1
|
Sadakane Y, Kobayashi M, Sano M, Morimoto S, Hagino M. Quantification of serine residue stereoinversion in a short peptide by reversed-phase high-performance liquid chromatography: analysis of mechanisms promoting serine stereoinversion. ANAL SCI 2024; 40:925-934. [PMID: 38528254 DOI: 10.1007/s44211-024-00543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Stereoinversion of Ser residues within proteins, which has been identified in long-lived proteins, influences protein function. To quantify the stereoinversion of Ser residues, we investigated the potential adaptation of our direct peptide analytical method originally established for analyzing the isomerization of asparaginyl/aspartyl residues. Peptide pairs containing L-Ser or D-Ser residues with lengths of four or five residues were synthesized. Separation conditions for these peptide pairs were systematically examined by precisely adjusting the pH of the elution solvent using reverse-phase high-performance liquid chromatography (HPLC). Optimal separation conditions were successfully developed for all peptide pairs, enabling the direct quantification of Ser residue stereoinversion through a single HPLC run. Subsequently, the degree of Ser stereoinversion within the model peptide, Gly-Ser-Gly-Tyr, was determined using the method established in this study. Surprisingly, the stereoinversion of Ser residues occurred only when the absolute configurations of Ser and Tyr residues of the peptide differed from each other, whereas no stereoinversion was observed when their absolute configurations were identical. The experiments using peptides similar to the model peptide reveal that both the N-terminal amino group and the hydroxyl group of the C-terminal Tyr residue are involved in the stereoinversion of the Ser residue. By applying a simple method to quantify the stereoinversion of Ser residues, valuable insights into the mechanisms governing these stereoinversions were obtained.
Collapse
Affiliation(s)
- Yutaka Sadakane
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan.
| | - Mizuki Kobayashi
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| | - Mitsuteru Sano
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| | - Shota Morimoto
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| | - Megumi Hagino
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, Japan
| |
Collapse
|
2
|
Somee LR, Barati A, Shahsavani MB, Hoshino M, Hong J, Kumar A, Moosavi-Movahedi AA, Amanlou M, Yousefi R. Understanding the structural and functional changes and biochemical pathomechanism of the cardiomyopathy-associated p.R123W mutation in human αB-crystallin. Biochim Biophys Acta Gen Subj 2024; 1868:130579. [PMID: 38307443 DOI: 10.1016/j.bbagen.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
αB-crystallin, a member of the small heat shock protein (sHSP) family, is expressed in diverse tissues, including the eyes, brain, muscles, and heart. This protein plays a crucial role in maintaining eye lens transparency and exhibits holdase chaperone and anti-apoptotic activities. Therefore, structural and functional changes caused by genetic mutations in this protein may contribute to the development of disorders like cataract and cardiomyopathy. Recently, the substitution of arginine 123 with tryptophan (p.R123W mutation) in human αB-crystallin has been reported to trigger cardiomyopathy. In this study, human αB-crystallin was expressed in Escherichia coli (E. coli), and the missense mutation p.R123W was created using site-directed mutagenesis. Following purification via anion exchange chromatography, the structural and functional properties of both proteins were investigated and compared using a wide range of spectroscopic and microscopic methods. The p.R123W mutation induced significant alterations in the secondary, tertiary, and quaternary structures of human αB-crystallin. This pathogenic mutation resulted in an increased β-sheet structure and formation of protein oligomers with larger sizes compared to the wild-type protein. The mutant protein also exhibited reduced chaperone activity and lower thermal stability. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrated that the p.R123W mutant protein is more prone to forming amyloid aggregates. The structural and functional changes observed in the p.R123W mutant protein, along with its increased propensity for aggregation, could impact its proper functional interaction with the target proteins in the cardiac muscle, such as calcineurin. Our results provide an explanation for the pathogenic intervention of p.R123W mutant protein in the occurrence of hypertrophic cardiomyopathy (HCM).
Collapse
Affiliation(s)
- Leila Rezaei Somee
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifen, People's Republic of China
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Ek-Vitorin JF, Jiang JX. The Role of Gap Junctions Dysfunction in the Development of Cataracts: From Loss of Cell-to-Cell Transfer to Blurred Vision-Review. Bioelectricity 2023; 5:164-172. [PMID: 37746311 PMCID: PMC10516237 DOI: 10.1089/bioe.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.
Collapse
Affiliation(s)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
4
|
Joseph R, Robinson ML, Lambert L, Srivastava OP. Lens-specific βA3/A1-conditional knockout mice: Phenotypic characteristics and calpain activation causing protein degradation and insolubilization. PLoS One 2023; 18:e0281386. [PMID: 36989286 PMCID: PMC10057792 DOI: 10.1371/journal.pone.0281386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/21/2023] [Indexed: 03/30/2023] Open
Abstract
βA3/A1-crystallin is a lens structural protein that plays an important role in maintaining lens transparency via interactions with other crystallins. While the function of βA3/A1-crystallin in the retina is well studied, its functions in the lens, other than as a structural protein, remain unclear. In the current study, we generated the lens-specific βA3/A1-crystallin conditional knockout mouse (named βA3/A1ckO) and explored phenotypic changes and the function of the crystallin in the lens. The βA3/A1ckO mice showed congenital cataract at birth and exhibited truncation of lens proteins. Several truncated protein fragments were recovered as a pellet during a low-speed centrifugation (800 rpm, 70 x g) followed by a relatively higher speed centrifugation (5000 rpm, 2744 x g). Mass spectrometric analysis of pellets recovered following the two centrifugations showed that among the fragments with Mr < 20 kDa, the majority of these were from β-tubulin, and some from phakinin, αA-crystallin, and calpain-3. Further, we observed that in vitro activation of calpain-3 by calcium treatment of the wild-type-lens homogenate resulted in the degradation of calpain-3, αA-crystallin and β-tubulin and insolubilization of these proteins. Based on these results, it was concluded that the activation of calpain 3 resulted in proteolysis of β-tubulin, which disrupted cellular microtubular structure, and caused proteolysis of other lens proteins (αA-crystallin and phakinin). These proteolyzed protein fragments become insoluble, and together with the disruption of microtubular structure, and could be the causative factors in the development of congenital nuclear cataract in βA3/A1cKO mice.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, United states of America
| | - Michael L Robinson
- Department of Biology, Miami University, Oxford, Ohio, United states of America
| | - Laura Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Om P Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, United states of America
| |
Collapse
|
5
|
Schey KL, Wang Z, Rose KL, Anderson DMG. Imaging Cataract-Specific Peptides in Human Lenses. Cells 2022; 11:cells11244042. [PMID: 36552806 PMCID: PMC9776990 DOI: 10.3390/cells11244042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related protein truncation is a common process in long-lived proteins such as proteins found in the ocular lens. Major truncation products have been reported for soluble and membrane proteins of the lens, including small peptides that can accelerate protein aggregation. However, the spatial localization of age-related protein fragments in the lens has received only limited study. Imaging mass spectrometry (IMS) is an ideal tool for examining the spatial localization of protein products in tissues. In this study we used IMS to determine the spatial localization of small crystallin fragments in aged and cataractous lenses. Consistent with previous reports, the pro-aggregatory αA-crystallin 66-80 peptide as well as αA-crystallin 67-80 and γS-crystallin 167-178 were detected in normal lenses, but found to be increased in nuclear cataract regions. In addition, a series of γS-crystallin C-terminal peptides were observed to be mainly localized to cataractous regions and barely detected in transparent lenses. Other peptides, including abundant αA3-crystallin peptides were present in both normal and cataract lenses. The functional properties of these crystallin peptides remain unstudied; however, their cataract-specific localization suggests further studies are warranted.
Collapse
|
6
|
Srivastava O, Wilson L, Barnes S, Srivastava K, Joseph R. αA and αB peptides from human cataractous lenses show antichaperone activity and enhance aggregation of lens proteins. Mol Vis 2022; 28:147-164. [PMID: 36540064 PMCID: PMC9744240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose To identify and characterize properties of αA- and αB-crystallins' low molecular weight peptides (molecular weight [Mr] < 5 kDa) that were present in a 62-year-old human nuclear cataract, but not in normal 62-year-old human lenses. Methods Low molecular weight peptides (< 5 kDa) were isolated with a trichloroacetic acid (TCA) solubilization method from water-soluble (WS) and water-insoluble (WI) proteins of nuclear cataractous lenses of a 62-year-old donor and normal human lenses from an age-matched donor. Five commercially synthesized peptides (found only in cataractous lenses and not in normal lenses) were used to determine their chaperone and antichaperone activity and aggregation properties. Results Mass spectrometric analysis showed 28 peptides of αA-crystallin and 38 peptides of αB-crystallin were present in the cataractous lenses but not in the normal lenses. Two αA peptides (named αAP1 and αAP2; both derived from the αA N-terminal domain (NTD) region) and three αB peptides (named αBP3, αBP4, and αBP5, derived from the αB NTD-, core domain (CD), and C-terminal extension (CTE) regions, respectively) were commercially synthesized. αAP1 inhibited the chaperone activity of αA- and αB-crystallins, but the other four peptides (αAP2, αBP3, αBP4, and αBP5) exhibited mixed effects on chaperone activity. Upon incubation with human WS proteins and peptides in vitro, the αBP4 peptide showed higher aggregation properties relative to the αAP1 peptide. During in vivo experiments, the cell-penetrating polyarginine-labeled αAP1 and αBP4 peptides showed 57% and 85% aggregates, respectively, around the nuclei of cultured human lens epithelial cells compared to only 35% by a scrambled peptide. Conclusions The antichaperone activity of the αAP1 peptide and the aggregation property of the αBP4 peptide with lens proteins could play a potential role during the development of lens opacity.
Collapse
Affiliation(s)
- Om Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Kiran Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| | - Roy Joseph
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Glazier AN. Proposed Role for Internal Lens Pressure as an Initiator of Age-Related Lens Protein Aggregation Diseases. Clin Ophthalmol 2022; 16:2329-2340. [PMID: 35924184 PMCID: PMC9342656 DOI: 10.2147/opth.s369676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The process that initiates lens stiffness evident in age-related lens protein aggregation diseases is thought to be mainly the result of oxidation. While oxidation is a major contributor, the exposure of lens proteins to physical stress over time increases susceptibility of lens proteins to oxidative damage, and this is believed to play a significant role in initiating these diseases. Accordingly, an overview of key physical stressors and molecular factors known to be implicated in the development of age-related lens protein aggregation diseases is presented, paying particular attention to the consequence of persistent increase in internal lens pressure.
Collapse
|
8
|
Santhoshkumar P, Sharma KK. Substrate Protein Interactions and Methylglyoxal Modifications Reduce the Aggregation Propensity of Human Alpha-A-Crystallin G98R Mutant. Front Mol Biosci 2022; 9:875205. [PMID: 35463950 PMCID: PMC9019814 DOI: 10.3389/fmolb.2022.875205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
The G98R mutation in αA-crystallin is associated with presenile cataract development in humans. Previous studies have indicated that mutant proteins altered structure, decreased stability, increased oligomeric size, loss of chaperone-like activity, and susceptibility to proteolysis could be contributing factors to cataract formation. To evaluate the effect of substrate protein interactions with the mutant protein on cataract formation, we have performed chaperone assays with alcohol dehydrogenase (ADH), citrate synthase (CS), and βB2-crystallin (βB2), and analyzed the reaction mixtures by multi-angle light scattering (MALS) analysis. It appears that αAG98R protein initially gets stabilized upon interaction with substrate proteins. Analysis of the chaperone-client protein complexes revealed that wild-type αA-crystallin interacts with substrate proteins to form compact complexes leading to a slight increase in oligomeric mass, whereas αAG98R forms less compact and high molecular weight complexes with the substrate, and the resulting complexes continue to increase in size over time. As a result, the soluble complexes formed initially by the mutant protein begin to scatter light and precipitate. We found that the stability and chaperone activity of the αAG98R can be improved by modifying the protein with low concentrations (50 µM) of methylglyoxal (MGO). Incubation of αAG98R protein (1 mg/ml) under aseptic conditions for 30 days at 37°C resulted in precipitation of the mutant protein. In contrast, mutant protein incubations carried out with 50 µM MGO remained soluble and transparent. SDS-PAGE analysis showed gradual autolysis of the mutant protein in the absence of MGO. The average molar mass of the mutant protein oligomers changed from 7,258 ± 12 kDa to 3,950 ± 08 kDa within 60 min of incubation with MGO. There was no further significant change in the molar mass of mutant protein when tested on day 7 of MGO treatment. Our data suggest that the initial stabilization of αAG98R by substrate proteins could delay congenital cataracts' appearance, and the uncontrolled long-term interaction amongst mutant subunits and substrate proteins could be the rationale behind presenile cataracts formation. The results also demonstrate the potential benefit of low concentrations of MGO in stabilizing mutant chaperone protein(s).
Collapse
Affiliation(s)
- Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri, Columbia, MO, United States
| | - Krishna K. Sharma
- Department of Ophthalmology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
10
|
Giblin FJ, Anderson DMG, Han J, Rose KL, Wang Z, Schey KL. Acceleration of age-induced proteolysis in the guinea pig lens nucleus by in vivo exposure to hyperbaric oxygen: A mass spectrometry analysis. Exp Eye Res 2021; 210:108697. [PMID: 34233175 PMCID: PMC8429224 DOI: 10.1016/j.exer.2021.108697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Hyperbaric oxygen (HBO) treatment of animals or ocular lenses in culture recapitulates many molecular changes observed in human age-related nuclear cataract. The guinea pig HBO model has been one of the best examples of such treatment leading to dose-dependent development of lens nuclear opacities. In this study, complimentary mass spectrometry methods were employed to examine protein truncation after HBO treatment of aged guinea pigs. Quantitative liquid chromatography-mass spectrometry (LC-MS) analysis of the membrane fraction of guinea pig lenses showed statistically significant increases in aquaporin-0 (AQP0) C-terminal truncation, consistent with previous reports of accelerated loss of membrane and cytoskeletal proteins. In addition, imaging mass spectrometry (IMS) analysis spatially mapped the acceleration of age-related αA-crystallin truncation in the lens nucleus. The truncation sites in αA-crystallin closely match those observed in human lenses with age. Taken together, our results suggest that HBO accelerates the normal lens aging process and leads to nuclear cataract.
Collapse
Affiliation(s)
- Frank J Giblin
- Eye Research Institute, Oakland University, Rochester, MI, 48309, USA
| | - David M G Anderson
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37242, USA
| | - Jun Han
- Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | - Kristie L Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37242, USA
| | - Zhen Wang
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37242, USA
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, 37242, USA.
| |
Collapse
|
11
|
Bawankar M, Thakur AK. Mechanism of human γD-crystallin protein aggregation in UV-C light. Mol Vis 2021; 27:415-428. [PMID: 34267497 PMCID: PMC8254662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose To characterize intermediate aggregate species on the aggregation pathway of γD-crystallin protein in ultraviolet (UV)-C light. Methods The kinetics of γD-crystallin protein aggregation was studied with reversed-phase high-performance liquid chromatography (RP-HPLC) sedimentation assay, ThT binding assay, and light scattering. We used analytical ultracentrifugation to recognize intermediate aggregate species and characterized them with Fourier transform infrared spectroscopy (FTIR). Quantification of free sulfhydryl groups in an ongoing aggregation reaction was achieved by using Ellman's assay. Results Negligible lag phase was found in the aggregation kinetic experiments of the γD-crystallin protein. Dimer, tetramer, octamer, and higher oligomer intermediates were formed on the aggregation pathway. The protein changes its conformation to form intermediate aggregate species. FTIR and trypsin digestion indicated structural differences between the protein monomer, intermediate aggregate species, and fibrils. Ellman's assay revealed that disulfide bonds were formed in the protein monomers and aggregates during the aggregation process. Conclusions This study showed that various intermediate and structurally different aggregate species are formed on the aggregation pathway of γD-crystallin protein in UV-C light.
Collapse
Affiliation(s)
- Mangesh Bawankar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| |
Collapse
|
12
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
13
|
Srivastava O, Srivastava K, Joseph R, Wilson L. Increased Association of Deamidated αA- N101D with Lens membrane of transgenic αA N101D vs. wild type αA mice: potential effects on intracellular ionic imbalance and membrane disorganization. BMC Ophthalmol 2020; 20:484. [PMID: 33302904 PMCID: PMC7726915 DOI: 10.1186/s12886-020-01734-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαAN101D mice, and in the other by inserting human wild-type αA-transgene in CRYαAWT mice. The CRYαAN101D mice developed cortical cataract at about 7-months of age relative to CRYαAWT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαAN101D- vs. CRYαAWT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αAN101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. METHODS Lenses of varying ages from CRYαAWT and CRYαAN101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αAN101D- and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice. RESULTS Compared to the lenses of CRYαAWT, the lenses of CRYαAN101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαAN101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca2+ uptake were observed in cultured lens epithelial cells of CRYαAN101D- than those of CRYαAWT mice. CONCLUSIONS The results show that an increased lens membrane association of αAN101D--relative WTαA protein in CRYαAN101D mice than CRYαAWT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.
Collapse
Affiliation(s)
- Om Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716, University Boulevard, Birmingham, AL, 35294-0010, USA.
| | - Kiran Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716, University Boulevard, Birmingham, AL, 35294-0010, USA
| | - Roy Joseph
- Department of Optometry and Vision Science, University of Alabama at Birmingham, 1716, University Boulevard, Birmingham, AL, 35294-0010, USA
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory (TMPL), Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0010, USA
| |
Collapse
|
14
|
Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 2020; 892:173749. [PMID: 33245896 DOI: 10.1016/j.ejphar.2020.173749] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Dronamraju Sarada
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India; Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India.
| |
Collapse
|
15
|
Harsolia RS, Kanwar A, Gour S, Kumar V, Kumar V, Bansal R, Kumar S, Singh M, Yadav JK. Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. Int J Biol Macromol 2020; 163:702-710. [PMID: 32650012 DOI: 10.1016/j.ijbiomac.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The aggregation of β-crystallins in the human eye lens constitutes a critical step during the development of cataract. We anticipated that the presence of Aggregation-Prone Regions (APRs) in their primary structure, which might be responsible for conformational change required for the self-assembly. To examine the presence of APRs, we systematically analyzed the primary structures of β-crystallins. Out of seven subtypes, the βB1-crystallin found to possess the highest aggregation score with 9 APRs in its primary structure. To confirm the amyloidogenic nature of these newly identified APRs, we further studied the aggregation behavior of one of the APRs spanning from 174 to 180 residues (174LWVYGFS180) of βB1-crystallin, which is referred as βB1(174-180). Under in vitro conditions, the synthetic analogue of βB1(174-180) peptide formed visible aggregates and displayed high Congo red (CR) bathochromic shift, Thioflavin T (ThT) binding and fibrilar morphology under transmission electron microscopy, which are the typical characteristics of amyloids. Further, the aggregated βB1(174-180) was found to induce aggregation of the soluble fraction of proteins isolated from the human cataractous lens. This observation suggests that the presence of APRs in βB1-crystallin might be serving as one of the intrinsic supplementary factors responsible for constitutive aggregation behavior of βB1-crystallin and development of cataract.
Collapse
Affiliation(s)
- Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Ambika Kanwar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Vikas Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Rati Bansal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Suman Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
16
|
Kour A, Sharma S, Dube T, Bisht A, Sharma M, Mishra J, Ali ME, Panda JJ. l-3,4-Dihydroxyphenylalanine templated anisotropic gold nano/micro-roses as potential disrupters/inhibitors of α-crystallin protein and its gleaned model peptide aggregates. Int J Biol Macromol 2020; 163:2374-2391. [PMID: 32961180 DOI: 10.1016/j.ijbiomac.2020.09.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Cataract, the major cause of blindness worldwide occurs due to the misfolding and aggregation of the protein crystallin, which constitute a major portion of the lens protein. Other than the whole protein crystallin, the peptide sequences generated from crystallin as a result of covalent protein damage have also been shown to possess and foster protein aggregation, which can be established as crystallin aggregation models. Thus, the disaggregation or inhibition of these protein aggregates could be a viable approach to combat cataract and preserve lens proteostasis. Herein, we tried to explore the disruption as well as inhibition of the intact α-crystallin protein and α-crystallin derived model peptide aggregates by l-3,4-dihydroxyphenylalanine (levodopa) coated gold (Au) nano/micro-roses as modulators. Thioflavin T fluorescence enhancement assay, and electron microscopic analysis were being employed to probe the anti-aggregation behavior of the Au nano/micro-roses towards the aggregating α-crystallin peptides/protein. Further, computational studies were performed to reveal the nature of molecular interactions between the levodopa molecule and the α-crystallin derived model peptides. Interestingly, both levodopa coated Au nano/micro-roses were found to be capable of inhibiting as well as preventing the aggregation of the intact α-crystallin protein and other model peptides derived from it.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Shikha Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Taru Dube
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Anjali Bisht
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Jibanananda Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India.
| |
Collapse
|
17
|
Ram L, Mittal C, Harsolia RS, Yadav JK. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 2020; 39:509-518. [PMID: 33037983 DOI: 10.1007/s10930-020-09919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins' solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30-40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.
Collapse
Affiliation(s)
- Lakshman Ram
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
18
|
Truscott RJW, Friedrich MG. Molecular Processes Implicated in Human Age-Related Nuclear Cataract. Invest Ophthalmol Vis Sci 2020; 60:5007-5021. [PMID: 31791064 PMCID: PMC7043214 DOI: 10.1167/iovs.19-27535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human age-related nuclear cataract is commonly characterized by four biochemical features that involve modifications to the structural proteins that constitute the bulk of the lens: coloration, oxidation, insolubility, and covalent cross-linking. Each of these is progressive and increases as the cataract worsens. Significant progress has been made in understanding the origin of the factors that underpin the loss of lens transparency. Of these four hallmarks of cataract, it is protein-protein cross-linking that has been the most intransigent, and it is only recently, with the advent of proteomic methodology, that mechanisms are being elucidated. A diverse range of cross-linking processes involving several amino acids have been uncovered. Although other hypotheses for the etiology of cataract have been advanced, it is likely that spontaneous decomposition of the structural proteins of the lens, which do not turn over, is responsible for the age-related changes to the properties of the lens and, ultimately, for cataract. Cataract may represent the first and best characterized of a number of human age-related diseases where spontaneous protein modification leads to ongoing deterioration and, ultimately, a loss of tissue function.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
19
|
Heruye SH, Maffofou Nkenyi LN, Singh NU, Yalzadeh D, Ngele KK, Njie-Mbye YF, Ohia SE, Opere CA. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel) 2020; 13:E15. [PMID: 31963166 PMCID: PMC7168925 DOI: 10.3390/ph13010015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Collapse
Affiliation(s)
- Segewkal H. Heruye
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Leonce N. Maffofou Nkenyi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Neetu U. Singh
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | | | - Kalu K. Ngele
- Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo, Abakaliki, Nigeria
| | - Ya-Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sunny E. Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Catherine A. Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
20
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
21
|
Ghahramani M, Yousefi R, Krivandin A, Muranov K, Kurganov B, Moosavi-Movahedi AA. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: The biochemical pathomechanism underlying cataract and myopathy development. Int J Biol Macromol 2019; 146:1142-1160. [PMID: 31678106 DOI: 10.1016/j.ijbiomac.2019.09.239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
In human αB-crystallin (αB-Cry), the highly conserved residues arginine 69 (R69) and aspartate 109 (D109) are located within a critical motif of α-crystallin domain (ACD), contributing to the subunit interactions and oligomeric assembly. Recently, two missense mutations (R69C and D109H) in human αB-Cry have been reported to cause congenital cataract and myopathy disorders. We used various spectroscopic techniques, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), gel electrophoresis and transmission electron microscopy (TEM) to show how these mutations cause significant changes in structure, amyloidogenic feature and biological function of human αB-Cry. These pathogenic mutations resulted in the important alterations of the secondary, tertiary and oligomeric (quaternary) structures of human αB-Cry. The missense mutations were also capable to significantly increase the amyloidogenic propensity of human αB-Cry and to diminish the chaperone-like activity of this protein. The above mentioned changes were observed more noticeably after D109H mutation. The detrimental effects of D109H mutation may be due to the loss of salt bridge with R120 in the dimeric interface, flagging the anti-aggregation ability of αB-Cry chaperone. In conclusion, the R69C and D109H mutations displayed a significant damaging effect on the structure and chaperone function of human αB-Cry which could be considered as their biochemical pathomechanisms in development of congenital cataract and myopathy disorders.
Collapse
Affiliation(s)
- Maryam Ghahramani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Alexey Krivandin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Konstantin Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4, Moscow 119991, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | | |
Collapse
|
22
|
Bisht A, Sharma M, Sharma S, Ali ME, Panda JJ. Carrier-free self-built aspirin nanorods as anti-aggregation agents towards alpha-crystallin-derived peptide aggregates: potential implications in non-invasive cataract therapy. J Mater Chem B 2019; 7:6945-6954. [PMID: 31613300 DOI: 10.1039/c9tb01435g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aggregation of the α-crystallin protein is the pathological hallmark of cataract. In the current work, peptide fragments derived from native α-crystallin were synthesized and explored as a peptide-based crystallin aggregation model towards cataract. The anti-aggregation potential of aspirin was evaluated towards these peptide-generated aggregates as well as towards the α-crystallin aggregate. The results demonstrated that aspirin had the capacity to inhibit crystallin and crystallin-derived peptide aggregation and could act as a potential therapeutic agent in mitigating cataract. Computational studies were also carried out to study the interaction between the model peptides and aspirin. The results revealed the existence of molecular interactions between the peptides and aspirin, which had a significant impact on the secondary structure of the peptides and potentially modulated their assembly and aggregation behavior. The formation of self-built aspirin nanorods was also explored and their ability to inhibit the aggregation of model cataract peptides and α-crystallin aggregation was validated. These findings open up the possibility of using small molecule-based nanotherapeutics for cataract merely through topical applications, which can be beneficial to cataract patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Institute of Nano Science and Technology, Mohali, Punjab-160062, India.
| | | | | | | | | |
Collapse
|
23
|
Warmack RA, Shawa H, Liu K, Lopez K, Loo JA, Horwitz J, Clarke SG. The l-isoaspartate modification within protein fragments in the aging lens can promote protein aggregation. J Biol Chem 2019; 294:12203-12219. [PMID: 31239355 DOI: 10.1074/jbc.ra119.009052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Indexed: 01/15/2023] Open
Abstract
Transparency in the lens is accomplished by the dense packing and short-range order interactions of the crystallin proteins in fiber cells lacking organelles. These features are accompanied by a lack of protein turnover, leaving lens proteins susceptible to a number of damaging modifications and aggregation. The loss of lens transparency is attributed in part to such aggregation during aging. Among the damaging post-translational modifications that accumulate in long-lived proteins, isomerization at aspartate residues has been shown to be extensive throughout the crystallins. In this study of the human lens, we localize the accumulation of l-isoaspartate within water-soluble protein extracts primarily to crystallin peptides in high-molecular weight aggregates and show with MS that these peptides are from a variety of crystallins. To investigate the consequences of aspartate isomerization, we investigated two αA crystallin peptides 52LFRTVLDSGISEVR65 and 89VQDDFVEIH98, identified within this study, with the l-isoaspartate modification introduced at Asp58 and Asp91, respectively. Importantly, whereas both peptides modestly increase protein precipitation, the native 52LFRTVLDSGISEVR65 peptide shows higher aggregation propensity. In contrast, the introduction of l-isoaspartate within a previously identified anti-chaperone peptide from water-insoluble aggregates, αA crystallin 66SDRDKFVIFL(isoAsp)VKHF80, results in enhanced amyloid formation in vitro The modification of this peptide also increases aggregation of the lens chaperone αB crystallin. These findings may represent multiple pathways within the lens wherein the isomerization of aspartate residues in crystallin peptides differentially results in peptides associating with water-soluble or water-insoluble aggregates. Here the eye lens serves as a model for the cleavage and modification of long-lived proteins within other aging tissues.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Harrison Shawa
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Kate Liu
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Katia Lopez
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Joseph Horwitz
- Molecular Biology Institute, UCLA, Los Angeles, California 90095; Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
24
|
RETRACTED: Peptide-induced formation of protein aggregates and amyloid fibrils in human and guinea pig αA-crystallins under physiological conditions of temperature and pH. Exp Eye Res 2018; 179:193-205. [PMID: 30448341 DOI: 10.1016/j.exer.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors. The senior author contacted the journal in a forthright manner, in an effort to preserve the scientific integrity of the literature, after discovering a significant error in the results reported in the article. The authors were recently made aware of a paper by Kim et al. (Nature Commun. 2019) which shows a spirosome structure (the enzyme aldehyde-alcohol dehydrogenase) present in E. coli (Fig. 5a) that is very similar to the structure the authors thought formed when synthetic alpha A crystallin (66-80) peptide was incubated for 24 h with recombinant guinea pig alpha A insert crystallin (see Kumarasamy et al., Figs. 7C and F, and Fig. 9). Subsequent to publication of their report, the authors later found a number of images that showed what appeared to be the same structure present in samples of their presumably purified recombinant guinea pig alpha A insert crystallin which had been incubated without peptide for 24 h. Hence, the authors now conclude that the structures shown in Figs. 7C and F, and Fig. 9 of their article published in this journal are actually due to E. coli contaminant aldehyde-alcohol dehydrogenase. The authors deeply regret this error and any inconvenience it may have caused.
Collapse
|
25
|
Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms. Biochem Biophys Res Commun 2018; 506:868-873. [PMID: 30392915 DOI: 10.1016/j.bbrc.2018.10.175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 12/14/2022]
Abstract
Cataract, a crystallin aggregation disease, is the leading cause of human blindness worldwide. Surgery is the only established treatment of cataracts and no anti-cataract drugs are available thus far. Recently lanosterol and 25-hydroxycholesterol have been reported to redissolve crystallin aggregates and partially restore lens transparency in animals. However, the efficacies of these two compounds have not been quantitatively studied ex vivo using patient tissues. In this research, we developed a quantitative assay applicable to efficacy validations and mechanistic studies by a protocol to isolate protein aggregates from the surgically removed cataractous human lens. Our results showed that both compounds were effective for human cataractous samples with EC50 values at ten micromolar level. The efficacies of both compounds strongly depended on cataract severity. Lanosterol and 25-hydroxycholesterol were two mechanistically different lead compounds of anti-cataract drug design.
Collapse
|
26
|
Ramkumar S, Fan X, Wang B, Yang S, Monnier VM. Reactive cysteine residues in the oxidative dimerization and Cu 2+ induced aggregation of human γD-crystallin: Implications for age-related cataract. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3595-3604. [PMID: 30251679 DOI: 10.1016/j.bbadis.2018.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/14/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Cysteine (Cys) residues are major causes of crystallin disulfide formation and aggregation in aging and cataractous human lenses. We recently found that disulfide linkages are highly and partly conserved in β- and γ-crystallins, respectively, in human age-related nuclear cataract and glutathione depleted LEGSKO mouse lenses, and could be mimicked by in vitro oxidation. Here we determined which Cys residues are involved in disulfide-mediated crosslinking of recombinant human γD-crystallin (hγD). In vitro diamide oxidation revealed dimer formation by SDS-PAGE and LC-MS analysis with Cys 111-111 and C111-C19 as intermolecular disulfides and Cys 111-109 as intramolecular sites. Mutation of Cys111 to alanine completely abolished dimerization. Addition of αB-crystallin was unable to protect Cys 111 from dimerization. However, Cu2+-induced hγD-crystallin aggregation was suppressed up to 50% and 80% by mutants C109A and C111A, respectively, as well as by total glutathionylation. In contrast to our recently published results using ICAT-labeling method, manual mining of the same database confirmed the specific involvement of Cys111 in disulfides with no free Cys111 detectable in γD-crystallin from old and cataractous human lenses. Surface accessibility studies show that Cys111 in hγD is the most exposed Cys residue (29%), explaining thereby its high propensity toward oxidation and polymerization in the aging lens.
Collapse
Affiliation(s)
| | - Xingjun Fan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sichun Yang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
27
|
Kumar V, Gour S, Peter OS, Gandhi S, Goyal P, Pandey J, Harsolia RS, Yadav JK. Effect of Green Tea Polyphenol Epigallocatechin-3-gallate on the Aggregation of αA(66-80) Peptide, a Major Fragment of αA-crystallin Involved in Cataract Development. Curr Eye Res 2017. [DOI: 10.1080/02713683.2017.1324628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Ocan Simon Peter
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Shraddha Gandhi
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Pankaj Goyal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh Ajmer, Rajasthan, India
| |
Collapse
|
28
|
Chaudhury S, Roy P, Dasgupta S. Green tea flavanols protect human γB-crystallin from oxidative photodamage. Biochimie 2017; 137:46-55. [PMID: 28285129 DOI: 10.1016/j.biochi.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Age related cataract is a major cause of visual loss worldwide that is a result of opacification of the eye lens proteins. One of the major reasons behind this deterioration is UV induced oxidative damage. The study reported here is focused on an investigation of the oxidative stress induced damage to γB-crystallin under UV exposure. Human γB-crystallin has been expressed and purified from E. coli. We have found that epicatechin gallate (ECG) has a higher affinity towards the protein compared to epigallocatechin (EGC). The in vitro study of UV irradiation under oxidative damage to the protein in the presence of increasing concentrations of GTPs is indicative of their effective role as potent inhibitors of oxidative damage. Docking analyses show that the GTPs bind to the cleft between the domains of human γB-crystallin that may be associated with the protection of the protein from oxidative damage.
Collapse
Affiliation(s)
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
29
|
Srivastava OP, Srivastava K, Chaves JM, Gill AK. Post-translationally modified human lens crystallin fragments show aggregation in vitro. Biochem Biophys Rep 2017; 10:94-131. [PMID: 28955739 PMCID: PMC5614626 DOI: 10.1016/j.bbrep.2017.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/23/2016] [Accepted: 01/26/2017] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Crystallin fragments are known to aggregate and cross-link that lead to cataract development. This study has been focused on determination of post-translational modifications (PTMs) of human lens crystallin fragments, and their aggregation properties. METHODS Four crystallin fragments-containing fractions (Fraction I [∼3.5 kDa species], Fraction II [∼3.5-7 kDa species], Fraction III [∼7-10 kDa species] and Fraction IV [>10-18 kDa species]), and water soluble high molecular weight (WS-HMW) protein fraction were isolated from water soluble (WS) protein fraction of human lenses of 50-70 year old-donors. The crystallin fragments of the Fractions I-IV were separated by two-dimensional (2D)-gel electrophoresis followed by analysis of their gel-spots by mass spectrometry. The Fractions I-IV were examined for their molecular mass, particle-diameters, amyloid fibril formation, and for their aggregation by themselves and with WS-HMW proteins. RESULTS Crystallin fragments in Fractions I-IV were derived from α-, β- and γ-crystallins, and their 2D-gel separated spots contained multiple crystallins with PTMs such as oxidation, deamidation, methylation and acetylation. Crystallin fragments from all the four fractions exhibited self-aggregated complexes ranging in Mr from 5.5×105 to 1.0×108 Da, with diameters of 10-28 nm, and amyloid fibril-like formation, and aggregation with WS-HMW proteins. CONCLUSION The crystallin fragments exhibited several PTMs, and were capable of forming aggregated species by themselves and with WS-HMW proteins, suggesting their potential role in aggregation process during cataract development. GENERAL SIGNIFICANCE Crystallin fragments play a major role in human cataract development.
Collapse
Affiliation(s)
- O P Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - K Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - J M Chaves
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - A K Gill
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
30
|
Raju M, Santhoshkumar P, Sharma KK. Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis. Aging Dis 2017; 8:57-70. [PMID: 28203481 PMCID: PMC5287387 DOI: 10.14336/ad.2016.0805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/05/2016] [Indexed: 01/27/2023] Open
Abstract
In previous studies, we reported the presence of a large number of low-molecular-weight (LMW) peptides in aged and cataract human lens tissues. Among the LMW peptides, a peptide derived from αA-crystallin, αA66-80, was found in higher concentration in aged and cataract lenses. Additional characterization of the αA66-80 peptide showed beta sheet signature, and it formed well-defined unbranched fibrils. Further experimental data showed that αA66-80 peptide binds α-crystallin, impairs its chaperone function, and attracts additional crystallin proteins to the peptide α-crystallin complex, leading to the formation of larger light scattering aggregates. It is well established that Aβ peptide exhibits cell toxicity by the generation of hydrogen peroxide. The αA66-80 peptide shares the principal properties of Aβ peptide. Therefore, the present study was undertaken to determine whether the fibril-forming peptide αA66-80 has the ability to generate hydrogen peroxide. The results show that the αA66-80 peptide generates hydrogen peroxide, in the amount of 1.2 nM H2O2 per µg of αA66-80 peptide by incubation at 37°C for 4h. We also observed cytotoxicity and apoptotic cell death in αA66-80 peptide-transduced Cos7 cells. As evident, we found more TUNEL-positive cells in αA66-80 peptide transduced Cos7 cells than in control cells, suggesting peptide-mediated cell apoptosis. Additional immunohistochemistry analysis showed the active form of caspase-3, suggesting activation of the caspase-dependent pathway during peptide-induced cell apoptosis. These results confirm that the αA66-80 peptide generates hydrogen peroxide and promotes hydrogen peroxide-mediated cell apoptosis.
Collapse
Affiliation(s)
| | | | - K Krishna Sharma
- 1Departments of Ophthalmology and; 2Biochemistry, University of Missouri School of Medicine, Columbia, MO65212, USA
| |
Collapse
|
31
|
Khan MS, Bhat SA, Tabrez S, Alama MN, Alsenaidy MA, Al-Senaidy AM. Denaturation induced aggregation in α-crystallin: differential action of chaotropes. J Mol Recognit 2016; 29:536-543. [DOI: 10.1002/jmr.2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 04/21/2016] [Accepted: 05/04/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Sheraz Ahmad Bhat
- Department of Biochemistry, Faculty of Life Sciences; Aligarh Muslim University; Aligarh India
| | - Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohammed Nabil Alama
- Cardiology Unit, Department of Medicine; King Abdulaziz University Hospital; Jeddah 21589 Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| | - Abdulrahman M. Al-Senaidy
- Protein Research Chair, Department of Biochemistry, College of Science; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
32
|
Lyons B, Kwan AH, Truscott RJ. Spontaneous cleavage of proteins at serine and threonine is facilitated by zinc. Aging Cell 2016; 15:237-44. [PMID: 26751411 PMCID: PMC4783340 DOI: 10.1111/acel.12428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 11/29/2022] Open
Abstract
Old proteins are widely distributed in the body. Over time, they deteriorate and many spontaneous reactions, for example isomerisation of Asp and Asn, can be replicated by incubation of peptides under physiological conditions. One of the signatures of long‐lived proteins that has proven to be difficult to replicate in vitro is cleavage on the N‐terminal side of Ser residues, and this is important since cleavage at Ser, and also Thr, has been observed in a number of human proteins. In this study, the autolysis of Ser‐ and Thr‐containing peptides was investigated with particular reference to discovering factors that promote cleavage adjacent to Ser/Thr at neutral pH. It was found that zinc catalyses cleavage of the peptide bond on the N‐terminal side of Ser residues and further that this process is markedly accelerated if a His residue is adjacent to the Ser. NMR analysis indicated that the imidazole group co‐ordinates zinc and that once zinc is co‐ordinated, it can polarize the carbonyl group of the peptide bond in a manner analogous to that observed in the active site of the metalloexopeptidase, carboxypeptidase A. The hydroxyl side chain of Ser/Thr is then able to cleave the adjacent peptide bond. These observations enable an understanding of the origin of common truncations observed in long‐lived proteins, for example truncation on the N‐terminal side of Ser 8 in Abeta, Ser 19 in alpha B crystallin and Ser 66 in alpha A crystallin. The presence of zinc may therefore significantly affect the long‐term stability of cellular proteins.
Collapse
Affiliation(s)
- Brian Lyons
- Illawarra Health and Medical Research Institute University of Wollongong Northfields Ave Wollongong NSW 2522 Australia
- Save Sight Institute University of Sydney Sydney Eye Hospital 8 Macquarie St Sydney NSW 2000 Australia
| | - Ann H. Kwan
- School of Molecular Bioscience University of Sydney Sydney NSW 2006 Australia
| | - Roger J.W. Truscott
- Illawarra Health and Medical Research Institute University of Wollongong Northfields Ave Wollongong NSW 2522 Australia
| |
Collapse
|
33
|
Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. PLoS One 2015; 10:e0144621. [PMID: 26657544 PMCID: PMC4691197 DOI: 10.1371/journal.pone.0144621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Collapse
Affiliation(s)
- Ekta Tiwary
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Shylaja Hegde
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Sangeetha Purushotham
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Champion Deivanayagam
- Department of Vision Sciences/Centre for Structural Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Om Srivastava
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
34
|
Truscott RJW, Friedrich MG. The etiology of human age-related cataract. Proteins don't last forever. Biochim Biophys Acta Gen Subj 2015; 1860:192-8. [PMID: 26318017 DOI: 10.1016/j.bbagen.2015.08.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND It is probable that the great majority of human cataract results from the spontaneous decomposition of long-lived macromolecules in the human lens. Breakdown/reaction of long-lived proteins is of primary importance and recent proteomic analysis has enabled the identification of the particular crystallins, and their exact sites of amino acid modification. SCOPE OF REVIEW Analysis of proteins from cataractous lenses revealed that there are sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. MAJOR CONCLUSIONS The most abundant posttranslational modification of aged lens proteins is racemization. Deamidation, truncation and crosslinking, each arising from the spontaneous breakdown of susceptible amino acids within proteins, are also present. Fundamental to an understanding of nuclear cataract etiology, it is proposed that once a certain degree of modification at key sites occurs, that protein-protein interactions are disrupted and lens opacification ensues. GENERAL SIGNIFICANCE Since long-lived proteins are now recognized to be present in many other sites of the body, such as the brain, the information gleaned from detailed analyses of degraded proteins from aged lenses will apply more widely to other age-related human diseases. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
35
|
Biophysical chemistry of the ageing eye lens. Biophys Rev 2015; 7:353-368. [PMID: 28510099 DOI: 10.1007/s12551-015-0176-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
This review examines both recent and historical literature related to the biophysical chemistry of the proteins in the ageing eye, with a particular focus on cataract development. The lens is a vital component of the eye, acting as an optical focusing device to form clear images on the retina. The lens maintains the necessary high transparency and refractive index by expressing crystallin proteins in high concentration and eliminating all large cellular structures that may cause light scattering. This has the consequence of eliminating lens fibre cell metabolism and results in mature lens fibre cells having no mechanism for protein expression and a complete absence of protein recycling or turnover. As a result, the crystallins are some of the oldest proteins in the human body. Lack of protein repair or recycling means the lens tends to accumulate damage with age in the form of protein post-translational modifications. The crystallins can be subject to a wide range of age-related changes, including isomerisation, deamidation and racemisation. Many of these modification are highly correlated with cataract formation and represent a biochemical mechanism for age-related blindness.
Collapse
|
36
|
Su SP, Song X, Xavier D, Aquilina JA. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes. Proteins 2015; 83:1878-86. [PMID: 26238763 DOI: 10.1002/prot.24872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 11/07/2022]
Abstract
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old-age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C-terminus with significantly higher frequency compared to other residues, suggesting that trypsin-like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA-crystallin peptide (αA(57-65)) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA(57-65) formation escalated significantly. Using 2D gel electrophoresis/nanoLC-ESI-MS/MS, 12 protein complexes of 40-150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross-linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes.
Collapse
Affiliation(s)
- Shih-Ping Su
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Xiaomin Song
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Dylan Xavier
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - J Andrew Aquilina
- Illawarra Health and Medical Research Institute, School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
37
|
Biswas A, Karmakar S, Chowdhury A, Das KP. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim Biophys Acta Gen Subj 2015; 1860:211-21. [PMID: 26073614 DOI: 10.1016/j.bbagen.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - S Karmakar
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - A Chowdhury
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - K P Das
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
38
|
Raju M, Mooney BP, Thakkar KM, Giblin FJ, Schey KL, Sharma KK. Role of αA-crystallin-derived αA66-80 peptide in guinea pig lens crystallin aggregation and insolubilization. Exp Eye Res 2015; 132:151-60. [PMID: 25639202 DOI: 10.1016/j.exer.2015.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
Abstract
Earlier we reported that low molecular weight (LMW) peptides accumulate in aging human lens tissue and that among the LMW peptides, the chaperone inhibitor peptide αA66-80, derived from α-crystallin protein, is one of the predominant peptides. We showed that in vitro αA66-80 induces protein aggregation. The current study was undertaken to determine whether LMW peptides are also present in guinea pig lens tissue subjected to hyperbaric oxygen (HBO) in vivo. The nuclear opacity induced by HBO in guinea pig lens is the closest animal model for studying age-related cataract formation in humans. A LMW peptide profile by mass spectrometry showed the presence of an increased amount of LMW peptides in HBO-treated guinea pig lenses compared to age-matched controls. Interestingly, the mass spectrometric data also showed that the chaperone inhibitor peptide αA66-80 accumulates in HBO-treated guinea pig lens. Following incubation of synthetic chaperone inhibitor peptide αA66-80 with α-crystallin from guinea pig lens extracts, we observed a decreased ability of α-crystallin to inhibit the amorphous aggregation of the target protein alcohol dehydrogenase and the formation of large light scattering aggregates, similar to those we have observed with human α-crystallin and αA66-80 peptide. Further, time-lapse recordings showed that a preformed complex of α-crystallin and αA66-80 attracted additional crystallin molecules to form even larger aggregates. These results demonstrate that LMW peptide-mediated cataract development in aged human lens and in HBO-induced lens opacity in the guinea pig may have common molecular pathways.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Brian P Mooney
- Department of Biochemistry, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Kavi M Thakkar
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA
| | - Frank J Giblin
- Eye Research Institute, Oakland University, Rochester 48309, MI, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville 37232, USA
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA; Department of Biochemistry, University of Missouri-Columbia, School of Medicine, Columbia 65212, MO, USA.
| |
Collapse
|
39
|
Wu JW, Chen ME, Wen WS, Chen WA, Li CT, Chang CK, Lo CH, Liu HS, Wang SSS. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. PLoS One 2014; 9:e112309. [PMID: 25389780 PMCID: PMC4229192 DOI: 10.1371/journal.pone.0112309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
Cataract, a major cause of visual impairment worldwide, is the opacification of the eye’s crystalline lens due to aggregation of the crystallin proteins. The research reported here is aimed at investigating the aggregating behavior of γ-crystallin proteins in various incubation conditions. Thioflavin T binding assay, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, intrinsic (tryptophan) fluorescence spectroscopy, light scattering, and electron microscopy were used for structural characterization. Molecular dynamics simulations and bioinformatics prediction were performed to gain insights into the γD-crystallin mechanisms of fibrillogenesis. We first demonstrated that, except at pH 7.0 and 37°C, the aggregation of γD-crystallin was observed to be augmented upon incubation, as revealed by turbidity measurements. Next, the types of aggregates (fibrillar or non-fibrillar aggregates) formed under different incubation conditions were identified. We found that, while a variety of non-fibrillar, granular species were detected in the sample incubated under pH 7.0, the fibrillogenesis of human γD-crystallin could be induced by acidic pH (pH 2.0). In addition, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and intrinsic fluorescence spectroscopy were used to characterize the structural and conformational features in different incubation conditions. Our results suggested that incubation under acidic condition led to a considerable change in the secondary structure and an enhancement in solvent-exposure of the hydrophobic regions of human γD-crystallin. Finally, molecular dynamics simulations and bioinformatics prediction were performed to better explain the differences between the structures and/or conformations of the human γD-crystallin samples and to reveal potential key protein region involved in the varied aggregation behavior. Bioinformatics analyses revealed that the initiation of amyloid formation of human γD-crystallin may be associated with a region within the C-terminal domain. We believe the results from this research may contribute to a better understanding of the possible mechanisms underlying the pathogenesis of senile nuclear cataract.
Collapse
Affiliation(s)
- Josephine W. Wu
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
- * E-mail: (JWW); (SSW)
| | - Mei-Er Chen
- Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Sing Wen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-An Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Ting Li
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Kai Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Lo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hwai-Shen Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S.-S. Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- * E-mail: (JWW); (SSW)
| |
Collapse
|
40
|
Lyons B, Kwan AH, Truscott R. Spontaneous cyclization of polypeptides with a penultimate Asp, Asn or isoAsp at the N-terminus and implications for cleavage by aminopeptidase. FEBS J 2014; 281:2945-55. [DOI: 10.1111/febs.12833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/20/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Brian Lyons
- Save Sight Institute; University of Sydney; Sydney Eye Hospital; Australia
| | - Ann H Kwan
- School of Molecular Bioscience; University of Sydney; Australia
| | - Roger Truscott
- Illawarra Health and Medical Research Institute; University of Wollongong; Australia
| |
Collapse
|
41
|
Kannan R, Raju M, Sharma KK. The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming αA66-80 peptide in α-crystallin aggregation: a systematic proline replacement study. Amyloid 2014; 21:103-9. [PMID: 24547912 PMCID: PMC4151328 DOI: 10.3109/13506129.2014.888994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Age-related cataract formation is marked by the progressive aggregation of lens proteins. The formation of protein aggregates in the aging lens has been shown to correlate with the progressive accumulation of a range of post-translational crystallin modifications, including oxidation, deamidation, racemization, methylation, acetylation, N- and C-terminal truncations and low molecular weight (LMW) crystallin fragments. We found that an αA-crystallin-derived peptide, αA66-80 (1.8 kDa), is a prominent LMW peptide concentrated in water-insoluble fractions of the aging lens. The peptide has amyloid-like properties and preferentially insolubilizes α-crystallin from lens-soluble fractions. It binds at multiple sites and forms a hydrophobically driven non-covalent complex with α-crystallin to induce α-crystallin aggregation. To define the specific role of the αA66-80 peptide in age-related protein aggregation and cataract formation, it is important to understand the mechanisms by which this peptide acts. We used scanning proline mutagenesis to identify which particular sequences of the peptide drive it to form amyloid-like fibrils and induce α-crystallin aggregation. The secondary structure and the aggregate morphology of the peptides were determined using circular dichroism and transmission electron microscopy, respectively. Peptides were also tested for their ability to induce α-crystallin aggregation. We found that proline replacement of any residue in the sequence FVIFLDV, which corresponds to residues 71-77, led to an absence of both fibril formation and α-crystallin aggregation. The apparently critical role of 71-77 residues in αA66-80 explains their significance in the self-assembly processes of the peptide and further provide insights into the mechanism of peptide-induced aggregation. Our findings may have applications in the design of peptide aggregation inhibitors.
Collapse
Affiliation(s)
- Rama Kannan
- Department of Biochemistry, University of Missouri , Columbia, MO , USA and
| | | | | |
Collapse
|
42
|
Leng XY, Wang S, Cao NQ, Qi LB, Yan YB. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin. Biochemistry 2014; 53:2464-73. [PMID: 24669963 DOI: 10.1021/bi500146d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
β/γ-Crystallins are the major structural proteins in mammalian lens. The N-terminal truncation of βB1-crystallin has been associated with the regulation of β-crystallin size distributions in human lens. Herein we studied the roles of βB1 N-terminal extension in protein structure and folding by constructing five N-terminal truncated forms. The truncations did not affect the secondary and tertiary structures of the main body as well as stability against denaturation. Truncations with more than 28 residues off the N-terminus promoted the dissociation of the dimeric βB1 into monomers in diluted solutions. Interestingly, the N-terminal extension facilitated βB1 to adopt the correct folding pathway, while truncated proteins were prone to undergo the misfolding/aggregation pathway during kinetic refolding. The N-terminal extension of βB1 acted as an intramolecular chaperone (IMC) to regulate the kinetic partitioning between folding and misfolding. The IMC function of the N-terminal extension was also critical to the correct refolding of β-crystallin heteromer and the action of the lens-specific molecular chaperone αA-crystallin. The cooperation between IMC and molecular chaperones produced a much stronger chaperoning effect than if they acted separately. To our knowledge, this is the first report showing the cooperation between IMC and molecular chaperones.
Collapse
Affiliation(s)
- Xiao-Yao Leng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | | | | | | | | |
Collapse
|
43
|
Santhoshkumar P, Xie L, Raju M, Reneker L, Sharma KK. Lens crystallin modifications and cataract in transgenic mice overexpressing acylpeptide hydrolase. J Biol Chem 2014; 289:9039-52. [PMID: 24554718 PMCID: PMC3979366 DOI: 10.1074/jbc.m113.510677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/11/2014] [Indexed: 12/28/2022] Open
Abstract
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.
Collapse
Affiliation(s)
| | - Leike Xie
- From the Departments of Ophthalmology and
| | | | | | - K. Krishna Sharma
- From the Departments of Ophthalmology and
- Biochemistry, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
44
|
Truscott RJW, Friedrich MG. Old proteins and the Achilles heel of mass spectrometry. The role of proteomics in the etiology of human cataract. Proteomics Clin Appl 2014; 8:195-203. [PMID: 24458544 DOI: 10.1002/prca.201300044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
Proteomics may have enabled the root cause of a major human-blinding condition, age-related cataract, to be established. Cataract appears to result from the spontaneous decomposition of long-lived macromolecules in the human lens, and recent proteomic analysis has enabled both the particular crystallins, and the specific sites of amino acid modification within each polypeptide, to be identified. Analysis of proteins from cataract lenses has demonstrated that there are key sites on some structural proteins that show a consistently greater degree of deterioration than age-matched normal lenses. Proteomic analysis, using MS, revealed that the most abundant posttranslational modification of aged lens proteins is racemization. This is somewhat ironic, since structural isomers can be viewed as the "Achilles heel" of MS and there are typically few, if any, differences in the MS/MS spectra of tryptic peptides containing one d-amino acid. It is proposed that once a certain level of spontaneous PTM at key sites occurs, that protein-protein interactions are disrupted, and binding of complexes to cell membranes takes place that impairs cell-to-cell communication. These findings may apply more widely to age-related human diseases, in particular where the deterioration of long-lived proteins is a crucial component in the etiology.
Collapse
Affiliation(s)
- Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | |
Collapse
|
45
|
Lyons B, Jamie JF, Truscott RJW. Separate mechanisms for age-related truncation and racemisation of peptide-bound serine. Amino Acids 2013; 46:199-207. [PMID: 24306455 DOI: 10.1007/s00726-013-1619-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 12/23/2022]
Abstract
Some amino acids are particularly susceptible to degradation in long-lived proteins. Foremost among these are asparagine, aspartic acid and serine. In the case of serine residues, cleavage of the peptide bond on the N-terminal side, as well as racemisation, has been observed. To investigate the role of the hydroxyl group, and whether cleavage and racemisation are linked by a common mechanism, serine peptides with a free hydroxyl group were compared to analogous peptides where the serine hydroxyl group was methylated. Peptide bond cleavage adjacent to serine was increased when the hydroxyl group was present, and this was particularly noticeable when it was present as the hydroxide ion. Adjacent amino acid residues also had a pronounced affect on cleavage at basic pH, with the SerPro motif being especially susceptible to scission. Methylation of the serine hydroxyl group abolished truncation, as did insertion of a bulky amino acid on the N-terminal side of serine. By contrast, racemisation of serine occurred to a similar extent in both O-methylated and unmodified peptides. On the basis of these data, it appears that racemisation of Ser, and cleavage adjacent to serine, occur via separate mechanisms. Addition of water across the double bond of dehydroalanine was not detected, suggesting that this mechanism was unlikely to be responsible for conversion of L-serine to D-serine. Abstraction of the alpha proton may account for the majority of racemisation of serine in proteins.
Collapse
Affiliation(s)
- Brian Lyons
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie St, Sydney, NSW, 2001, Australia,
| | | | | |
Collapse
|
46
|
Moran SD, Zhang TO, Decatur SM, Zanni MT. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013; 52:6169-81. [PMID: 23957864 DOI: 10.1021/bi4008353] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV-B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, WI, United States 53706
| | | | | | | |
Collapse
|
47
|
Kannan R, Santhoshkumar P, Mooney BP, Sharma KK. The αA66-80 peptide interacts with soluble α-crystallin and induces its aggregation and precipitation: a contribution to age-related cataract formation. Biochemistry 2013; 52:3638-50. [PMID: 23631441 DOI: 10.1021/bi301662w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of protein aggregates in the aging eye lens has been shown to correlate with progressive accumulation of specific low-molecular weight (LMW) peptides derived from crystallins. Prominent among the LMW fragments is αA66-80, a peptide derived from αA-crystallin and present at higher concentrations in the water-insoluble nuclear fractions of the aging lens. The αA66-80 peptide has amyloid-like properties and preferentially insolubilizes α-crystallin from soluble lens fractions. However, the specific interactions and mechanisms by which the peptide induces α-crystallin aggregation have not been delineated. To gain insight into the mechanisms of peptide-induced aggregation, we investigated the interactions of the peptide with α-crystallin by various biochemical approaches. The peptide weakens α-crystallin chaperone ability and drastically promotes α-crystallin aggregation via the formation of insoluble peptide-protein complexes through transient intermediates. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-disulfonic acid studies suggest that the peptide induces changes in the hydrophobicity of α-crystallin that could trigger the formation and growth of aggregates. The peptide-α-crystallin aggregates were found to be resistant to dissociation by high ionic strengths, whereas guanidinium hydrochloride and urea were effective dissociating agents. We conclude that the αA66-80 peptide forms a hydrophobically driven, stable complex with α-crystallin and reduces its solubility. Using isotope-labeled chemical cross-linking and mass spectrometry, we show that the peptide binds to multiple sites, including the chaperone site, the C-terminal extension, and subunit interaction sites in αB-crystallin, which may explain the antichaperone property of the peptide and the consequential age-related accumulation of aggregated proteins. Thus, the α-crystallin-derived peptide could play a role in the pathogenesis of cataract formation in the aging lens.
Collapse
Affiliation(s)
- Rama Kannan
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | |
Collapse
|
48
|
Hariharapura R, Santhoshkumar P, Krishna Sharma K. Profiling of lens protease involved in generation of αA-66-80 crystallin peptide using an internally quenched protease substrate. Exp Eye Res 2013; 109:51-9. [PMID: 23410823 DOI: 10.1016/j.exer.2013.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Abstract
Proteins of lens fiber cells are prone to accumulate extensive post-translational modifications because of very little protein turnover. Lens proteins are degraded via the lens proteolytic systems into peptides, which are subsequently hydrolyzed by downstream aminopeptidases. Inefficient degradation can lead to accumulation of protein fragments and subsequent aggregation. Previously we showed that αA-66-80 peptide and its truncated products accumulate in aging and cataract human lenses. These peptides interact with crystallins, causing crystallin aggregation and precipitation. N- and C-terminal-blocked peptides that have the cleavage sites to generate the αA-66-80 fragment were used to test lens extracts for sequence-specific proteases in lens extracts. An internally quenched fluorogenic peptide substrate containing the sequence-specific site for a lens protease to generate αA-66-80 peptide was designed, synthesized and used to characterize protease(s) that are capable of generating this peptide in bovine and human lenses. We show that proteases with the potential to generate αA-66-80 peptide are present in bovine and human lenses. We also show that the αA-66-80 peptides are resistant to hydrolysis by aminopeptidases present in the lenses and they can suppress the degradation of other peptides. Failure of complete hydrolysis of these peptides in vivo can lead to their accumulation in the lens and subsequent lens protein aggregation, which may ultimately lead to the formation of cataract.
Collapse
Affiliation(s)
- Raghu Hariharapura
- Department of Ophthalmology, University of Missouri-Columbia School of Medicine, Columbia, MO 65212, USA
| | | | | |
Collapse
|
49
|
Wang S, Zhao WJ, Liu H, Gong H, Yan YB. Increasing βB1-crystallin sensitivity to proteolysis caused by the congenital cataract-microcornea syndrome mutation S129R. Biochim Biophys Acta Mol Basis Dis 2013; 1832:302-11. [DOI: 10.1016/j.bbadis.2012.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 12/22/2022]
|
50
|
Friedrich MG, Lam J, Truscott RJW. Degradation of an old human protein: age-dependent cleavage of γS-crystallin generates a peptide that binds to cell membranes. J Biol Chem 2012; 287:39012-20. [PMID: 22995907 DOI: 10.1074/jbc.m112.391565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long-lived proteins exist in a number of tissues in the human body; however, little is known about the reactions involved in their degradation over time. Lens proteins, which do not turn over, provide a useful system to examine such processes. Using a combination of Western blotting and proteomic methodology, age-related changes to a major protein, γS-crystallin, were studied. By teenage years, insoluble intact γS-crystallin was detected, indicative of protein denaturation. This was not the only change, however, because blots revealed evidence of significant cross-linking as well as cleavage of γS-crystallin in all adult lenses. Cleavage at a serine residue near the C terminus was a major reaction that caused the release of a 12-residue peptide, SPAVQSFRRIVE, which bound tightly to lens cell membranes. Several other crystallin-derived peptides with double basic residues also lodged in the cell membrane fraction. Model studies showed that once cleaved from γS-crystallin, SPAVQSFRRIVE adopts a markedly different shape from that in the intact protein. Further, the acquired helical conformation may explain why the peptide seems to affect water permeability. This observation may help explain the changes to cell membranes known to be associated with aging in human lenses. Age-related cleavage of long-lived proteins may therefore yield peptides with untoward biological activity.
Collapse
Affiliation(s)
- Michael G Friedrich
- Save Sight Institute, Macquarie Street, Sydney, New South Wales 2001, Australia
| | | | | |
Collapse
|