1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
McDowell JR, Bai G, Lasek-Nesselquist E, Eisele LE, Wu Y, Hurteau G, Johnson R, Bai Y, Chen Y, Chan J, McDonough KA. Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification. Mol Microbiol 2023; 119:401-422. [PMID: 36760076 PMCID: PMC10315211 DOI: 10.1111/mmi.15030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.
Collapse
Affiliation(s)
- James R. McDowell
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, Albany, NY 12208-3479
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Leslie E. Eisele
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Yan Wu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Gregory Hurteau
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Richard Johnson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yinlan Bai
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yong Chen
- Albert Einstein College of Medicine, Bronx, NY
| | - John Chan
- Albert Einstein College of Medicine, Bronx, NY
| | - Kathleen A. McDonough
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| |
Collapse
|
3
|
Wang Q, Sun Z, Ma S, Liu X, Xia H, Chen K. Molecular mechanism and potential application of bacterial infection in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104381. [PMID: 35245606 DOI: 10.1016/j.dci.2022.104381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a representative species of Lepidoptera, Bombyx mori has been widely studied and applied. However, bacterial infection has always been an important pathogen threatening the growth of silkworms. Bombyx mori can resist various pathogenic bacteria through their own physical barrier and innate immune system. However, compared with other insects, such as Drosophila melanogaster, research on the antibacterial mechanism of silkworms is still in its infancy. This review systematically summarized the routes of bacterial infection in silkworms, the antibacterial mechanism of silkworms after ingestion or wounding infection, and the intestinal bacteria and infection of silkworms. Finally, we will discuss silkworms as a model animal for studying bacterial infectious diseases and screening antibacterial drugs.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
4
|
Sun S, He Z, Jiang P, Baral R, Pandelia ME. Metal Dependence and Functional Diversity of Type I Cas3 Nucleases. Biochemistry 2022; 61:327-338. [PMID: 35184547 DOI: 10.1021/acs.biochem.1c00779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type I CRISPR-Cas systems provide prokaryotes with protection from parasitic genetic elements by cleaving foreign DNA. In addition, they impact bacterial physiology by regulating pathogenicity and virulence, making them key players in adaptability and evolution. The signature nuclease Cas3 is a phosphodiesterase belonging to the HD-domain metalloprotein superfamily. By directing specific metal incorporation, we map a promiscuous metal ion cofactor profile for Cas3 from Thermobifida fusca (Tf). Tf Cas3 affords significant ssDNA cleavage with four homo-dimetal centers (Fe2+, Co2+, Mn2+, and Ni2+), while the diferrous form is the most active and likely biologically relevant in vivo. Electron paramagnetic resonance (EPR) spectroscopy and Mössbauer spectroscopy show that the diiron cofactor can access three redox forms, while the diferrous form can be readily obtained with mild reductants. We further employ EPR and Mössbauer on Fe-enriched proteins to establish that Cas3″ enzymes harbor a dinuclear cofactor, which was not previously confirmed. We demonstrate that the ancillary His ligand is critical for efficient ssDNA cleavage but not for diiron assembly or small molecule hydrolysis. We further explore the ability of Cas3 to hydrolyze cyclic mononucleotides and show that Tf Cas3 hydrolyzes 2'3'-cAMP with catalytic efficiency comparable to that of the conserved virulence factor A (CvfA), an HD-domain protein hydrolyzing 2'3'-cylic phosphodiester bonds at RNA 3'-termini. Because this CvfA activity is linked to virulence regulation, Cas3 may also utilize 2'3'-cAMP hydrolysis as a possible molecular route to control virulence.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Zunyu He
- Yale University, New Haven, Connecticut 06520-8055, United States
| | - Paul Jiang
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Rishika Baral
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
5
|
Olejniczak M, Jiang X, Basczok MM, Storz G. KH domain proteins: Another family of bacterial RNA matchmakers? Mol Microbiol 2022; 117:10-19. [PMID: 34748246 PMCID: PMC8766902 DOI: 10.1111/mmi.14842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
In many bacteria, the stabilities and functions of small regulatory RNAs (sRNAs) that act by base pairing with target RNAs most often are dependent on Hfq or ProQ/FinO-domain proteins, two classes of RNA chaperone proteins. However, while all bacteria appear to have sRNAs, many have neither Hfq nor ProQ/FinO-domain proteins raising the question of whether another factor might act as an sRNA chaperone in these organisms. Several recent studies have reported that KH domain proteins, such as KhpA and KhpB, bind sRNAs. Here we describe what is known about the distribution, structures, RNA-binding properties, and physiologic roles of KhpA and KhpB and discuss evidence for and against these proteins serving as sRNAs chaperones.
Collapse
Affiliation(s)
- Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Xiaofang Jiang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Maciej M. Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| |
Collapse
|
6
|
Verma RK, Biswas A, Kakkar A, Lomada SK, Pradhan BB, Chatterjee S. A Bacteriophytochrome Mediates Interplay between Light Sensing and the Second Messenger Cyclic Di-GMP to Control Social Behavior and Virulence. Cell Rep 2020; 32:108202. [DOI: 10.1016/j.celrep.2020.108202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
7
|
Wang R, Zhao P, Ge X, Tian P. Overview of Alternaria alternata Membrane Proteins. Indian J Microbiol 2020; 60:269-282. [PMID: 32647391 DOI: 10.1007/s12088-020-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022] Open
Abstract
Alternaria species are mainly saprophytic fungi, but some pathotypes of Alternaria alternata infect economically important plants including cereal crops, vegetables and fruits. Specially, A. alternata generates toxins which contaminate food and feed. To date, management of A. alternata relies primarily on fungicides. However, the control efficacy in most cases is below expectation due to ubiquity of A. alternata and resistance to fungicides. To mitigate resistance and develop long-lasting fungicides, uncovering multiple rather than single target is a prerequisite. Membrane proteins are potential targets of fungicides owing to wide participation in myriad biochemical events especially material transport, signal transduction and pathogenicity. However, so far, little is known about the distribution and molecular structure of A. alternata membrane proteins (AAMPs). Herein we summarize AAMPs by data mining and subsequent structure prediction. We also outline the state-of-the-art research advances of AAMPs especially those closely related to pathogenicity. Overall, this review aims to portray a picture of AAMPs and provide valuable insights for future development of highly efficient fungicides towards A. alternata or beyond.
Collapse
Affiliation(s)
- Ruyi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| |
Collapse
|
8
|
Sun S, Pandelia ME. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Biochemistry 2020; 59:2340-2350. [PMID: 32496757 DOI: 10.1021/acs.biochem.0c00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides are signaling molecules that modulate many processes, including immune response and virulence factor production. Their cellular levels in bacteria are fine-tuned by metal-dependent phosphodiesterases, namely, the EAL and HD-GYP proteins, with HD-GYPs belonging to the larger HD domain superfamily. In this study, we first focus on the catalytic properties and the range of metal ions and substrates of the HD-[HD-GYP] subfamily, consisting of two HD domains. We identified SO3491 as a homologue of VCA0681 and the second example of an HD-[HD-GYP]. Both proteins hydrolyze c-di-GMP and 3'3'c-GAMP and coordinate various metal ions, but only Fe and to a lesser extent Co support hydrolysis. The proteins are active only in the diferrous form and not in the one-electron more oxidized FeIIFeIII state. Although the C-terminal HD-GYP domain is essential for activity, the role of the N-terminal HD domain remains unknown. We show that the N-terminal site is important for protein stability, influences the individual apparent kcat and KM (but not kcat/KM), and cannot bind c-di-GMP, thus precluding its involvement in cyclic dinucleotide sensing. We proceeded to perform phylogenetic analyses to examine the distribution and functional relationships of the HD-[HD-GYP]s to the rest of the HD-GYPs. The phylogeny provides a correlation map that draws a link between the evolutionary and functional diversification of HD-GYPs, serving as a template for predicting the chemical nature of the metallocofactor, level of activity, and reaction outcome.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
Identification of 2H phosphoesterase superfamily proteins with 2'-CPDase activity. Biochimie 2019; 165:235-244. [PMID: 31422053 DOI: 10.1016/j.biochi.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
The 2H phosphoesterase superfamily (2H family) proteins are widely conserved among organisms. The 2H family is classified into several subgroups, including YjcG-like proteins whose enzymatic activity has not been reported. In the present study, we found that two YjcG-like proteins (Staphylococcus aureus SA0873 and Bacillus subtilis YjcG) have 2'-CPDase activity that hydrolyzes a 2',3'-cyclic nucleotide, thereby producing a nucleotide with a 3'-phosphate. The SA0873 protein selectively hydrolyzes a 2',3'-cyclic nucleotide with a purine base. Four SA0873 mutant proteins (H34A, T36A, H115A, and T117A), in which alanine was substituted for amino acid residues in the HxT/Sx motifs that are conserved in the 2H family, abolished the 2'-CPDase activity. Comparison of three-dimensional structures between the YjcG-like proteins with 2'-CPDase activity and another 2H family subgroup, LigT/2'-5' RNA ligase-like proteins with 3'-CPDase activity, revealed that the orientation of the substrate binding pocket is reversed between the two groups. Our findings revealed that YjcG-like proteins not only have a substrate-binding pocket different from that of LigT/2'-5' RNA ligase-like proteins, but they also have 2'-CPDase activity.
Collapse
|
10
|
Structure-Function Analysis of the Phosphoesterase Component of the Nucleic Acid End-Healing Enzyme Runella slithyformis HD-Pnk. J Bacteriol 2019; 201:JB.00292-19. [PMID: 31160396 DOI: 10.1128/jb.00292-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Runella slithyformis HD-Pnk is the prototype of a family of dual 5' and 3' nucleic acid end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. HD-Pnk is composed of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Here, we probed the phosphoesterase activity of HD-Pnk by querying its ability to hydrolyze non-nucleic acid phosphoester substrates and by conducting a mutational analysis of conserved amino acid constituents of the HD domain. We report that HD-Pnk catalyzes vigorous hydrolysis of p-nitrophenylphosphate (Km = 3.13 mM; k cat = 27.8 s-1) using copper as its metal cofactor. Mutagenesis identified Gln28, His33, His73, Asp74, Lys77, His94, His127, Asp162, and Arg166 as essential for p-nitrophenylphosphatase and DNA 3' phosphatase activities. Structural modeling places these residues at the active site, wherein His33, His73, Asp74, His94, and His127 are predicted to coordinate a binuclear metal complex and Lys77 and Arg166 engage the scissile phosphate. HD-Pnk homologs are distributed broadly (and exclusively) in bacteria, usually in a two-gene cluster with a putative ATP-dependent polynucleotide ligase (LIG). We speculate that HD-Pnk and LIG comprise the end-healing and end-sealing components of a bacterial nucleic acid repair pathway.IMPORTANCE 5'-end healing and 3'-end healing are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase, and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate 5'-PO4 and 3'-OH termini needed for joining by DNA and RNA ligases. This study interrogates, biochemically and via mutagenesis, the phosphoesterase activity of Runella slithyformis HD-Pnk, a bifunctional bacterial 5'- and 3'-end-healing enzyme composed of HD phosphoesterase and P-loop kinase modules. HD-Pnk homologs are found in 129 bacterial genera from 11 phyla. In 123/129 instances, HD-Pnk is encoded in an operon-like gene cluster with a putative ATP-dependent polynucleotide ligase (LIG), suggesting that HD-Pnk and LIG are agents of a conserved bacterial nucleic acid repair pathway.
Collapse
|
11
|
Broglia L, Materne S, Lécrivain AL, Hahnke K, Le Rhun A, Charpentier E. RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B. RNA Biol 2018; 15:1336-1347. [PMID: 30290721 PMCID: PMC6284565 DOI: 10.1080/15476286.2018.1532253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5′ untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5′ UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5′ UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5′ UTR and on the role of RNase Y in speB regulation.
Collapse
Affiliation(s)
- Laura Broglia
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Solange Materne
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anne-Laure Lécrivain
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Karin Hahnke
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
12
|
Marincola G, Wolz C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res 2017; 45:5980-5994. [PMID: 28453818 PMCID: PMC5449607 DOI: 10.1093/nar/gkx296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
13
|
Koch G, Wermser C, Acosta IC, Kricks L, Stengel ST, Yepes A, Lopez D. Attenuating Staphylococcus aureus Virulence by Targeting Flotillin Protein Scaffold Activity. Cell Chem Biol 2017; 24:845-857.e6. [PMID: 28669526 DOI: 10.1016/j.chembiol.2017.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind proteins and facilitate physical interaction of multi-enzyme complexes. Here we used a biochemical approach to dissect the scaffold activity of the flotillin-homolog protein FloA of the multi-drug-resistant human pathogen Staphylococcus aureus. We show that FloA promotes oligomerization of membrane protein complexes, such as the membrane-associated RNase Rny, which forms part of the RNA-degradation machinery called the degradosome. Cells lacking FloA had reduced Rny function and a consequent increase in the targeted sRNA transcripts that negatively regulate S. aureus toxin expression. Small molecules that altered FloA oligomerization also reduced Rny function and decreased the virulence potential of S. aureus in vitro, as well as in vivo, using invertebrate and murine infection models. Our results suggest that flotillin assists in the assembly of protein complexes involved in S. aureus virulence, and could thus be an attractive target for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ivan C Acosta
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Lara Kricks
- National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Ana Yepes
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; National Centre for Biotechnology (CNB), Spanish Research Council (CSIC), Darwin 3, Madrid 28049, Spain.
| |
Collapse
|
14
|
Sekimizu K. The Usefulness of Silkworms as a Model Animal for Evaluating the Effectiveness of Medicine and Food. YAKUGAKU ZASSHI 2017; 137:551-562. [DOI: 10.1248/yakushi.16-00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Cho KH. The Structure and Function of the Gram-Positive Bacterial RNA Degradosome. Front Microbiol 2017; 8:154. [PMID: 28217125 PMCID: PMC5289998 DOI: 10.3389/fmicb.2017.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University Terre Haute, IN, USA
| |
Collapse
|
16
|
Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain. J Bacteriol 2017; 199:JB.00739-16. [PMID: 27895092 DOI: 10.1128/jb.00739-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 11/20/2022] Open
Abstract
5'- and 3'-end-healing reactions are key steps in nucleic acid break repair in which 5'-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3'-PO4 or 2',3'-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5'-PO4 and 3'-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3'-phosphoesterase HD domain and a C-terminal 5'-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5'-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2',3'-cyclic phosphate, RNA 3'-phosphate, RNA 2'-phosphate, and DNA 3'-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5'- and 3'-end-healing enzymes that phosphorylate 5'-OH termini and dephosphorylate 2',3'-cyclic-PO4, 3'-PO4, and 2'-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla.
Collapse
|
17
|
Imae K, Saito Y, Kizaki H, Ryuno H, Mao H, Miyashita A, Suzuki Y, Sekimizu K, Kaito C. Novel Nucleoside Diphosphatase Contributes to Staphylococcus aureus Virulence. J Biol Chem 2016; 291:18608-18619. [PMID: 27422825 DOI: 10.1074/jbc.m116.721845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/06/2022] Open
Abstract
We identified SA1684 as a Staphylococcus aureus virulence gene using a silkworm infection model. The SA1684 gene product carried the DUF402 domain, which is found in RNA-binding proteins, and had amino acid sequence similarity with a nucleoside diphosphatase, Streptomyces coelicolor SC4828 protein. The SA1684-deletion mutant exhibited drastically decreased virulence, in which the LD50 against silkworms was more than 10 times that of the parent strain. The SA1684-deletion mutant also exhibited decreased exotoxin production and colony-spreading ability. Purified SA1684 protein had Mn(2+)- or Co(2+)-dependent hydrolyzing activity against nucleoside diphosphates. Alanine substitutions of Tyr-88, Asp-106, and Asp-123/Glu-124, which are conserved between SA1684 and SC4828, diminished the nucleoside diphosphatase activity. Introduction of the wild-type SA1684 gene restored the hemolysin production of the SA1684-deletion mutant, whereas none of the alanine-substituted SA1684 mutant genes restored the hemolysin production. RNA sequence analysis revealed that SA1684 is required for the expression of the virulence regulatory genes agr, sarZ, and sarX, as well as metabolic genes involved in glycolysis and fermentation pathways. These findings suggest that the novel nucleoside diphosphatase SA1684 links metabolic pathways and virulence gene expression and plays an important role in S. aureus virulence.
Collapse
Affiliation(s)
- Kenta Imae
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yuki Saito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hayato Kizaki
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hiroki Ryuno
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Han Mao
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Atsushi Miyashita
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yutaka Suzuki
- the Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuhisa Sekimizu
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Chikara Kaito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| |
Collapse
|
18
|
Kochi Y, Miyashita A, Tsuchiya K, Mitsuyama M, Sekimizu K, Kaito C. A human pathogenic bacterial infection model using the two-spotted cricket,Gryllus bimaculatus. FEMS Microbiol Lett 2016; 363:fnw163. [DOI: 10.1093/femsle/fnw163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 01/03/2023] Open
|
19
|
Matsumoto Y, Sekimizu K. A hyperglycemic silkworm model for evaluating hypoglycemic activity of Rehmanniae Radix, an herbal medicine. Drug Discov Ther 2016; 10:14-8. [PMID: 26902904 DOI: 10.5582/ddt.2016.01016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Silkworm shows hyperglycemia after intake of diet containing large amount of glucose. The hyperglycemic silkworm model is useful for evaluation of anti-diabetic drugs. A hot water extract of Rehmanniae Radix, an herbal medicine, showed hypoglycemic effect against the hyperglycemic silkworms. This method is applicable for quick and simple evaluation of the hypoglycemic activities of different batches of Rehmanniae Radix. Our findings suggest that silkworms have a lot of merit as experimental animals for evaluation of various herbal medicines.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | |
Collapse
|
20
|
Kaito C. Understanding of bacterial virulence using the silkworm infection model. Drug Discov Ther 2016; 10:30-3. [DOI: 10.5582/ddt.2016.01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
21
|
Khemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet 2015; 11:e1005577. [PMID: 26473962 PMCID: PMC4608709 DOI: 10.1371/journal.pgen.1005577] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Bacteria depend on efficient RNA turnover, both during homeostasis and when rapidly altering gene expression in response to changes. Nevertheless, remarkably few details are known about the rate-limiting steps in targeting and decay of RNA. The membrane-anchored endoribonuclease RNase Y is a virulence factor in Gram-positive pathogens. We have obtained a global picture of Staphylococcus aureus RNase Y sequence specificity using RNA-seq and the novel transcriptome-wide EMOTE method. Ninety-nine endoribonucleolytic sites produced in vivo were precisely mapped, notably inside six out of seven genes whose half-lives increase the most in an RNase Y deletion mutant, and additionally in three separate transcripts encoding degradation ribonucleases, including RNase Y itself, suggesting a regulatory network. We show that RNase Y is required to initiate the major degradation pathway of about a hundred transcripts that are inaccessible to other ribonucleases, but is prevented from promiscuous activity by membrane confinement and sequence preference for guanosines.
Collapse
Affiliation(s)
- Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
- * E-mail:
| |
Collapse
|
22
|
RNA Degradation in Staphylococcus aureus: Diversity of Ribonucleases and Their Impact. Int J Genomics 2015; 2015:395753. [PMID: 25977913 PMCID: PMC4419217 DOI: 10.1155/2015/395753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
The regulation of RNA decay is now widely recognized as having a central role in bacterial adaption to environmental stress. Here we present an overview on the diversity of ribonucleases (RNases) and their impact at the posttranscriptional level in the human pathogen Staphylococcus aureus. RNases in prokaryotes have been mainly studied in the two model organisms Escherichia coli and Bacillus subtilis. Based on identified RNases in these two models, putative orthologs have been identified in S. aureus. The main staphylococcal RNases involved in the processing and degradation of the bulk RNA are (i) endonucleases RNase III and RNase Y and (ii) exonucleases RNase J1/J2 and PNPase, having 5' to 3' and 3' to 5' activities, respectively. The diversity and potential roles of each RNase and of Hfq and RppH are discussed in the context of recent studies, some of which are based on next-generation sequencing technology.
Collapse
|
23
|
Li J, Biss M, Fu Y, Xu X, Moore SA, Xiao W. Two duplicated genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced by cyanamide. J Biol Chem 2015; 290:12664-75. [PMID: 25847245 DOI: 10.1074/jbc.m115.645408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.
Collapse
Affiliation(s)
- Jia Li
- From the Departments of Microbiology and Immunology and
| | - Michael Biss
- From the Departments of Microbiology and Immunology and
| | - Yu Fu
- From the Departments of Microbiology and Immunology and
| | - Xin Xu
- the College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stanley A Moore
- Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Wei Xiao
- From the Departments of Microbiology and Immunology and the College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
24
|
Numata S, Nagata M, Mao H, Sekimizu K, Kaito C. CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. J Biol Chem 2014; 289:8420-31. [PMID: 24492613 DOI: 10.1074/jbc.m114.554329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified CvfA (SA1129) as a Staphylococcus aureus virulence factor using a silkworm infection model. S. aureus cvfA-deleted mutants exhibit decreased expression of the agr locus encoding a positive regulator of hemolysin genes and decreased hemolysin production. CvfA protein hydrolyzes a 2',3'-cyclic phosphodiester bond at the RNA 3' terminus, producing RNA with a 3'-phosphate (3'-phosphorylated RNA, RNA with a 3'-phosphate). Here, we report that the cvfA-deleted mutant phenotype (decreased agr expression and hemolysin production) was suppressed by disrupting pnpA-encoding polynucleotide phosphorylase (PNPase) with 3'- to 5'-exonuclease activity. The suppression was blocked by introducing a pnpA-encoding PNPase with exonuclease activity but not by a pnpA-encoding mutant PNPase without exonuclease activity. Therefore, loss of PNPase exonuclease activity suppressed the cvfA-deleted mutant phenotype. Purified PNPase efficiently degraded RNA with 2',3'-cyclic phosphate at the 3' terminus (2',3'-cyclic RNA), but it inefficiently degraded 3'-phosphorylated RNA. These findings indicate that 3'-phosphorylated RNA production from 2',3'-cyclic RNA by CvfA prevents RNA degradation by PNPase and contributes to the expression of agr and hemolysin genes. We speculate that in the cvfA-deleted mutant, 2',3'-cyclic RNA is not converted to the 3'-phosphorylated form and is efficiently degraded by PNPase, resulting in the loss of RNA essential for expressing agr and hemolysin genes, whereas in the cvfA/pnpA double-disrupted mutant, 2',3'-cyclic RNA is not degraded by PNPase, leading to hemolysin production. These findings suggest that CvfA and PNPase competitively regulate RNA degradation essential for S. aureus virulence.
Collapse
Affiliation(s)
- Shunsuke Numata
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
25
|
CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 2014; 196:1184-96. [PMID: 24391052 DOI: 10.1128/jb.00128-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus Agr system regulates virulence gene expression by responding to cell population density (quorum sensing). When an extracellular peptide signal (AIP-III in strain UAMS-1, used for these experiments) reaches a concentration threshold, the AgrC-AgrA two-component regulatory system is activated through a cascade of phosphorylation events, leading to induction of the divergently transcribed agrBDCA operon and the RNAIII gene. RNAIII is a posttranscriptional regulator of numerous metabolic and pathogenesis genes. CodY, a global regulatory protein, is known to repress agrBDCA and RNAIII transcription during exponential growth in rich medium, but the mechanism of this regulation has remained elusive. Here we report that phosphorylation of AgrA by the AgrC protein kinase is required for the overexpression of the agrBDCA operon and the RNAIII gene in a codY mutant during the exponential-growth phase, suggesting that the quorum-sensing system, which normally controls AgrC activation, is active even in exponential-phase cells in the absence of CodY. In part, such premature expression of RNAIII was attributable to higher-than-normal accumulation of AIP-III in a codY mutant strain, as determined using ultrahigh-performance liquid chromatography coupled to mass spectrometry. Although CodY is a strong repressor of the agr locus, CodY bound only weakly to the agrBDCA-RNAIII promoter region, suggesting that direct regulation by CodY is unlikely to be the principal mechanism by which CodY regulates agr and RNAIII expression. Taken together, these results strongly suggest that cell population density signals inducing virulence gene expression can be overridden by nutrient availability, a condition monitored by CodY.
Collapse
|
26
|
The importance of regulatory RNAs in Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2014; 21:616-26. [DOI: 10.1016/j.meegid.2013.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
27
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
28
|
Omae Y, Hanada Y, Sekimizu K, Kaito C. Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. J Biol Chem 2013; 288:25542-25550. [PMID: 23873929 DOI: 10.1074/jbc.m113.495051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We previously reported that a silkworm hemolymph protein, apolipophorin (ApoLp), binds to the cell surface of Staphylococcus aureus and inhibits expression of the saePQRS operon encoding a two-component system, SaeRS, and hemolysin genes. In this study, we investigated the inhibitory mechanism of ApoLp on S. aureus hemolysin gene expression. ApoLp bound to lipoteichoic acids (LTA), an S. aureus cell surface component. The addition of purified LTA to liquid medium abolished the inhibitory effect of ApoLp against S. aureus hemolysin production. In an S. aureus knockdown mutant of ltaS encoding LTA synthetase, the inhibitory effects of ApoLp on saeQ expression and hemolysin production were attenuated. Furthermore, the addition of anti-LTA monoclonal antibody to liquid medium decreased the expression of S. aureus saeQ and hemolysin genes. In S. aureus strains expressing SaeS mutant proteins with a shortened extracellular domain, ApoLp did not decrease saeQ expression. These findings suggest that ApoLp binds to LTA on the S. aureus cell surface and inhibits S. aureus hemolysin gene expression via a two-component regulatory system, SaeRS.
Collapse
Affiliation(s)
- Yosuke Omae
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Hanada
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhisa Sekimizu
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chikara Kaito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
29
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
30
|
Inagaki Y, Matsumoto Y, Kataoka K, Matsuhashi N, Sekimizu K. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph. BMC Pharmacol Toxicol 2012; 13:13. [PMID: 23137391 PMCID: PMC3545979 DOI: 10.1186/2050-6511-13-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/13/2012] [Indexed: 01/23/2023] Open
Abstract
Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals.
Collapse
Affiliation(s)
- Yoshinori Inagaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | |
Collapse
|
31
|
Marincola G, Schäfer T, Behler J, Bernhardt J, Ohlsen K, Goerke C, Wolz C. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes. Mol Microbiol 2012; 85:817-32. [PMID: 22780584 DOI: 10.1111/j.1365-2958.2012.08144.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilization of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.
Collapse
Affiliation(s)
- Gabriella Marincola
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Miyashita A, Iyoda S, Ishii K, Hamamoto H, Sekimizu K, Kaito C. Lipopolysaccharide O-antigen of enterohemorrhagic Escherichia coli O157:H7 is required for killing both insects and mammals. FEMS Microbiol Lett 2012; 333:59-68. [DOI: 10.1111/j.1574-6968.2012.02599.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023] Open
Affiliation(s)
- Atsushi Miyashita
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Sunao Iyoda
- Department of Bacteriology; National Institute of Infectious Diseases; Shinjuku-ku; Tokyo; Japan
| | - Kenichi Ishii
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Hiroshi Hamamoto
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Chikara Kaito
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| |
Collapse
|
33
|
Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J. RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases. Mol Microbiol 2012; 84:1005-17. [PMID: 22568516 DOI: 10.1111/j.1365-2958.2012.08072.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNA processing and degradation are key processes in the control of transcript accumulation and thus in the control of gene expression. In Escherichia coli, the underlying mechanisms and components of RNA decay are well characterized. By contrast, Gram-positive bacteria do not possess several important players of E. coli RNA degradation, most notably the essential enzyme RNase E. Recent research on the model Gram-positive organism, Bacillus subtilis, has identified the essential RNases J1 and Y as crucial enzymes in RNA degradation. While RNase J1 is the first bacterial exoribonuclease with 5'-to-3' processivity, RNase Y is the founding member of a novel class of endoribonucleases. Both RNase J1 and RNase Y have a broad impact on the stability of B. subtilis mRNAs; a depletion of either enzyme affects more than 25% of all mRNAs. RNases J1 and Y as well as RNase J2, the polynucleotide phosphorylase PNPase, the RNA helicase CshA and the glycolytic enzymes enolase and phosphofructokinase have been proposed to form a complex, the RNA degradosome of B. subtilis. This review presents a model, based on recent published data, of RNA degradation in B. subtilis. Degradation is initiated by RNase Y-dependent endonucleolytic cleavage, followed by processive exoribonucleolysis of the generated fragments both in 3'-to-5' and in 5'-to-3' directions. The implications of these findings for pathogenic Gram-positive bacteria are also discussed.
Collapse
Affiliation(s)
- Martin Lehnik-Habrink
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
34
|
Romilly C, Caldelari I, Parmentier D, Lioliou E, Romby P, Fechter P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biol 2012; 9:402-13. [PMID: 22546940 DOI: 10.4161/rna.20103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus is one of the major human pathogens, which causes numerous community-associated and hospital-acquired infections. The regulation of the expression of numerous virulence factors is coordinated by complex interplays between two component systems, transcriptional regulatory proteins, and regulatory RNAs. Recent studies have identified numerous novel RNAs comprising cis-acting regulatory RNAs, antisense RNAs, small non coding RNAs and small mRNAs encoding peptides. We present here several examples of RNAs regulating S. aureus pathogenicity and describe various aspects of antisense regulation.
Collapse
Affiliation(s)
- Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
35
|
When ribonucleases come into play in pathogens: a survey of gram-positive bacteria. Int J Microbiol 2012; 2012:592196. [PMID: 22550495 PMCID: PMC3328962 DOI: 10.1155/2012/592196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/27/2011] [Indexed: 11/20/2022] Open
Abstract
It is widely acknowledged that RNA stability plays critical roles in bacterial adaptation and survival in different environments like those encountered when bacteria infect a host. Bacterial ribonucleases acting alone or in concert with regulatory RNAs or RNA binding proteins are the mediators of the regulatory outcome on RNA stability. We will give a current update of what is known about ribonucleases in the model Gram-positive organism Bacillus subtilis and will describe their established roles in virulence in several Gram-positive pathogenic bacteria that are imposing major health concerns worldwide. Implications on bacterial evolution through stabilization/transfer of genetic material (phage or plasmid DNA) as a result of ribonucleases' functions will be covered. The role of ribonucleases in emergence of antibiotic resistance and new concepts in drug design will additionally be discussed.
Collapse
|
36
|
Omae Y, Sekimizu K, Kaito C. Inhibition of colony-spreading activity of Staphylococcus aureus by secretion of δ-hemolysin. J Biol Chem 2012; 287:15570-9. [PMID: 22411996 DOI: 10.1074/jbc.m112.357848] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed "colony spreading." Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin.
Collapse
Affiliation(s)
- Yosuke Omae
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
37
|
Eidem TM, Roux CM, Dunman PM. RNA decay: a novel therapeutic target in bacteria. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:443-54. [PMID: 22374855 DOI: 10.1002/wrna.1110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The need for novel antibiotics is greater now than perhaps any time since the pre-antibiotic era. Indeed, the recent collapse of most pharmaceutical antibacterial groups, combined with the emergence of hypervirulent and pan-antibiotic-resistant bacteria have, in effect, created a 'perfect storm' that has severely compromised infection treatment options and led to dramatic increases in the incidence and severity of bacterial infections. To put simply, it is imperative that we develop new classes of antibiotics for the therapeutic intervention of bacterial infections. In that regard, RNA degradation is an essential biological process that has not been exploited for antibiotic development. Herein we discuss the factors that govern bacterial RNA degradation, highlight members of this machinery that represent attractive antimicrobial drug development targets and describe the use of high-throughput screening as a means of developing antimicrobials that target these enzymes. Such agents would represent first-in-class antibiotics that would be less apt to inactivation by currently encountered enzymatic antibiotic-resistance determinants.
Collapse
Affiliation(s)
- Tess M Eidem
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
38
|
Morrison JM, Dunman PM. The modulation of Staphylococcus aureus mRNA turnover. Future Microbiol 2012; 6:1141-50. [PMID: 22004033 DOI: 10.2217/fmb.11.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of causing a wide array of infections owing, in large part, to the coordinated expression of an extensive repertoire of virulence factors. Our laboratory and others have shown that the expression of these factors can occur post-transcriptionally at the level of mRNA turnover and is mediated by ribonucleases, RNA-binding proteins, and regulatory RNA molecules. Moreover, S. aureus harbors the ability to alter the stability of its mRNA titers in response to physiological stresses, including antibiotic exposure. Although ongoing studies are attempting to identify the molecular components that modulate S. aureus mRNA turnover, innovative approaches to target these essential processes have established a novel group of targets for therapeutic development against staphylococcal infections.
Collapse
Affiliation(s)
- John M Morrison
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | | |
Collapse
|
39
|
Insights into the gene expression profile of uncultivable hemotrophic Mycoplasma suis during acute infection, obtained using proteome analysis. J Bacteriol 2012; 194:1505-14. [PMID: 22267506 DOI: 10.1128/jb.00002-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.
Collapse
|
40
|
Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2011; 2:491-506. [DOI: 10.1515/bmc.2011.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis. In bacteria, the half-lives of individual mRNAs can differ by as much as two orders of magnitude, ranging from seconds to an hour. Most of what we know today about the diverse mechanisms of mRNA decay and maturation in prokaryotes comes from studies of the two model organisms Escherichia coli and Bacillus subtilis. Their evolutionary distance provided a large picture of potential pathways and enzymes involved in mRNA turnover. Among them are three ribonucleases, two of which have been discovered only recently, which have a truly general role in the initiating events of mRNA degradation: RNase E, RNase J and RNase Y. Their enzymatic characteristics probably determine the strategies of mRNA metabolism in the organism in which they are present. These ribonucleases are coded, alone or in various combinations, in all prokaryotic genomes, thus reflecting how mRNA turnover has been adapted to different ecological niches throughout evolution.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Harald Putzer
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
41
|
Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K. Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans. J Appl Microbiol 2011; 112:138-46. [PMID: 22040451 DOI: 10.1111/j.1365-2672.2011.05186.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS To develop an in vivo system that could quantitatively evaluate the therapeutic effects of antifungal drugs using a silkworm infection model with Cryptococcus neoformans. METHODS AND RESULTS Silkworms reared at 37°C died after an injection of viable serotype A C. neoformans fungus into the haemolymph. The serotype A C. neoformans, which is known to have higher mammal pathogenicity than the serotype D, was also more virulent against the silkworm. Furthermore, the deletion mutants of genes gpa1, pka1 and cna1, which are genes known to be necessary for the pathogenesis in mammals, showed an increase in the number of fungal cells necessary to kill half of the silkworm population (LD(50) value). Antifungal drugs, amphotericin B, flucytosine, fluconazole and ketoconazole, showed therapeutic effects in silkworms infected with C. neoformans. However, amphotericin B was not therapeutically effective when injected into the silkworm intestine, comparable to the fact that amphotericin B is not absorbed by the intestine in mammals. CONCLUSIONS The silkworm-C. neoformans infection model is useful for evaluating the therapeutic effects of antifungal drugs. SIGNIFICANCE AND IMPACT OF THE STUDY The silkworm infection model has various advantages for screening antifungal drug candidates. We can also elucidate the cryptococcal pathogenesis and evaluate the in vivo pharmacokinetics and toxicity of each drug.
Collapse
Affiliation(s)
- Y Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C. Evaluation of Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol Lett 2011; 326:116-24. [PMID: 22092964 DOI: 10.1111/j.1574-6968.2011.02439.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 10/17/2011] [Indexed: 02/04/2023] Open
Abstract
Previous studies have indicated that the silkworm model is useful for identifying virulence genes of Staphylococcus aureus, a human pathogenic bacterium. Here we examined the scope of S. aureus virulence factors that can be evaluated using the silkworm model. Gene-disrupted mutants of the agr locus, arlS gene and saeS gene, which regulate the expression of cell surface adhesins and hemolysins, exhibited attenuated virulence in silkworms. Mutants of the hla gene encoding α-hemolysin, the hlb gene encoding β-hemolysin, and the psmα and psmβ operons encoding cytolysins, however, showed virulence in silkworms indistinguishable from that of the parent strain. Thus, these S. aureus cytolysins are not required for virulence in silkworms. In contrast, the gene-disrupted mutants of clfB, fnbB and sdrC, which encode cell-wall-anchored proteins, attenuated S. aureus virulence in silkworms. In addition, the mutant of the srtA gene encoding sortase A, which anchors cell-wall proteins, showed attenuated virulence in silkworms. These findings suggest that the silkworm model can be used to evaluate S. aureus cell-wall proteins and regulatory proteins as virulence factors.
Collapse
Affiliation(s)
- Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
43
|
Hanada Y, Sekimizu K, Kaito C. Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. J Biol Chem 2011; 286:39360-9. [PMID: 21937431 DOI: 10.1074/jbc.m111.278416] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Silkworm hemolymph inhibits hemolysin production by Staphylococcus aureus. We purified a factor in the silkworm hemolymph responsible for this inhibitory activity. The final fraction with the greatest specific activity contained 220- and 74-kDa proteins. Determination of the N-terminal amino acid sequence revealed that the 220- and 74-kDa proteins were apolipophorin I and apolipophorin II, respectively, indicating that the factor was apolipophorin (ApoLp). The purified ApoLp fraction showed decreased expression of S. aureus hla encoding α-hemolysin, hlb encoding β-hemolysin, saeRS, and RNAIII, which activate the expression of these hemolysin genes. Injection of an anti-ApoLp antibody into the hemolymph increased the sensitivity of silkworms to the lethal effect of S. aureus. Hog gastric mucin, a mammalian homologue of ApoLp, decreased the expression of S. aureus hla and hlb. These findings suggest that ApoLp in the silkworm hemolymph inhibits S. aureus virulence and contributes to defense against S. aureus infection and that its activity is conserved in mammalian mucin.
Collapse
Affiliation(s)
- Yuichi Hanada
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
44
|
Kaito C, Usui K, Kyuma T, Sekimizu K. Isolation of mammalian pathogenic bacteria using silkworms. Drug Discov Ther 2011; 5:66-70. [DOI: 10.5582/ddt.2011.v5.2.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kimihito Usui
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Tatsuhiko Kyuma
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
45
|
Abstract
Bacterial stress responses provide them the opportunity to survive hostile environments, proliferate and potentially cause diseases in humans and animals. The way in which pathogenic bacteria interact with host immune cells triggers a complicated series of events that include rapid genetic re‐programming in response to the various host conditions encountered. Viewed in this light, the bacterial host‐cell induced stress response (HCISR) is similar to any other well‐characterized environmental stress to which bacteria must respond by upregulating a group of specific stress‐responsive genes. Post stress, bacteria must resume their pre‐stress genetic program, and, as a consequence, must degrade unnecessary stress responsive transcripts through RNA decay mechanisms. Further, there is a well‐established role for several ribonucleases in the cold shock response whereby they modulate the changing transcript landscape in response to the stress, and during acclimation and subsequent genetic re‐programming post stress. Recently, ribonucleases have been implicated as virulence‐associated factors in several notable Gram‐negative pathogens including, the yersiniae, the salmonellae, Helicobacter pylori, Shigella flexneri and Aeromonas hydrophila. This review will focus on the roles played by ribonucleases in bacterial virulence, other bacterial stress responses, and on their novel therapeutic applications.
Collapse
Affiliation(s)
- Abidat Lawal
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University, Houston, TX, USA
| | | | | | | |
Collapse
|
46
|
López D, Kolter R. Functional microdomains in bacterial membranes. Genes Dev 2010; 24:1893-902. [PMID: 20713508 PMCID: PMC2932971 DOI: 10.1101/gad.1945010] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/16/2010] [Indexed: 11/24/2022]
Abstract
The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Matsumoto Y, Xu Q, Miyazaki S, Kaito C, Farr CL, Axelrod HL, Chiu HJ, Klock HE, Knuth MW, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Sekimizu K, Wilson IA. Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module. Structure 2010; 18:537-47. [PMID: 20399190 DOI: 10.1016/j.str.2010.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 12/01/2022]
Abstract
CvfB is a conserved regulatory protein important for the virulence of Staphylococcus aureus. We show here that CvfB binds RNA. The crystal structure of the CvfB ortholog from Streptococcus pneumoniae at 1.4 A resolution reveals a unique RNA binding protein that is formed from a concatenation of well-known structural modules that bind nucleic acids: three consecutive S1 RNA binding domains and a winged helix (WH) domain. The third S1 and the WH domains are required for cooperative RNA binding and form a continuous surface that likely contributes to the RNA interaction. The WH domain is critical to CvfB function and contains a unique sequence motif. Thus CvfB represents a novel assembly of modules for binding RNA.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The cvfC operon of Staphylococcus aureus contributes to virulence via expression of the thyA gene. Microb Pathog 2010; 49:1-7. [DOI: 10.1016/j.micpath.2010.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/13/2010] [Accepted: 03/19/2010] [Indexed: 02/07/2023]
|
49
|
2',3'-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: Implications for PDE screening. Biochem Biophys Res Commun 2010; 398:500-5. [PMID: 20599695 DOI: 10.1016/j.bbrc.2010.06.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/28/2010] [Indexed: 11/23/2022]
Abstract
The recent report of 2',3'-cAMP isolated from rat kidney is the first proof of its biological existence, which revived interest in this mysterious molecule. 2',3'-cAMP serves as an extracellular adenosine source, but how it is degraded remains unclear. Here, we report that 2',3'-cAMP can be hydrolyzed by six phosphodiesterases containing three different families of hydrolytic domains, generating invariably 3'-AMP but not 2'-AMP. The catalytic efficiency (k(cat)/K(m)) of each enzyme against 2',3'-cAMP correlates with that against the widely used non-specific substrate bis(p-nitrophenyl)phosphate (bis-pNPP), indicating that 2',3'-cAMP is a previously unknown non-specific substrate for PDEs. Furthermore, we show that the exclusive formation of 3'-AMP is due to the P-O2' bond having lower activation energy and is not the result of steric exclusion at enzyme active site. Our analysis provides mechanistic basis to dissect protein function when 2',3'-cAMP hydrolysis is observed.
Collapse
|
50
|
Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun 2010; 78:2754-67. [PMID: 20385762 DOI: 10.1128/iai.01370-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.
Collapse
|