2
|
Yang Y, Yang Y, Huang L, Zhai Y, Li J, Jiang Z, Gong B, Fang H, Kim R, Yang Z, Sundaresan P, Zhu X, Zhou Y. Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa. Sci Rep 2016; 6:33681. [PMID: 27670293 PMCID: PMC5037368 DOI: 10.1038/srep33681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/31/2016] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of inherited blindness characterized by progressive degeneration of the retinal photoreceptor cells. This study aims to identify genetic mutations in a Chinese family RP-2236, an Indian family RP-IC-90 and 100 sporadic Indian individuals with autosomal recessive RP (arRP). Whole exome sequencing was performed on the index patients of RP-2236, RP-IC-90 and all of the 100 sporadic Indian patients. Direct Sanger sequencing was used to validate the mutations identified. Four novel mutations and one reported mutation in the crumbs homolog 1 (CRB1) gene, which has been known to cause severe retinal dystrophies, were identified. A novel homozygous splicing mutation c.2129-1G>C was found in the three patients In family RP-2236. A homozygous point mutation p.R664C was found in RP-IC-90. A novel homozygous mutation p.G1310C was identified in patient I-44, while novel compound heterozygous mutations p.N629D and p.A593T were found in patient I-7. All mutations described above were not present in the 1000 normal controls. In conclusion, we identified four novel mutations in CRB1 in a cohort of RP patients from the Chinese and Indian populations. Our data enlarges the CRB1 mutation spectrums and may provide new target loci for RP diagnose and treatment.
Collapse
Affiliation(s)
- Yin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yaru Zhai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Hao Fang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ramasamy Kim
- Retina-vitreous services, Aravind Eye Hospital, Madurai, Tamilnadu, India
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamilnadu, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.,Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhao K, Wang X, Wong HC, Wohlhueter R, Kirberger MP, Chen G, Yang JJ. Predicting Ca2+ -binding sites using refined carbon clusters. Proteins 2012; 80:2666-79. [PMID: 22821762 DOI: 10.1002/prot.24149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022]
Abstract
Identifying Ca(2+) -binding sites in proteins is the first step toward understanding the molecular basis of diseases related to Ca(2+) -binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca(2+) -binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca(2+) -binding site. Similarly, both Ca(2+) and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca(2+) -binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUG(C) ) to predict Ca(2+) -binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand co-ordinates, MUG(C) is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures composed of 43 Ca(2+) -binding proteins. Additionally, prediction of Ca(2+) -binding sites in NMR structures was obtained by MUG(C) using a different set of parameters, which were determined by the analysis of both Ca(2+) -constrained and unconstrained Ca(2+) -loaded structures derived from NMR data. MUG(C) identified 20 of 21 Ca(2+) -binding sites in NMR structures inferred without the use of Ca(2+) constraints. MUG(C) predictions are also highly selective for Ca(2+) -binding sites as analyses of binding sites for Mg(2+) , Zn(2+) , and Pb(2+) were not identified as Ca(2+) -binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient not only for accurate identification of Ca(2+) -binding sites in NMR and X-ray structures but also for selective differentiation between Ca(2+) and other relevant divalent cations.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Schneider R, Jensen SA, Whiteman P, McCullagh JSO, Redfield C, Handford PA. Biophysical characterisation of fibulin-5 proteins associated with disease. J Mol Biol 2010; 401:605-17. [PMID: 20599547 DOI: 10.1016/j.jmb.2010.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
FBLN5 encodes fibulin-5, an extracellular matrix calcium-binding glycoprotein that is essential for elastic fibre formation. FBLN5 mutations are associated with two distinct human diseases, age-related macular degeneration (AMD) and cutis laxa (CL), but the biochemical basis for the pathogenic effects of these mutations is poorly understood. Two missense mutations found in AMD patients (I169T and G267S) and two missense mutations found in CL patients (G202R and S227P) were analysed in a native-like context in recombinant fibulin-5 fragments. Limited proteolysis, NMR spectroscopy and chromophoric calcium chelation experiments showed that the G267S and S227P substitutions cause long-range structural effects consistent with protein misfolding. Cellular studies using fibroblast cells further demonstrated that these recombinant forms of mutant fibulin-5 were not present in the extracellular medium, consistent with retention. In contrast, no significant effects of I169T and G202R substitutions on protein fold and secretion were identified. These data establish protein misfolding as a causative basis for the effects of G267S and S227P substitutions in AMD and CL, respectively, and raise the possibility that the I169T and G202R substitutions may be polymorphisms or may increase susceptibility to disease.
Collapse
Affiliation(s)
- Ralf Schneider
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
6
|
Gosens I, den Hollander AI, Cremers FPM, Roepman R. Composition and function of the Crumbs protein complex in the mammalian retina. Exp Eye Res 2008; 86:713-26. [PMID: 18407265 DOI: 10.1016/j.exer.2008.02.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/09/2008] [Accepted: 02/18/2008] [Indexed: 11/27/2022]
Abstract
The Crumbs proteins (CRBs) are transmembrane proteins, homologous to Drosophila Crumbs, with a key role in defining the apical membrane domain in photoreceptors as well as in embryonic epithelia. Crumbs proteins are conserved between species and their intracellular domains are involved in organizing a conserved macromolecular protein scaffold with important roles in cell polarity as well as morphogenesis and maintenance of the retina. Mutations in the gene encoding human CRB1, the first one identified out of the three human orthologs, have been associated with a number of retinal dystrophies including Leber amaurosis and retinitis pigmentosa type 12. Although no other mammalian Crumbs complex members as of yet have been associated with retinal degeneration, disruption of different zebrafish and fruitfly orthologs can lead to various retinal defects. The core Crumbs complex localizes apical to the outer limiting membrane, where photoreceptors and Müller glia contact each other. Correct functioning of Crumbs ensures adhesion between these cells by an unknown mechanism. This review summarizes the current view on the composition and function of the Crumbs prsotein complex in the mammalian retina. Recently, a number of new members of the Crumbs protein complex have been identified. These include most members of the membrane palmitoylated protein family (MPP), involved in assembly of macromolecular protein complexes. Some components of the complex are found to exert a function in the photoreceptor synapses and/or at the region of the connecting cilium. Studies using polarized cell cultures or model organisms, like Drosophila and zebrafish, suggest important links of the Crumbs protein complex to several biological processes in the mammalian eye, including retinal patterning, ciliogenesis and vesicular transport.
Collapse
Affiliation(s)
- Ilse Gosens
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
7
|
Cordle J, Redfieldz C, Stacey M, van der Merwe PA, Willis AC, Champion BR, Hambleton S, Handford PA. Localization of the delta-like-1-binding site in human Notch-1 and its modulation by calcium affinity. J Biol Chem 2008; 283:11785-93. [PMID: 18296446 DOI: 10.1074/jbc.m708424200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.
Collapse
Affiliation(s)
- Jemima Cordle
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|