1
|
Kumkoon T, Noree C, Boonserm P. Engineering BinB Pore-Forming Toxin for Selective Killing of Breast Cancer Cells. Toxins (Basel) 2023; 15:toxins15040297. [PMID: 37104235 PMCID: PMC10145556 DOI: 10.3390/toxins15040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer is one of the most common cancers in women worldwide. Conventional cancer chemotherapy always has adverse side effects on the patient's healthy tissues. Consequently, combining pore-forming toxins with cell-targeting peptides (CTPs) is a promising anticancer strategy for selectively destroying cancer cells. Here, we aim to improve the target specificity of the BinB toxin produced from Lysinibacillus sphaericus (Ls) by fusing a luteinizing hormone-releasing hormone (LHRH) peptide to its pore-forming domain (BinBC) to target MCF-7 breast cancer cells as opposed to human fibroblast cells (Hs68). The results showed that LHRH-BinBC inhibited MCF-7 cell proliferation in a dose-dependent manner while leaving Hs68 cells unaffected. BinBC, at any concentration tested, did not affect the proliferation of MCF-7 or Hs68 cells. In addition, the LHRH-BinBC toxin caused the efflux of the cytoplasmic enzyme lactate dehydrogenase (LDH), demonstrating the efficacy of the LHRH peptide in directing the BinBC toxin to damage the plasma membranes of MCF-7 cancer cells. LHRH-BinBC also caused MCF-7 cell apoptosis by activating caspase-8. In addition, LHRH-BinBC was predominantly observed on the cell surface of MCF-7 and Hs68 cells, without colocalization with mitochondria. Overall, our findings suggest that LHRH-BinBC could be investigated further as a potential cancer therapeutic agent.
Collapse
Affiliation(s)
- Tipaporn Kumkoon
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
2
|
Rogers OC, Antony L, Levy O, Joshi N, Simons BW, Dalrymple SL, Rosen DM, Pickering A, Lan H, Kuang H, Ranganath SH, Zheng L, Karp JM, Howard SP, Denmeade SR, Isaacs JT, Brennen WN. Microparticle Encapsulation of a Prostate-targeted Biologic for the Treatment of Liver Metastases in a Preclinical Model of Castration-resistant Prostate Cancer. Mol Cancer Ther 2020; 19:2353-2362. [PMID: 32943549 DOI: 10.1158/1535-7163.mct-20-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
PRX302 is a highly potent, mutant bacterial pore-forming biologic protoxin engineered for selective activation by PSA, a serine protease expressed by benign and malignant prostate epithelial cells. Although being developed as a local therapy for benign prostatic hyperplasia and localized prostate cancer, PRX302 cannot be administered systemically as a treatment for metastatic disease due to binding to ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored proteins, which leads to poor accumulation within the tumor microenvironment. To overcome this limitation, poly-lactic-co-glycolic acid (PLGA) microparticles encapsulating the protoxin were developed, which are known to accumulate in the liver, a major site of metastasis for prostate cancer and other solid tumors. A highly sensitive and reproducible sandwich ELISA to quantify PRX302 released from microparticles was developed. Utilizing this assay, PRX302 release from different microparticle formulations was assessed over multiple days. Hemolysis assays documented PSA-dependent pore formation and lytic potential (i.e., function) of the released protoxin. MTT assays demonstrated that conditioned supernatant from PRX302-loaded, but not blank (i.e., unloaded), PLGA microparticles was highly cytotoxic to PC3 and DU145 human prostate cancer cells in the presence of exogenous PSA. Microparticle encapsulation prevented PRX302 from immediately interacting with GPI-anchored proteins as demonstrated in a competition assay, which resulted in an increased therapeutic index and significant antitumor efficacy following a single dose of PRX302-loaded microparticles in a preclinical model of prostate cancer liver metastasis with no obvious toxicity. These results document that PRX302 released from PLGA microparticles demonstrate in vivo antitumor efficacy in a clinically relevant preclinical model of metastatic prostate cancer.
Collapse
Affiliation(s)
- Oliver C Rogers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Lizamma Antony
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Nitin Joshi
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Brian W Simons
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan L Dalrymple
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - D Marc Rosen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Andrew Pickering
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Haoyue Lan
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Heidi Kuang
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Sudhir H Ranganath
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.,Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Harvard - MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - S Peter Howard
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Samuel R Denmeade
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - W Nathaniel Brennen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland. .,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Rogers O, Yen H, Solomon A, Drake C, Denmeade S. An IL-2 proaerolysin fusion toxin that selectively eliminates regulatory t cells to enhance antitumor immune response. Prostate 2019; 79:1071-1078. [PMID: 31059598 DOI: 10.1002/pros.23819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent success with immune-checkpoint inhibitors in some tumor types has highlighted the power of the immune system to control and eradicate human cancer cells. However, these therapies have demonstrated a limited activity in prostate cancer, which has a more immunosuppressive microenvironment that can be because of the presence of a variety of inhibitory cell types, such as myeloid-derived suppressor cells, mesenchymal stem cells, and regulatory T cells (Tregs). One strategy to improve the efficacy of immune-based therapies for prostate cancer is to selectively eliminate these immunosuppressive cells within the tumor microenvironment. METHODS We developed and characterized a chimeric protein consisting of the cytokine IL-2 fused to binding mutant of the highly toxic bacterial toxin proaerolysin (ie IL2-R336A). RESULTS The IL2-R336A fusion protein selectively kills immunosuppressive Tregs that express the IL-2 receptor while having little to no effect on cells negative for this target. IL2-R336A depleted Tregs in both tumor bearing and nontumor bearing mice. Tumor bearing mice vaccinated with a GMCSF-expressing CT-26 GVAX vaccine had reduced tumor growth when given IL2-R336A before vaccination. IL2-R336A also enhanced immune response to a model hemagglutinin antigen (HA) in HA-tolerized mice. CONCLUSION These results suggest that this IL2-R336A toxin may be a useful in improving the therapeutic efficacy of antitumor vaccines by enhancing the immune response against target tumor antigens.
Collapse
Affiliation(s)
- Oliver Rogers
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Hung Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Anna Solomon
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Charles Drake
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Samuel Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
4
|
Cirauqui N, Abriata LA, van der Goot FG, Dal Peraro M. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. Sci Rep 2017; 7:13932. [PMID: 29066778 PMCID: PMC5654971 DOI: 10.1038/s41598-017-13714-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022] Open
Abstract
Aerolysin is the founding member of a major class of β-pore-forming toxins (β-PFTs) found throughout all kingdoms of life. PFTs are cytotoxic proteins produced as soluble monomers, which oligomerize at the membrane of target host cells forming pores that may lead to osmotic lysis and cell death. Besides their role in microbial infection, they have become interesting for their potential as biotechnological sensors and delivery systems. Using an approach that integrates bioinformatics with molecular modeling and simulation, we looked for conserved features across this large toxin family. The cell surface-binding domains present high variability within the family to provide membrane receptor specificity. On the contrary, the novel concentric double β-barrel structure found in aerolysin is highly conserved in terms of sequence, structure and conformational dynamics, which likely contribute to preserve a common transition mechanism from the prepore to the mature pore within the family.Our results point to the key role of several amino acids in the conformational changes needed for oligomerization and further pore formation, such as Y221, W227, P248, Q263 and L277, which we propose are involved in the release of the stem loop and the two adjacent β-strands to form the transmembrane β-barrel.
Collapse
Affiliation(s)
- Nuria Cirauqui
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Department of Pharmaceutical Biotechnology, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|