histopathological presentation, given the presence of significantly focal lesions and prominent sarcoplasmic masses in muscle biopsies and the constant heart involvement preceding significantly the onset of the myopathy. Though a rare etiology, FLNC gene should not be excluded in early-onset arrhythmia, even in the absence of myopathy, which occurs later in the disease course.
Collapse
Affiliation(s)
- D Avila-Smirnow
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - L Gueneau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - S Batonnet-Pichon
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - F Delort
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - H-M Bécane
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - K Claeys
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - M Beuvin
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - B Goudeau
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - J-P Jais
- GH Necker Enfants-Malades, université Paris Descartes, faculté de médecine, biostatistique et informatique médicale, EA 4067, 75015 Paris, France
| | - I Nelson
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - P Richard
- AP-HP, groupe hospitalier Pitié-Salpêtrière, service de biochimie métabolique, U.F. cardiogénétique et myogénétique, 75013 Paris, France
| | - R Ben Yaou
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - N B Romero
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - K Wahbi
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France; AP-HP, groupe hospitalier Cochin-Broca-Hôtel Dieu, service de cardiologie, 75013 Paris, France
| | - S Mathis
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - T Voit
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France; AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - D Furst
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - P van der Ven
- University of Bonn, institute for cell biology, department of molecular cell biology, Bonn, Germany
| | - R Gil
- CHU de la Milétrie, service de neurologie, 86021 Poitiers, France
| | - P Vicart
- Sorbonne Paris Cité, université Paris Diderot, CNRS, unité de biologie fonctionnelle et adaptative, UMR 8251, 75013 Paris, France
| | - M Fardeau
- Groupe hospitalier Pitié-Salpêtrière, association institut de myologie, unité de morphologie neuromusculaire, 75013 Paris, France
| | - G Bonne
- Sorbonne universités, UPMC Paris 06, center of research in myology, Inserm UMRS974, CNRS FRE3617, 75013 Paris, France
| | - A Behin
- AP-HP, groupe hospitalier Pitié-Salpêtrière, institut de myologie, centre de référence de pathologie neuromusculaire Paris-Est, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
13
|
Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, Fournier M, Arrigo AP, Hetz C, Atkin JD, Kretz-Remy C. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell 2016; 27:1712-27. [PMID: 27075172 PMCID: PMC4884063 DOI: 10.1091/mbc.e15-12-0835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
NFκB is a master regulator of protein quality control. It helps the cells to survive proteotoxicity by modulating autophagy via up-regulation of BAG3 and HspB8 expression, a molecular mechanism relevant to protein conformational diseases. During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Mathieu Nivon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Loïc Fort
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Pascale Muller
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Emma Richet
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Stéphanie Simon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Baptiste Guey
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Maëlenn Fournier
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - André-Patrick Arrigo
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, 70086 Santiago, Chile Center for Geroscience, Brain Health and Metabolism, 70086 Santiago, Chile
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carole Kretz-Remy
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
14
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
15
|
Wójtowicz I, Jabłońska J, Zmojdzian M, Taghli-Lamallem O, Renaud Y, Junion G, Daczewska M, Huelsmann S, Jagla K, Jagla T. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 2015; 142:994-1005. [PMID: 25715399 DOI: 10.1242/dev.115352] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture.
Collapse
Affiliation(s)
- Inga Wójtowicz
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Ouarda Taghli-Lamallem
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Yoan Renaud
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Guillaume Junion
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Malgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Sven Huelsmann
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Teresa Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| |
Collapse
|
16
|
Marsh NM, Wareham A, White BG, Miskiewicz EI, Landry J, MacPhee DJ. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod 2015; 92:131. [PMID: 25904010 DOI: 10.1095/biolreprod.114.125401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/09/2015] [Indexed: 12/17/2022] Open
Abstract
The small heat shock protein (HSP) B family of proteins are a group of molecular chaperones that enable tissues to adapt to changes in their local environments during differentiation, stress, or disease conditions. The objective of this research was to characterize the expression of HSPB8 and its cochaperone Bcl2-associated athanogene 3 (BAG3) in nonpregnant (NP) and pregnant rat myometrium during myometrial programming. Rat myometrium was collected from NP and pregnant rats as well as 1 day postpartum (PP) and samples prepared for immunoblot and immunofluorescence analysis. Immunoblot analysis determined that HSPB8 protein expression was significantly elevated at Day (D) 15, D17, and D19 compared to expression at NP and D6, while BAG3 expression was significantly elevated at D15 compared to NP, and D17 compared to NP, D6, D23, and PP time points (P < 0.05). In situ, HSPB8 and BAG3 were predominantly localized to myometrial cells throughout pregnancy, with intense cytoplasmic HSPB8 and BAG3 detection on D15 and D17 in both longitudinal and circular muscle layers. Immunoblot analysis of HSPB8 and BAG3 protein expression in myometrium from unilateral pregnancies also revealed that expression of both proteins was significantly increased at D15 in gravid compared to nongravid horns. Thus, HSPB8 and BAG3 are highly expressed during the synthetic phase of myometrial differentiation marked by initiation of uterine distension and myometrial hypertrophy. HSPB8 and BAG3 could be regulators of the protein quality control required for this process.
Collapse
Affiliation(s)
- Noelle M Marsh
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Angela Wareham
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Bryan G White
- Okanagan College-Salmon Arm Campus, Salmon Arm, British Columbia, Canada
| | - Ewa I Miskiewicz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jacques Landry
- Centre de Recherche en Cancerologie de l'Universite Laval, L'Hotel-Dieu de Quebec, Quebec, Quebec, Canada
| | - Daniel J MacPhee
- One Reproductive Health Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
19
|
|
20
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
21
|
Simon S, Dimitrova V, Gibert B, Virot S, Mounier N, Nivon M, Kretz-Remy C, Corset V, Mehlen P, Arrigo AP. Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS One 2013; 8:e70545. [PMID: 23950959 PMCID: PMC3741289 DOI: 10.1371/journal.pone.0070545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Several human small heat shock proteins (sHsps) are phosphorylated oligomeric chaperones that enhance stress resistance. They are characterized by their ability to interact and form polydispersed hetero-oligomeric complexes. We have analyzed the cellular consequences of the stable expression of either wild type HspB5 or its cataracts and myopathies inducing R120G mutant in growing and oxidative stress treated HeLa cells that originally express only HspB1. Here, we describe that wild type and mutant HspB5 induce drastic and opposite effects on cell morphology and oxidative stress resistance. The cellular distribution and phosphorylation of these polypeptides as well as the oligomerization profile of the resulting hetero-oligomeric complexes formed by HspB1 with the two types of exogenous polypeptides revealed the dominant effects induced by HspB5 polypeptides towards HspB1. The R120G mutation enhanced the native size and salt resistance of HspB1-HspB5 complex. However, in oxidative conditions the interaction between HspB1 and mutant HspB5 was drastically modified resulting in the aggregation of both partners. The mutation also induced the redistribution of HspB1 phosphorylated at serine 15, originally observed at the level of the small oligomers that do not interact with wild type HspB5, to the large oligomeric complex formed with mutant HspB5. This phosphorylation stabilized the interaction of HspB1 with mutant HspB5. A dominant negative effect towards HspB1 appears therefore as an important event in the cellular sensitivity to oxidative stress mediated by mutated HspB5 expression. These observations provide novel data that describe how a mutated sHsp can alter the protective activity of another member of this family of chaperones.
Collapse
Affiliation(s)
- Stéphanie Simon
- Hôpital Henri Mondor University, Créteil, France
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Valeriya Dimitrova
- Department of Clinical Research, Division of Pediatric Hematology/Oncology, Insel Spital, Institute of Pathology, Bern University, Bern, Switzerland
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Benjamin Gibert
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Sophie Virot
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Nicole Mounier
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Mathieu Nivon
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Carole Kretz-Remy
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Véronique Corset
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - Patrick Mehlen
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
| | - André-Patrick Arrigo
- CGphiMC, CNRS UMR 5534, Claude Bernard University Lyon 1, Villeurbanne, France
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
22
|
Krishnamoorthy V, Donofrio AJ, Martin JL. O-GlcNAcylation of αB-crystallin regulates its stress-induced translocation and cytoprotection. Mol Cell Biochem 2013; 379:59-68. [PMID: 23543138 DOI: 10.1007/s11010-013-1627-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023]
Abstract
Under normal conditions, the ubiquitously expressed αB-crystallin functions as a chaperone. αB-crystallin has been implicated in a variety of pathologies, consistent with a build-up of protein aggregates, such as neuromuscular disorders, myofibrillar myopathies, and cardiomyopathies. αB-crystallins' cardioprotection is partially attributed to its translocation and binding to cytoskeletal elements in response to stress. The triggers for this translocation are not clearly understood. In the heart, αB-crystallin undergoes at least three significant post-translational modifications: phosphorylation at ser-45 and 59 and O-GlcNAcylation (O-linked attachment of the monosaccharide β-N-acetyl-glucosamine) at thr-170. Whether phosphorylation status drives translocation remains controversial. Therefore, we evaluated the role of αB-crystallins' O-GlcNAcylation in its stress-induced translocation and cytoprotection in cardiomyocytes under stress. Immunoblotting and precipitation experiments with anti-O-GlcNAc antibody (CTD110.6) and glycoprotein staining (Pro-Q Emerald) both demonstrate robust stress-induced O-GlcNAcylation of αB-crystallin. A non-O-GlcNAcylatable αB-crystallin mutant (αB-T170A) showed diminished translocation in response to heat shock and robust phosphorylation at both ser-45 and ser-59. Cell survival assays show a loss of overexpression-associated cytoprotection with the non-glycosylatable mutant to multiple stresses. While ectopic expression of wild-type αB-crystallin strongly stabilized ZsProSensor, a fusion protein rapidly degraded by the proteasome, the non-O-GlcNAcylatable version did not. Therefore, we believe the O-GlcNAcylation of αB-crystallin is a dynamic and important regulator of both its localization and function.
Collapse
Affiliation(s)
- Vigneshwaran Krishnamoorthy
- Health Sciences Division, Department of Medicine, The Cardiovascular Institute, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
23
|
Gibert B, Simon S, Dimitrova V, Diaz-Latoud C, Arrigo AP. Peptide aptamers: tools to negatively or positively modulate HSPB1(27) function. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120075. [PMID: 23530261 DOI: 10.1098/rstb.2012.0075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human HSP27 (HSPB1) is a molecular chaperone sensor which, through dynamic changes in its phosphorylation and oligomerization, allows cells to adapt to changes in their physiology and/or mount a protective response to injuries. In pathological conditions, the high level of HSPB1 expression can either be beneficial, such as in diseases characterized by cellular degenerations, or be malignant in cancer cells where it promotes tumourigenesis, metastasis and anti-cancer drug resistance. Structural changes allow HSPB1 to interact with specific client protein partners in order to modulate their folding/activity and/or half-life. Therefore, the search is open for therapeutic compounds aimed at either down- or upregulating HSPB1 activity. In this respect, we have previously described two peptide aptamers (PA11 and PA50) that specifically interact with HSPB1 small oligomers and decrease its anti-apoptotic and tumourigenic activities. A novel analysis of the different HSPB1-interacting aptamers that were isolated earlier revealed that one aptamer (PA23) has the intriguing ability to stimulate the protective activity of HSPB1. We show here that this aptamer abolishes the dominant negative effect induced by the R120G mutant of αB-crystallin (HSPB5) by disrupting its interaction with HSPB1. Hence, developing structure-based interfering strategies could lead to the discovery of HSPB1-based therapeutic drugs.
Collapse
Affiliation(s)
- Benjamin Gibert
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, Centre Léon Bérard, INSERM U1052-CNRS 5238, University of Lyon, 69008 Lyon, France
| | | | | | | | | |
Collapse
|
24
|
McGreal RS, Brennan LA, Kantorow WL, Wilcox JD, Wei J, Chauss D, Kantorow M. Chaperone-independent mitochondrial translocation and protection by αB-crystallin in RPE cells. Exp Eye Res 2013; 110:10-7. [PMID: 23466869 DOI: 10.1016/j.exer.2013.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 11/16/2022]
Abstract
αB-crystallin is a small heat shock protein that exhibits chaperone activity and can protect multiple cell types against oxidative stress damage. Altered levels and specific mutations of αB-crystallin are associated with multiple degenerative diseases. We previously found that αB-crystallin translocates to lens and retinal cell mitochondria upon oxidative stress exposure where it provides protection against oxidative stress damage. To date, the role of the chaperone function of αB-crystallin in mitochondrial translocation and protection has not been established. Here, we sought to determine the relationship between the chaperone activity of αB-crystallin and its ability to translocate to and protect retinal cell mitochondria against oxidative stress damage. Our data provide evidence that three forms of αB-crystallin exhibiting different chaperone activity levels including wild-type, R120G (decreased chaperone activity) and M68A (increased chaperone activity) provide comparable levels of mitochondrial translocation and protection to retinal cells exposed to oxidative stress. The results provide evidence that mitochondrial translocation and protection by αB-crystallin is independent of its chaperone activity and that other functions of αB-crystallin may also be independent of its chaperone activity.
Collapse
Affiliation(s)
- Rebecca S McGreal
- Biomedical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB. Mutations of small heat shock proteins and human congenital diseases. BIOCHEMISTRY (MOSCOW) 2013; 77:1500-14. [DOI: 10.1134/s0006297912130081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Kley RA, Maerkens A, Leber Y, Theis V, Schreiner A, van der Ven PFM, Uszkoreit J, Stephan C, Eulitz S, Euler N, Kirschner J, Müller K, Meyer HE, Tegenthoff M, Fürst DO, Vorgerd M, Müller T, Marcus K. A combined laser microdissection and mass spectrometry approach reveals new disease relevant proteins accumulating in aggregates of filaminopathy patients. Mol Cell Proteomics 2012; 12:215-27. [PMID: 23115302 DOI: 10.1074/mcp.m112.023176] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Filaminopathy is a subtype of myofibrillar myopathy caused by mutations in FLNC, the gene encoding filamin C, and histologically characterized by pathologic accumulation of several proteins within skeletal muscle fibers. With the aim to get new insights in aggregate composition, we collected aggregates and control tissue from skeletal muscle biopsies of six myofibrillar myopathy patients harboring three different FLNC mutations by laser microdissection and analyzed the samples by a label-free mass spectrometry approach. A total of 390 proteins were identified, and 31 of those showed significantly higher spectral indices in aggregates compared with patient controls with a ratio >1.8. These proteins included filamin C, other known myofibrillar myopathy associated proteins, and a striking number of filamin C binding partners. Across the patients the patterns were extremely homogeneous. Xin actin-binding repeat containing protein 2, heat shock protein 27, nebulin-related-anchoring protein, and Rab35 could be verified as new filaminopathy biomarker candidates. In addition, further experiments identified heat shock protein 27 and Xin actin-binding repeat containing protein 2 as novel filamin C interaction partners and we could show that Xin actin-binding repeat containing protein 2 and the known interaction partner Xin actin-binding repeat containing protein 1 simultaneously associate with filamin C. Ten proteins showed significant lower spectral indices in aggregate samples compared with patient controls (ratio <0.56) including M-band proteins myomesin-1 and myomesin-2. Proteomic findings were consistent with previous and novel immunolocalization data. Our findings suggest that aggregates in filaminopathy have a largely organized structure of proteins also interacting under physiological conditions. Different filamin C mutations seem to lead to almost identical aggregate compositions. The finding that filamin C was detected as highly abundant protein in aggregates in filaminopathy indicates that our proteomic approach may be suitable to identify new candidate genes among the many MFM patients with so far unknown mutation.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Arrigo AP. Pathology-dependent effects linked to small heat shock proteins expression: an update. SCIENTIFICA 2012; 2012:185641. [PMID: 24278676 PMCID: PMC3820616 DOI: 10.6064/2012/185641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 06/02/2023]
Abstract
Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.
Collapse
Affiliation(s)
- A.-P. Arrigo
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon1, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
28
|
Kabbage M, Trimeche M, Ben Nasr H, Hammann P, Kuhn L, Hamrita B, Chaieb A, Chouchane L, Chahed K. Expression of the molecular chaperone αB-crystallin in infiltrating ductal breast carcinomas and the significance thereof: an immunohistochemical and proteomics-based strategy. Tumour Biol 2012; 33:2279-88. [PMID: 22972503 DOI: 10.1007/s13277-012-0490-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/10/2012] [Indexed: 12/22/2022] Open
Abstract
This study aims to evaluate αB-crystallin expression in infiltrating ductal breast carcinomas (IDCAs), as well as, its prognostic significance. Using a two-dimensional electrophoresis matrix-assisted laser desorption/ionisation-time of flight mass spectrometry investigation coupled to an immunohistochemical approach, we have assessed the expression of αB-crystallin in IDCAs, as well as, in other types of breast tumors (invasive lobular carcinomas, medullary carcinomas, and in situ ductal carcinomas). Correlation between αB-crystallin expression and clinicopathological parameters of breast cancer has also been investigated. Proteomic analyses revealed an increased expression of αB-crystallin in IDCA tumors compared to adjacent nontumor tissues. Overexpression of this molecular chaperone was further confirmed in 51 tumor specimens. Statistical analyses revealed, however, no significant correlations between αB-crystallin expression and clinicopathological parameters of the disease (tumor stage, patient age, hormone receptors, SBR grade, and lymph node metastases). This study demonstrates the upregulation of αB-crystallin in IDCA tissues which may highlight its possible involvement in breast cancer development. Our findings do not, however, support the involvement of this molecular chaperone in the progression of this disease.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/metabolism
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Case-Control Studies
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Middle Aged
- Neoplasm Grading
- Prognosis
- Proteomics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- alpha-Crystallin B Chain/metabolism
Collapse
Affiliation(s)
- Maria Kabbage
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine de Monastir, Monastir, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
30
|
Brownell SE, Becker RA, Steinman L. The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol 2012; 3:74. [PMID: 22566955 PMCID: PMC3342061 DOI: 10.3389/fimmu.2012.00074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/23/2012] [Indexed: 12/21/2022] Open
Abstract
Historically, small heat shock proteins (sHSPs) have been extensively studied in the context of being intracellular molecular chaperones. However, recent studies looking at the role of sHSPs in neurological diseases have demonstrated a near universal upregulation of certain sHSPs in damaged and diseased brains. Initially, it was thought that sHSPs are pathological in these disease states because they are found in the areas of damage. However, transgenic overexpression and exogenous administration of sHSPs in various experimental disease paradigms have shown just the contrary – that sHSPs are protective, not pathological. This review examines sHSPs in neurological diseases and highlights the potential for using these neuroprotective sHSPs as novel therapeutics. It first addresses the endogenous expression of sHSPs in a variety of neurological disorders. Although many studies have examined the expression of sHSPs in neurological diseases, there are no review articles summarizing these data. Furthermore, it focuses on recent studies that have investigated the therapeutic potential of sHSPs for neurological diseases. Finally, it will explain what we think is the function of endogenous sHSPs in neurological diseases.
Collapse
Affiliation(s)
- Sara E Brownell
- Department of Neurology and Neurological Sciences, Stanford University Stanford, CA, USA
| | | | | |
Collapse
|
31
|
Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 2012; 44:1622-31. [PMID: 22521623 DOI: 10.1016/j.biocel.2012.04.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/17/2023]
Abstract
Hsp27, αB-crystallin and HSP22 are ubiquitous small heat shock proteins (sHsp) whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. These sHsp protect cells from otherwise lethal conditions mainly by their involvement in cell death pathways such as necrosis, apoptosis or autophagy. At a molecular level, the mechanisms accounting for sHsp functions in cell death are (1) prevention of denatured proteins aggregation, (2) regulation of caspase activity, (3) regulation of the intracellular redox state, (4) function in actin polymerization and cytoskeleton integrity and (5) proteasome-mediated degradation of selected proteins. In cancer cells, these sHsp are often overexpressed and associated with increased tumorigenicity, cancer cells metastatic potential and resistance to chemotherapy. Altogether, these properties suggest that Hsp27, αB-crystallin and Hsp22 are appropriate targets for modulating cell death pathways. In the present, we briefly review recent reports showing molecular evidence of cell death regulation by these sHsp and co-chaperones. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Julie Acunzo
- Centre de Recherche en Cancérologie de Marseille, UMR1068 Inserm, Institut Paoli-Calmette, Aix-Marseille Univ, Marseille, France
| | | | | |
Collapse
|
32
|
Basha E, O'Neill H, Vierling E. Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 2011; 37:106-17. [PMID: 22177323 DOI: 10.1016/j.tibs.2011.11.005] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
The small heat shock proteins (sHSPs) and the related α-crystallins (αCs) are virtually ubiquitous proteins that are strongly induced by a variety of stresses, but that also function constitutively in multiple cell types in many organisms. Extensive research has demonstrated that a majority of sHSPs and αCs can act as ATP-independent molecular chaperones by binding denaturing proteins and thereby protecting cells from damage due to irreversible protein aggregation. As a result of their diverse evolutionary history, their connection to inherited human diseases, and their novel protein dynamics, sHSPs and αCs are of significant interest to many areas of biology and biochemistry. However, it is increasingly clear that no single model is sufficient to describe the structure, function or mechanism of action of sHSPs and αCs. In this review, we discuss recent data that provide insight into the variety of structures of these proteins, their dynamic behavior, how they recognize substrates, and their many possible cellular roles.
Collapse
Affiliation(s)
- Eman Basha
- Department of Chemistry & Biochemistry, 1007 E. Lowell Street, University of Arizona, Tucson, AZ 85743, USA
| | | | | |
Collapse
|
33
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91:1123-59. [PMID: 22013208 DOI: 10.1152/physrev.00023.2010] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ubiquitously expressed HSPB1 (HSP27) is involved in the control of protein folding and, when mutated, plays a significant role in the development of certain neurodegenerative disorders. HSPB1 directly or indirectly participates in the regulation of apoptosis, protects the cell against oxidative stress, and is involved in the regulation of the cytoskeleton. HSPB6 (HSP20) also possesses chaperone-like activity, is involved in regulation of smooth muscle contraction, has pronounced cardioprotective activity, and seems to participate in insulin-dependent regulation of muscle metabolism. HSPB8 (HSP22) prevents accumulation of aggregated proteins in the cell and participates in the regulation of proteolysis of unfolded proteins. HSPB8 also seems to be directly or indirectly involved in regulation of apoptosis and carcinogenesis, contributes to cardiac cell hypertrophy and survival and, when mutated, might be involved in development of neurodegenerative diseases. All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
34
|
Huang Z, Cheng Y, Chiu PM, Cheung FMF, Nicholls JM, Kwong DLW, Lee AWM, Zabarovsky ER, Stanbridge EJ, Lung HL, Lung ML. Tumor suppressor Alpha B-crystallin (CRYAB) associates with the cadherin/catenin adherens junction and impairs NPC progression-associated properties. Oncogene 2011; 31:3709-20. [PMID: 22158051 DOI: 10.1038/onc.2011.529] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alpha B-crystallin (CRYAB) maps within the nasopharyngeal carcinoma (NPC) tumor-suppressive critical region 11q22-23 and its downregulation is significantly associated with the progression of NPC. However, little is known about the functional impact of CRYAB on NPC progression. In this study we evaluated the NPC tumor-suppressive and progression-associated functions of CRYAB. Activation of CRYAB suppressed NPC tumor formation in nude mice. Overexpression of CRYAB affected NPC progression-associated phenotypes such as loss of cell adhesion, invasion, interaction with the tumor microenvironment, invasive protrusion formation in three dimensional Matrigel culture, as well as expression of epithelial-mesenchymal transition-associated markers. CRYAB mediates this ability to suppress cancer progression by inhibition of E-cadherin cytoplasmic internalization and maintenance of β-catenin in the membrane that subsequently reduces the levels of expression of critical downstream targets such as cyclin-D1 and c-myc. Both ectopically expressed and recombinant CRYAB proteins were associated with endogenous E-cadherin and β-catenin, and, thus, the cadherin/catenin adherens junction. The CRYAB α-crystallin core domain is responsible for the interaction of CRYAB with both E-cadherin and β-catenin. Taken together, these results indicate that CRYAB functions to suppress NPC progression by associating with the cadherin/catenin adherens junction and modulating the β-catenin function.
Collapse
Affiliation(s)
- Z Huang
- Department of Clinical Oncology and Center for Cancer Research, University of Hong Kong, Hong Kong (SAR), PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A 2011; 108:20491-6. [PMID: 22143763 DOI: 10.1073/pnas.1111014108] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular chaperone αB-crystallin, the major player in maintaining the transparency of the eye lens, prevents stress-damaged and aging lens proteins from aggregation. In nonlenticular cells, it is involved in various neurological diseases, diabetes, and cancer. Given its structural plasticity and dynamics, structure analysis of αB-crystallin presented hitherto a formidable challenge. Here we present a pseudoatomic model of a 24-meric αB-crystallin assembly obtained by a triple hybrid approach combining data from cryoelectron microscopy, NMR spectroscopy, and structural modeling. The model, confirmed by cross-linking and mass spectrometry, shows that the subunits interact within the oligomer in different, defined conformations. We further present the molecular architectures of additional well-defined αB-crystallin assemblies with larger or smaller numbers of subunits, provide the mechanism how "heterogeneity" is achieved by a small set of defined structural variations, and analyze the factors modulating the oligomer equilibrium of αB-crystallin and thus its chaperone activity.
Collapse
|
36
|
Ke L, Meijering RAM, Hoogstra-Berends F, Mackovicova K, Vos MJ, Van Gelder IC, Henning RH, Kampinga HH, Brundel BJJM. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 2011; 6:e20395. [PMID: 21731611 PMCID: PMC3123278 DOI: 10.1371/journal.pone.0020395] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. Methods and Results Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca2+ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. Conclusion Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family.
Collapse
Affiliation(s)
- Lei Ke
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelien A. M. Meijering
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Nyken BV, Groningen, The Netherlands
| | - Katarina Mackovicova
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel J. Vos
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabelle C. Van Gelder
- Department of Cardiology, GUIDE, University of Groningen, University Medical Center Groningen, and the Interuniversity Cardiology Institute Netherlands, Utrecht, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm H. Kampinga
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Abstract
Myofibrillar myopathies (MFMs) represent a group of muscular dystrophies with a similar morphological phenotype. The diagnosis is established by muscle biopsy. The MFMs are characterized by a distinct pathological pattern of myofibrillar dissolution associated with disintegration of the Z-disk, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins that include desmin, αB-crystallin, dystrophin, and sometimes congophilic material. The clinical features of MFMs are more variable. These include progressive muscle weakness that often involves or begins in distal muscles, but limb-girdle or scapuloperoneal distributions can also occur. Cardiomyopathy and peripheral neuropathy are frequent associated features. Electromyography of the affected muscles reveals myopathic motor unit potentials and abnormal irritability, often with myotonic discharges. Rarely, neurogenic motor unit potentials or slowing of nerve conduction velocities are present. To date, all MFM mutations have appeared in Z-disk-associated proteins: namely, desmin, αB-crystallin, myotilin, ZASP, filamin C, and Bag3. However, in the majority of patients with MFM, the disease gene awaits discovery.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology and Neuromuscular Disease Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
38
|
Zhang H, Rajasekaran NS, Orosz A, Xiao X, Rechsteiner M, Benjamin IJ. Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin-proteasome pathways. J Mol Cell Cardiol 2010; 49:918-30. [PMID: 20863832 PMCID: PMC2975794 DOI: 10.1016/j.yjmcc.2010.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/12/2022]
Abstract
Disease-causing mutations of genes encoding small MW heat shock proteins (sHSPs) constitute a growing family of inherited myofibrillar disorders. In the present work, we found that three structurally-distinct CryAB mutants R120G, 450delA and 464delCT are mostly present in the detergent-insoluble fractions when overexpressed in H9c2 rat heart cells. We found that either over-expression or knockdown of HSPB1, a related sHSP, affects the solubility, stability, and degradation of aggregation-prone CryAB mutants. HSPB1 overexpression has negligible effects on the solubility and protein aggregates of either R120G and/or 450delA but increased the solubility and prevented formation of 464delCT aggregates. HSPB1 knockdown decreased solubility and increased protein aggregates of all CryAB mutants, indicating a key role for HSPB1 in clearance of CryAB mutants under basal conditions. We provide four lines of evidence that such selective clearance of R120G, 450delA and 464delCT mutants by HSPB1 is mediated by the ubiquitin-proteasome system (UPS). First, we found that treatment with the proteasome inhibitors increased the levels of all CryAB mutants. Second, R120G and 450delA overexpression corresponded to the accumulation of their specific ubiquitin conjugates in H9c2 cells. Third, HSPB1 knockdown directly increased the levels of all polyubiquitin conjugates. And fourth, the selective attenuation of 464delCT expression by HSPB1 over-expression was abrogated by the proteasome inhibition. We conclude that such selective interactions between CryAB mutants and HSPB1 overexpression might have important implications for the clinical manifestations and potential treatment.
Collapse
Affiliation(s)
- Huali Zhang
- Center for Cardiovascular Translational Biomedicine, Division of Cardiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Namakkal S. Rajasekaran
- Center for Cardiovascular Translational Biomedicine, Division of Cardiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Andras Orosz
- Center for Cardiovascular Translational Biomedicine, Division of Cardiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Xianzhong Xiao
- Department of Pathophysiology, Central South University, Changsha City, Hunan 41008, China
| | - Martin Rechsteiner
- Department of Biochemistry, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Ivor J. Benjamin
- Center for Cardiovascular Translational Biomedicine, Division of Cardiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Biochemistry, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
39
|
Goplen D, Bougnaud S, Rajcevic U, Bøe SO, Skaftnesmo KO, Voges J, Enger PØ, Wang J, Tysnes BB, Laerum OD, Niclou S, Bjerkvig R. αB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1618-28. [PMID: 20813964 DOI: 10.2353/ajpath.2010.090063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously established two distinct glioma phenotypes by serial xenotransplantation of human glioblastoma (GBM) biopsies in nude rats. These tumors undergo a gradual transition from a highly invasive nonangiogenic to a less-invasive angiogenic phenotype. In a protein screen to identify molecular markers associated with the infiltrative phenotype, we identified α-basic-crystallin (αBc), a small heat-shock protein with cytoprotective properties. Its increased expression in the infiltrative phenotype was validated by immunohistochemistry and Western blots, confirming its identity to be tumor-derived and not from the host. Stereotactic human GBM biopsies taken from MRI-defined areas verified stronger αBc expression in the infiltrative edge compared to the tumor core. Cell migration assays and immunofluorescence staining showed αBc to be expressed by migrating cells in vitro. To determine αBc function, we altered its expression levels. αBc siRNA depletion caused a loss of migrating tumor cells from biopsy spheroids and delayed monolayer wound closure. In contrast, glioma cell migration in a Boyden chamber assay was unaffected by either αBc knockdown or overexpression, indicating that αBc is not functionally linked to the cell migration machinery. However, after siRNA αBc depletion, a significant sensitization of cells to various apoptotic inducers was observed (actinomycin, tumor necrosis factor α, and TNF-related apoptosis-inducing ligand [TRAIL]). In conclusion, αBc is overexpressed by highly migratory glioma cells where it plays a functional role in apoptosis resistance.
Collapse
Affiliation(s)
- Dorota Goplen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun X, Fontaine JM, Hoppe AD, Carra S, DeGuzman C, Martin JL, Simon S, Vicart P, Welsh MJ, Landry J, Benndorf R. Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress Chaperones 2010; 15:567-82. [PMID: 20157854 PMCID: PMC3006614 DOI: 10.1007/s12192-010-0169-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/16/2023] Open
Abstract
A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting that these two etiologic factors may act through a common biochemical mechanism. However, their role in neuron biology and in MND is not understood. In a yeast two-hybrid screen, we identified the DEAD box protein Ddx20 (gemin3, DP103) as interacting partner of HspB8. Using co-immunoprecipitation, chemical cross-linking, and in vivo quantitative fluorescence resonance energy transfer, we confirmed this interaction. We also show that the two disease-associated mutant HspB8 forms have abnormally increased binding to Ddx20. Ddx20 itself binds to the survival-of-motor-neurons protein (SMN protein), and mutations in the SMN1 gene cause spinal muscular atrophy, another MND and one of the most prevalent genetic causes of infant mortality. Thus, these protein interaction data have linked the three etiologic factors HspB8, HspB1, and SMN protein, and mutations in any of their genes cause the various forms of MND. Ddx20 and SMN protein are involved in spliceosome assembly and pre-mRNA processing. RNase treatment affected the interaction of the mutant HspB8 with Ddx20 suggesting RNA involvement in this interaction and a potential role of HspB8 in ribonucleoprotein processing.
Collapse
Affiliation(s)
- Xiankui Sun
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jean-Marc Fontaine
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Adam D. Hoppe
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Serena Carra
- Le Centre de recherche en cancérologie, l’Université Laval, L’Hôtel-Dieu de Québec, Laval, Québec Canada G1R 2J6
- Section for Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Cheryl DeGuzman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jody L. Martin
- Department of Medicine, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Stephanie Simon
- Laboratory BFA, University Paris Diderot/CNRS, 75013 Paris, France
| | - Patrick Vicart
- Laboratory BFA, University Paris Diderot/CNRS, 75013 Paris, France
| | - Michael J. Welsh
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jacques Landry
- Le Centre de recherche en cancérologie, l’Université Laval, L’Hôtel-Dieu de Québec, Laval, Québec Canada G1R 2J6
| | - Rainer Benndorf
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Department of Pediatrics, Ohio State University, Columbus, OH 43205 USA
- The Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Research Building II, Room WA2109, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
41
|
Molecular chaperone alphaB-crystallin is expressed in the human fetal telencephalon at midgestation by a subset of progenitor cells. J Neuropathol Exp Neurol 2010; 69:745-59. [PMID: 20535031 DOI: 10.1097/nen.0b013e3181e5f515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphab-crystallin (CRYAB) is a small heat shock protein with a chaperoning activity that is present in the postnatal healthy human brain in oligodendrocytes and in a few astrocytes. The involvement of CRYAB in cell differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis in various model systems has suggested that it might also play a role in the developing human brain. We analyzed the distribution and the levels of this molecular chaperone in healthy and polygenetically compromised (Down syndrome [DS]) human telencephalon at midgestation. We demonstrate that CRYAB is expressed in a temporospatial pattern by numerous radial glial cells and some early oligodendrocyte progenitors, including dividing cells, as well as a few astroglial cells in both healthy and DS fetal brains. We also found abundant phosphorylation of CRYAB at Ser-59, which mediates its antiapoptotic and cytoskeletal functions. There was only marginal phosphorylation at Ser-45.In contrast to our earlier study in young DS subjects, upregulation of phosphorylated CRYAB occurred rarely in DS fetuses. The distribution, the timing of appearance, and the results of colocalization studies suggest that CRYAB assists in the biological processes associated with developmental remodeling/differentiation and proliferation of select subpopulations of progenitor cells in human fetal brain at midgestation.
Collapse
|
42
|
Wadhwa R, Ryu J, Gao R, Choi IK, Morrow G, Kaur K, Kim I, Kaul SC, Yun CO, Tanguay RM. Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J Biol Chem 2009; 285:3833-3839. [PMID: 19948727 DOI: 10.1074/jbc.m109.080424] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a complex process accompanied by a decreased capacity of cells to cope with random damages induced by reactive oxygen species, the natural by-products of energy metabolism, leading to protein aggregation in various components of the cell. Chaperones are important players in the aging process as they prevent protein misfolding and aggregation. Small chaperones, such as small heat shock proteins, are involved in the refolding and/or disposal of protein aggregates, a feature of many age-associated diseases. In Drosophila melanogaster, mitochondrial Hsp22 (DmHsp22), is localized in the mitochondrial matrix and is preferentially up-regulated during aging. Its overexpression results in an extension of life span (>30%) (Morrow, G., Samson, M., Michaud, S., and Tanguay, R. M. (2004) FASEB J. 18, 598-599 and Morrow, G., Battistini, S., Zhang, P., and Tanguay, R. M. (2004) J. Biol. Chem. 279, 43382-43385). Long lived flies expressing Hsp22 also have an increased resistance to oxidative stress and maintain locomotor activity longer. In the present study, the cross-species effects of Hsp22 expression were tested. DmHsp22 was found to be functionally active in human cells. It extended the life span of normal fibroblasts, slowing the aging process as evidenced by a lower level of the senescence associated beta-galactosidase. DmHsp22 expression in human cancer cells increased their malignant properties including anchorage-independent growth, tumor formation in nude mice, and resistance to a variety of anticancer drugs. We report that the DmHsp22 interacts and inactivates wild type tumor suppressor protein p53, which may be one possible way of its functioning in human cells.
Collapse
Affiliation(s)
- Renu Wadhwa
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Jihoon Ryu
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Ran Gao
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Il-Kyu Choi
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and
| | - Geneviève Morrow
- the Laboratoire de Génétique Cellulaire et Développementale, Département de Médecine, PROTÉO, Pav. C.E.-Marchand, Université Laval, Quebec G1V 0A6, Canada
| | - Kamaljit Kaur
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | - Inwook Kim
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and
| | - Sunil C Kaul
- From the National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan.
| | - Chae-Ok Yun
- the Brain Korea 21 Project for Medical Science, Institute for Cancer Research, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea; the Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, and.
| | - Robert M Tanguay
- the Laboratoire de Génétique Cellulaire et Développementale, Département de Médecine, PROTÉO, Pav. C.E.-Marchand, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
43
|
Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C. Crystal Structures of α-Crystallin Domain Dimers of αB-Crystallin and Hsp20. J Mol Biol 2009; 392:1242-52. [PMID: 19646995 DOI: 10.1016/j.jmb.2009.07.069] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
Affiliation(s)
- C Bagnéris
- Department of Crystallography, Birkbeck College, Institute of Structural and Molecular Biology, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV, Engel AG. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 2009; 65:83-9. [PMID: 19085932 PMCID: PMC2639628 DOI: 10.1002/ana.21553] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Myofibrillar myopathies (MFMs) are morphologically distinct but genetically heterogeneous muscular dystrophies in which disintegration of Z disks and then of myofibrils is followed by ectopic accumulation of multiple proteins. Cardiomyopathy, neuropathy, and dominant inheritance are frequent associated features. Mutations in alphaB-crystallin, desmin, myotilin, Zasp, or filamin-C can cause MFMs and were detected in 32 of 85 patients of the Mayo MFM cohort. Bag3, another Z-disk-associated protein, has antiapoptotic properties, and its targeted deletion in mice causes fulminant myopathy with early lethality. We therefore searched for mutations in BAG3 in 53 unrelated MFM patients. METHODS We searched for mutations in BAG3 by direct sequencing. We analyzed structural changes in muscle by histochemistry, immunocytochemistry, and electron microscopy, examined mobility of the mutant Bag3 by nondenaturing electrophoresis, and searched for abnormal aggregation of the mutant protein in COS-7 (SV-40 transformed monkey kidney fibroblast-7) cells. RESULTS We identified a heterozygous p.Pro209Leu mutation in three patients. All presented in childhood, had progressive limb and axial muscle weakness, and experienced development of cardiomyopathy and severe respiratory insufficiency in their teens; two had rigid spines, and one a peripheral neuropathy. Electron microscopy showed disintegration of Z disks, extensive accumulation of granular debris and larger inclusions, and apoptosis of 8% of the nuclei. On nondenaturing electrophoresis of muscle extracts, the Bag3 complex migrated faster in patient than control extracts, and expression of FLAG-labeled mutant and wild-type Bag3 in COS cells showed abnormal aggregation of the mutant protein. INTERPRETATION We conclude mutation in Bag3 defines a novel severe autosomal dominant childhood muscular dystrophy.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Michiel M, Skouri-Panet F, Duprat E, Simon S, Férard C, Tardieu A, Finet S. Abnormal Assemblies and Subunit Exchange of αB-Crystallin R120 Mutants Could Be Associated with Destabilization of the Dimeric Substructure. Biochemistry 2008; 48:442-53. [DOI: 10.1021/bi8014967] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Magalie Michiel
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Fériel Skouri-Panet
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Elodie Duprat
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Stéphanie Simon
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Céline Férard
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Annette Tardieu
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| | - Stéphanie Finet
- PBSF, CNRS-UPMC, case 29, 7 quai St. Bernard, 75252 Paris CEDEX 5, France, IMPMC, CNRS-IPGP-UPMC-Université Paris Diderot, 140 rue de Lourmel 75015 Paris, France, and CGMC, UMR5534, CNRS-Université Lyon 1, Bâtiment G. Mendel, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The aim of this communication is to provide an up-to-date overview of myofibrillar myopathies. RECENT FINDINGS The most important recent advance in the myofibrillar myopathies has been the discovery that mutations in Z band alternatively spliced PDZ-containing protein and filamin C, as well as in desmin, alphaB-crystallin and myotilin, result in similar pathologic alterations in skeletal muscle that are typical of myofibrillar myopathy. Despite the increasing genetic heterogeneity, the clinical and morphologic phenotypes are remarkably homogeneous. The typical clinical manifestation is slowly progressive proximal, distal or both proximal and distal limb muscle weakness. Cardiomyopathy can be associated and is sometimes the presenting finding. Peripheral neuropathy also occurs in some patients. In every myofibrillar myopathy, there is abnormal accumulation of an array of proteins at ectopic sites as well as accumulation of degraded myofibrillar proteins forming large aggregates. The key issue now is to analyze the molecular mechanisms underlying the cascade of events that destroy the myofibrillar architecture and trigger the aberrant expression of multiple proteins. SUMMARY Several disease genes have recently been recognized in myofibrillar myopathies. So far, the disease proteins identified are components of or chaperone for the Z-disk. In each case, the molecular defect leads to a stereotyped cascade of structural events in the muscle fiber.
Collapse
|
47
|
Goebel HH, Fardeau M, Olivé M, Schröder R. 156th ENMC International Workshop: desmin and protein aggregate myopathies, 9-11 November 2007, Naarden, The Netherlands. Neuromuscul Disord 2008; 18:583-92. [PMID: 18595698 DOI: 10.1016/j.nmd.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Indexed: 11/20/2022]
Affiliation(s)
- Hans H Goebel
- Johannes Gutenberg University, Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
48
|
Quraishe S, Asuni A, Boelens W, O'Connor V, Wyttenbach A. Expression of the small heat shock protein family in the mouse CNS: Differential anatomical and biochemical compartmentalization. Neuroscience 2008; 153:483-91. [DOI: 10.1016/j.neuroscience.2008.01.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 01/12/2023]
|
49
|
Hayes VH, Devlin G, Quinlan RA. Truncation of alphaB-crystallin by the myopathy-causing Q151X mutation significantly destabilizes the protein leading to aggregate formation in transfected cells. J Biol Chem 2008; 283:10500-12. [PMID: 18230612 DOI: 10.1074/jbc.m706453200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we investigate the effects of a myopathy-causing mutation in alphaB-crystallin, Q151X, upon its structure and function. This mutation removes the C-terminal domain of alphaB-crystallin, which is expected to compromise both its oligomerization and chaperone activity. We compared this to two other alphaB-crystallin mutants (450delA, 464delCT) and also to a series of C-terminal truncations (E164X, E165X, K174X, and A171X). We find that the effects of the Q151X mutation were not always as predicted. Specifically, we have found that although the Q151X mutation decreased oligomerization of alphaB-crystallin and even increased some chaperone activities, it also significantly destabilized alphaB-crystallin causing it to self-aggregate. This conclusion was supported by our analyses of both the other disease-causing mutants and the series of C-terminal truncation constructs of alphaB-crystallin. The 450delA and 464delCT mutants could only be refolded and assayed as a complex with wild type alphaB-crystallin, which was not the case for Q151X alphaB-crystallin. From these studies, we conclude that all three disease-causing mutations (450delA, 464delCT, and Q151X) in the C-terminal extension destabilize alphaB-crystallin and increase its tendency to self-aggregate. We propose that it is this, rather than a catastrophic loss of chaperone activity, which is a major factor in the development of the reported diseases for the three disease-causing mutations studied here. In support of this hypothesis, we show that Q151X alphaB-crystallin is found mainly in the insoluble fraction of cell extracts from transient transfected cells, due to the formation of cytoplasmic aggregates.
Collapse
Affiliation(s)
- Victoria H Hayes
- School of Biological and Biomedical Sciences, South Road Science Site, Durham University, Durham DH1 3LE
| | | | | |
Collapse
|