1
|
|
2
|
Al-Behadili A, Uhler JP, Berglund AK, Peter B, Doimo M, Reyes A, Wanrooij S, Zeviani M, Falkenberg M. A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL. Nucleic Acids Res 2018; 46:9471-9483. [PMID: 30102370 PMCID: PMC6182146 DOI: 10.1093/nar/gky708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 11/12/2022] Open
Abstract
The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.
Collapse
Affiliation(s)
- Ali Al-Behadili
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Jay P Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Anna-Karin Berglund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, Sweden
| |
Collapse
|
3
|
Szczepanowska K, Trifunovic A. Different faces of mitochondrial DNA mutators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1362-72. [PMID: 26014346 DOI: 10.1016/j.bbabio.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
A number of studies have shown that ageing is associated with increased amounts of mtDNA deletions and/or point mutations in a variety of species as diverse as Caenorhabditis elegans, Drosophila melanogaster, mice, rats, dogs, primates and humans. This detected vulnerability of mtDNA has led to the suggestion that the accumulation of somatic mtDNA mutations might arise from increased oxidative damage and could play an important role in the ageing process by producing cells with a decreased oxidative capacity. However, the vast majority of DNA polymorphisms and disease-causing base-substitution mutations and age-associated mutations that have been detected in human mtDNA are transition mutations. They are likely arising from the slight infidelity of the mitochondrial DNA polymerase. Indeed, transition mutations are also the predominant type of mutation found in mtDNA mutator mice, a model for premature ageing caused by increased mutation load due to the error prone mitochondrial DNA synthesis. These particular misincorporation events could also be exacerbated by dNTP pool imbalances. The role of different repair, replication and maintenance mechanisms that contribute to mtDNA integrity and mutagenesis will be discussed in details in this article. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, D-50931 Cologne, Germany.
| |
Collapse
|
4
|
Kasiviswanathan R, Collins TRL, Copeland WC. The interface of transcription and DNA replication in the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:970-8. [PMID: 22207204 DOI: 10.1016/j.bbagrm.2011.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
Abstract
DNA replication of the mitochondrial genome is unique in that replication is not primed by RNA derived from dedicated primases, but instead by extension of processed RNA transcripts laid down by the mitochondrial RNA polymerase. Thus, the RNA polymerase serves not only to generate the transcripts but also the primers needed for mitochondrial DNA replication. The interface between this transcription and DNA replication is not well understood but must be highly regulated and coordinated to carry out both mitochondrial DNA replication and transcription. This review focuses on the extension of RNA primers for DNA replication by the replication machinery and summarizes the current models of DNA replication in mitochondria as well as the proteins involved in mitochondrial DNA replication, namely, the DNA polymerase γ and its accessory subunit, the mitochondrial DNA helicase, the single-stranded DNA binding protein, topoisomerase I and IIIα and RNaseH1. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
5
|
Zhang L, Chan SSL, Wolff DJ. Mitochondrial disorders of DNA polymerase γ dysfunction: from anatomic to molecular pathology diagnosis. Arch Pathol Lab Med 2011. [PMID: 21732785 DOI: 10.1043/2010-0356-rar.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. OBJECTIVES To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. DATA SOURCES Review of pertinent published literature and relevant Internet databases. CONCLUSIONS Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
6
|
Kasiviswanathan R, Copeland WC. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J Biol Chem 2011; 286:31490-500. [PMID: 21778232 DOI: 10.1074/jbc.m111.252460] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During DNA synthesis, DNA polymerases must select against ribonucleotides, present at much higher levels compared with deoxyribonucleotides. Most DNA polymerases are equipped to exclude ribonucleotides from their active site through a bulky side chain residue that can sterically block the 2'-hydroxyl group of the ribose ring. However, many nuclear replicative and repair DNA polymerases incorporate ribonucleotides into DNA, suggesting that the exclusion mechanism is not perfect. In this study, we show that the human mitochondrial DNA polymerase γ discriminates ribonucleotides efficiently but differentially based on the base identity. Whereas UTP is discriminated by 77,000-fold compared with dTTP, the discrimination drops to 1,100-fold for GTP versus dGTP. In addition, the efficiency of the enzyme was reduced 3-14-fold, depending on the identity of the incoming nucleotide, when it extended from a primer containing a 3'-terminal ribonucleotide. DNA polymerase γ is also proficient in performing single-nucleotide reverse transcription reactions from both DNA and RNA primer terminus, although its bypass efficiency is significantly diminished with increasing stretches of ribonucleotides in template DNA. Furthermore, we show that the E895A mutant enzyme is compromised in its ability to discriminate ribonucleotides, mainly due to its defects in deoxyribonucleoside triphosphate binding, and is also a poor reverse transcriptase. The potential biochemical defects of a patient harboring a disease mutation in the same amino acid (E895G) are discussed.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
7
|
Zhang L, Chan SSL, Wolff DJ. Mitochondrial disorders of DNA polymerase γ dysfunction: from anatomic to molecular pathology diagnosis. Arch Pathol Lab Med 2011; 135:925-34. [PMID: 21732785 PMCID: PMC3158670 DOI: 10.5858/2010-0356-rar.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. OBJECTIVES To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. DATA SOURCES Review of pertinent published literature and relevant Internet databases. CONCLUSIONS Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis.
Collapse
Affiliation(s)
- Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
8
|
Abstract
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
9
|
Mousson de Camaret B, Chassagne M, Mayençon M, Padet S, Crehalet H, Clerc-Renaud P, Rouvet I, Zabot MT, Rivier F, Sarda P, des Portes V, Bozon D. POLG exon 22 skipping induced by different mechanisms in two unrelated cases of Alpers syndrome. Mitochondrion 2011; 11:223-7. [DOI: 10.1016/j.mito.2010.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/29/2010] [Accepted: 07/23/2010] [Indexed: 11/16/2022]
|
10
|
Bailey CM, Anderson KS. A mechanistic view of human mitochondrial DNA polymerase gamma: providing insight into drug toxicity and mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1213-22. [PMID: 20083238 DOI: 10.1016/j.bbapap.2010.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA polymerase gamma (Pol gamma) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol gamma is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol gamma holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase gamma, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
11
|
Zhang H, Eoff RL, Kozekov ID, Rizzo CJ, Egli M, Guengerich FP. Versatility of Y-family Sulfolobus solfataricus DNA polymerase Dpo4 in translesion synthesis past bulky N2-alkylguanine adducts. J Biol Chem 2008; 284:3563-76. [PMID: 19059910 DOI: 10.1074/jbc.m807778200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to replicative DNA polymerases, Sulfolobus solfataricus Dpo4 showed a limited decrease in catalytic efficiency (k(cat)/Km) for insertion of dCTP opposite a series of N2-alkylguanine templates of increasing size from (methyl (Me) to (9-anthracenyl)-Me (Anth)). Fidelity was maintained with increasing size up to (2-naphthyl)-Me (Naph). The catalytic efficiency increased slightly going from the N2-NaphG to the N2-AnthG substrate, at the cost of fidelity. Pre-steady-state kinetic bursts were observed for dCTP incorporation throughout the series (N2-MeG to N2-AnthG), with a decrease in the burst amplitude and k(pol), the rate of single-turnover incorporation. The pre-steady-state kinetic courses with G and all of the six N2-alkyl G adducts could be fit to a general DNA polymerase scheme to which was added an inactive complex in equilibrium with the active ternary Dpo4.DNA.dNTP complex, and only the rates of equilibrium with the inactive complex and phosphodiester bond formation were altered. Two crystal structures of Dpo4 with a template N2-NaphG (in a post-insertion register opposite a 3'-terminal C in the primer) were solved. One showed N2-NaphG in a syn conformation, with the naphthyl group located between the template and the Dpo4 "little finger" domain. The Hoogsteen face was within hydrogen bonding distance of the N4 atoms of the cytosine opposite N2-NaphG and the cytosine at the -2 position. The second structure showed N2-Naph G in an anti conformation with the primer terminus largely disordered. Collectively these results explain the versatility of Dpo4 in bypassing bulky G lesions.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bahrami F, Jestin JL. Streptococcus agalactiae DNA polymerase I is an efficient reverse transcriptase. Biochimie 2008; 90:1796-9. [PMID: 18706966 DOI: 10.1016/j.biochi.2008.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Genome annotations result generally from large sequence alignments by bioinformatics. Large scale biochemical data are more difficult to obtain. They derive for example from directed protein evolution experiments by selection. A previously reported directed enzyme evolution experiment by in vitro selection of Stoffel fragment variants of Taq DNA polymerase I was used here to predict the activities of Streptococcus agalactiae DNA polymerase I. The reverse transcriptase activity of S. agalactiae DNA polymerase I was measured and the kinetic parameters for this RNA-dependent DNA polymerase are given. RNA-templated DNA repair is suggested as a possible biological function for this biochemical activity.
Collapse
Affiliation(s)
- Fariborz Bahrami
- Département de Biologie Structurale et Chimie, Institut Pasteur, Paris 15, France.
| | | |
Collapse
|