1
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
2
|
Dubovichenko MV, Batsa M, Bobkov G, Vlasov G, El-Deeb A, Kolpashchikov D. Multivalent DNAzyme agents for cleaving folded RNA. Nucleic Acids Res 2024; 52:5866-5879. [PMID: 38661191 PMCID: PMC11162777 DOI: 10.1093/nar/gkae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Multivalent recognition and binding of biological molecules is a natural phenomenon that increases the binding stability (avidity) without decreasing the recognition specificity. In this study, we took advantage of this phenomenon to increase the efficiency and maintain high specificity of RNA cleavage by DNAzymes (Dz). We designed a series of DNA constructs containing two Dz agents, named here bivalent Dz devices (BDD). One BDD increased the cleavage efficiency of a folded RNA fragment up to 17-fold in comparison with the Dz of a conventional design. Such an increase was achieved due to both the improved RNA binding and the increased probability of RNA cleavage by the two catalytic cores. By moderating the degree of Dz agent association in BDD, we achieved excellent selectivity in differentiating single-base mismatched RNA, while maintaining relatively high cleavage rates. Furthermore, a trivalent Dz demonstrated an even greater efficiency than the BDD in cleaving folded RNA. The data suggests that the cooperative action of several RNA-cleaving units can significantly improve the efficiency and maintain high specificity of RNA cleavage, which is important for the development of Dz-based gene knockdown agents.
Collapse
Affiliation(s)
- Mikhail V Dubovichenko
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Michael Batsa
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Gleb A Bobkov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Gleb S Vlasov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Ahmed A El-Deeb
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
| | - Dmitry M Kolpashchikov
- Laboratory of Frontier Nucleic Acid Technologies in Gene Therapy of Cancer, SCAMT Institute, ITMO University, Saint-Petersburg, 191002, Russia
- Chemistry Department, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
3
|
Nedorezova DD, Dubovichenko MV, Kalnin AJ, Nour MAY, Eldeeb AA, Ashmarova AI, Kurbanov GF, Kolpashchikov DM. Cleaving Folded RNA with DNAzyme Agents. Chembiochem 2024; 25:e202300637. [PMID: 37870555 DOI: 10.1002/cbic.202300637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Cleavage of biological mRNA by DNAzymes (Dz) has been proposed as a variation of oligonucleotide gene therapy (OGT). The design of Dz-based OGT agents includes computational prediction of two RNA-binding arms with low affinity (melting temperatures (Tm ) close to the reaction temperature of 37 °C) to avoid product inhibition and maintain high specificity. However, RNA cleavage might be limited by the RNA binding step especially if the RNA is folded in secondary structures. This calls for the need for two high-affinity RNA-binding arms. In this study, we optimized 10-23 Dz-based OGT agents for cleavage of three RNA targets with different folding energies under multiple turnover conditions in 2 mM Mg2+ at 37 °C. Unexpectedly, one optimized Dz had each RNA-binding arm with a Tm ≥60 °C, without suffering from product inhibition or low selectivity. This phenomenon was explained by the folding of the RNA cleavage products into stable secondary structures. This result suggests that Dz with long (high affinity) RNA-binding arms should not be excluded from the candidate pool for OGT agents. Rather, analysis of the cleavage products' folding should be included in Dz selection algorithms. The Dz optimization workflow should include testing with folded rather than linear RNA substrates.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Mikhail V Dubovichenko
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Arseniy J Kalnin
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ahmed A Eldeeb
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Anna I Ashmarova
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Gabdulla F Kurbanov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of molecular robotics and biosensor systems, Laboratory of Frontier nucleic acid technologies in gene therapy of cancer, SCAMT Institute, ITMO University, St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Taylor AI, Wan CJK, Donde MJ, Peak-Chew SY, Holliger P. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat Chem 2022; 14:1295-1305. [PMID: 36064973 PMCID: PMC7613789 DOI: 10.1038/s41557-022-01021-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
Nucleic-acid catalysts (ribozymes, DNA- and XNAzymes) cleave target (m)RNAs with high specificity but have shown limited efficacy in clinical applications. Here we report on the in vitro evolution and engineering of a highly specific modular RNA endonuclease XNAzyme, FR6_1, composed of 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid (FANA). FR6_1 overcomes the activity limitations of previous DNA- and XNAzymes and can be retargeted to cleave highly structured full-length (>5 kb) BRAF and KRAS mRNAs at physiological Mg2+ concentrations with allelic selectivity for tumour-associated (BRAF V600E and KRAS G12D) mutations. Phosphorothioate-FANA modification enhances FR6_1 biostability and enables rapid KRAS mRNA knockdown in cultured human adenocarcinoma cells with a G12D-allele-specific component provided by in vivo XNAzyme cleavage activity. These results provide a starting point for the development of improved gene-silencing agents based on FANA or other XNA chemistries.
Collapse
Affiliation(s)
- Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK.
| | | | - Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
5
|
Donde MJ, Rochussen AM, Kapoor S, Taylor AI. Targeting non-coding RNA family members with artificial endonuclease XNAzymes. Commun Biol 2022; 5:1010. [PMID: 36153384 PMCID: PMC9509326 DOI: 10.1038/s42003-022-03987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) offer a wealth of therapeutic targets for a range of diseases. However, secondary structures and high similarity within sequence families make specific knockdown challenging. Here, we engineer a series of artificial oligonucleotide enzymes (XNAzymes) composed of 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid (FANA) that specifically or preferentially cleave individual ncRNA family members under quasi-physiological conditions, including members of the classic microRNA cluster miR-17~92 (oncomiR-1) and the Y RNA hY5. We demonstrate self-assembly of three anti-miR XNAzymes into a biostable catalytic XNA nanostructure, which targets the cancer-associated microRNAs miR-17, miR-20a and miR-21. Our results provide a starting point for the development of XNAzymes as a platform technology for precision knockdown of specific non-coding RNAs, with the potential to reduce off-target effects compared with other nucleic acid technologies.
Collapse
Affiliation(s)
- Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Adam M Rochussen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Saksham Kapoor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Isayama K, Watanabe K, Okamoto M, Murata T, Mizukami Y. Standardization of an LNA-based TaqMan assay qPCR analysis for Aspiculuris tetraptera DNA in mouse faeces. BMC Microbiol 2020; 20:371. [PMID: 33287731 PMCID: PMC7720592 DOI: 10.1186/s12866-020-02053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Aspiculuris tetraptera, as a parasitic pinworm, is most frequently detected in laboratory mice, and transmission is mediated by the eggs contained in the faeces of infected mice. A highly sensitive and quantitative faeces-based diagnostic tool would be useful for the early detection of A. tetraptera to inhibit the expansion of infection. In this study, we developed a quantitative assay that exhibits high sensitivity in detecting A. tetraptera in faeces using PCR techniques. Results Endpoint PCR demonstrated the detection of A. tetraptera DNA in 0.5 ng genomic DNA extracted from the faeces of infected mice. To quantitatively detect the small amount of A. tetraptera DNA, locked nucleic acid (LNA)-based primers and LNA-based TaqMan probes were used for the quantitative PCR assay (qPCR). The combination of LNA-based DNA increased detection sensitivity by more than 100-fold compared to using normal oligo DNAs. The copy number of the A. tetraptera DNA detected was positively related to the infected faeces-derived genomic DNA with a simple linearity regression in the range of 20 pg to 15 ng of the genomic DNA. To more conveniently detect infection using faeces, the LNA-based TaqMan assay was applied to the crude fraction of the faeces without DNA purification. An assay using ethanol precipitation of the faeces yielded results consistent with those of direct microscopic observation. Conclusion The LNA-TaqMan assay developed in this study quantitatively detects A. tetraptera infection in mouse faeces. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02053-6.
Collapse
Affiliation(s)
- Keishiro Isayama
- Institute of Laboratory Animals, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Mariko Okamoto
- Laboratory of Veterinary Immunology, School of Veterinary Medicine, Azabu University, Sagamihara, 252-5201, Japan
| | - Tomoaki Murata
- Institute of Laboratory Animals, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
7
|
Hanpanich O, Saito K, Shimada N, Maruyama A. One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens Bioelectron 2020; 165:112383. [PMID: 32729508 PMCID: PMC7836245 DOI: 10.1016/j.bios.2020.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
RNA detection permits early diagnosis of several infectious diseases and cancers, which prevent propagation of diseases and improve treatment efficacy. However, standard technique for RNA detection such as reverse transcription-quantitative polymerase chain reaction has complicated procedure and requires well-trained personnel and specialized lab equipment. These shortcomings limit the application for point-of-care analysis which is critical for rapid and effective disease management. The multicomponent nucleic acid enzymes (MNAzymes) are one of the promising biosensors for simple, isothermal and enzyme-free RNA detection. Herein, we demonstrate simple yet effective strategies that significantly enhance analytical performance of MNAzymes. The addition of the cationic copolymer and structural modification of MNAzyme significantly enhanced selectivity and activity of MNAzymes by 250 fold and 2,700 fold, respectively. The highly simplified RNA detection system achieved a detection limit of 73 fM target concentration without additional amplification. The robustness of MNAzyme in the presence of non-target RNA was also improved. Our finding opens up a route toward the development of an alternative rapid, sensitive, isothermal, and protein-free RNA diagnostic tool, which expected to be of great clinical significance.
Collapse
Affiliation(s)
- Orakan Hanpanich
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Ken Saito
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan.
| |
Collapse
|
8
|
Spelkov AA, Goncharova EA, Savin AM, Kolpashchikov DM. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chemistry 2020; 26:3489-3493. [PMID: 31943434 DOI: 10.1002/chem.201905528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Indexed: 01/14/2023]
Abstract
Theranostic approaches rely on simultaneous diagnostic of a disease and its therapy. Here, we designed a DNA nanodevice, which can simultaneously report the presence of a specific RNA target through an increase in fluorescence and cleave it. High selectivity of RNA target recognition under near physiological conditions was achieved. The proposed approach can become a basis for the design of DNA nanomachines and robots for diagnostics and therapy of viral infections, cancer, and genetic disorders.
Collapse
Affiliation(s)
- Aleksandr A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Ekaterina A Goncharova
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Artemii M Savin
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| |
Collapse
|
9
|
Cepeda-Plaza M, Peracchi A. Insights into DNA catalysis from structural and functional studies of the 8-17 DNAzyme. Org Biomol Chem 2020; 18:1697-1709. [DOI: 10.1039/c9ob02453k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review examines functional knowledge gathered over two decades of research on the 8-17 DNAzyme, focusing on three aspects: the structural requirements for catalysis, the role of metal ions and the participation of general acid-base catalysis.
Collapse
Affiliation(s)
| | - Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- Parma
- Italy
| |
Collapse
|
10
|
Nedorezova DD, Fakhardo AF, Molden TA, Kolpashchikov DM. Deoxyribozyme‐Based DNA Machines for Cancer Therapy. Chembiochem 2019; 21:607-611. [DOI: 10.1002/cbic.201900525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Tatiana A. Molden
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical SciencesUniversity of Central Florida Orlando FL 32816 USA
| |
Collapse
|
11
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Eze NA, Sullivan RS, Milam VT. Analysis of in Situ LNA and DNA Hybridization Events on Microspheres. Biomacromolecules 2017; 18:1086-1096. [PMID: 28233983 DOI: 10.1021/acs.biomac.6b01373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The hybridization activity of single-stranded DNA and locked nucleic acid (LNA) sequences on microspheres is quantified in situ using flow cytometry. In contrast to conventional sample preparation for flow cytometry that involves several wash steps for posthybridization analysis, the current work entails directly monitoring hybridization events as they occur between oligonucleotide-functionalized microspheres and fluorescently tagged 9 or 15 base-long targets. We find that the extent of hybridization between single-stranded, immobilized probes and soluble targets generally increases with target sequence length or with the incorporation of LNA nucleotides in one or both oligonucleotide strands involved in duplex formation. The rate constants for duplex formation, on the other hand, remain nearly identical for all but one probe-target sequence combination. The exception to this trend involves the LNA probe and shortest perfectly matched DNA target, which exhibit a rate constant that is an order of magnitude lower than any other probe-target pair, including a mismatched duplex case. Separate studies entailing brief heat treatments to suspensions generally do not consistently yield appreciable differences in associated target densities to probe-functionalized microspheres.
Collapse
Affiliation(s)
- Ngozi A Eze
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Richard S Sullivan
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Valeria T Milam
- School of Materials Science and Engineering, ‡Wallace H. Coulter Department of Biomedical Engineering, §Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
13
|
Peracchi A, Bonaccio M, Credali A. Local conformational changes in the 8–17 deoxyribozyme core induced by activating and inactivating divalent metal ions. Org Biomol Chem 2017; 15:8802-8809. [DOI: 10.1039/c7ob02001e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Placing 2-aminopurine at position 15 of the 8–17 DNAzyme allows the detection of a specific metal-induced conformational change, apparently coupled to the activation of catalysis.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Maria Bonaccio
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| | - Alfredo Credali
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|
14
|
Peracchi A. Dissecting the hybridization of oligonucleotides to structured complementary sequences. Biochim Biophys Acta Gen Subj 2016; 1860:1107-17. [PMID: 26876643 DOI: 10.1016/j.bbagen.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/18/2016] [Accepted: 02/08/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND When oligonucleotides hybridize to long target molecules, the process is slowed by the secondary structure in the targets. The phenomenon has been analyzed in several previous studies, but many details remain poorly understood. METHODS I used a spectrofluorometric strategy, focusing on the formation/breaking of individual base pairs, to study the kinetics of association between a DNA hairpin and >20 complementary oligonucleotides ('antisenses'). RESULTS Hybridization rates differed by over three orders of magnitude. Association was toehold-mediated, both for antisenses binding to the target's ends and for those designed to interact with the loop. Binding of these latter, besides being consistently slower, was affected to variable, non-uniform extents by the asymmetric loop structure. Divalent metal ions accelerated hybridization, more pronouncedly when nucleation occurred at the loop. Incorporation of locked nucleic acid (LNA) residues in the antisenses substantially improved the kinetics only when LNAs participated to the earliest hybridization steps. The effects of individual LNAs placed along the antisense indicated that the reaction transition state occurred after invading at least the first base pair of the stem. CONCLUSIONS The experimental approach helps dissect hybridization reactions involving structured nucleic acids. Toehold-dependent, nucleation-invasion models appear fully appropriate for describing such reactions. Estimating the stability of nucleation complexes formed at internal toeholds is the major hurdle for the quantitative prediction of hybridization rates. GENERAL SIGNIFICANCE While analyzing the mechanisms of a fundamental biochemical process (hybridization), this work also provides suggestions for the improvement of technologies that rely on such process.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, 43124 Parma, Italy.
| |
Collapse
|
15
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
16
|
Wang F, Saran R, Liu J. Tandem DNAzymes for mRNA cleavage: choice of enzyme, metal ions and the antisense effect. Bioorg Med Chem Lett 2015; 25:1460-3. [PMID: 25769818 DOI: 10.1016/j.bmcl.2015.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
The concept of DNAzyme-based gene silencing via mRNA cleavage was proposed over twenty years ago. A number of studies regarding intracellular gene silencing have been reported as well. However, questions have been raised regarding the lack of enzyme activity in physiological buffer conditions and it is being doubted that in the previously reported studies, gene silencing might be simply due to an antisense effect. In this work, two classical DNAzymes for RNA cleavage are studied using both chimeric substrates and extracted mRNA. We concluded that the activity of the 8-17 DNAzyme is much higher than that of 10-23 in the same conditions. To illustrate and compare the effect of specific cleavage versus antisense effect in the best possible way, we used tandem DNAzymes. Specific mRNA cleavage occurred with Zn(2+), while with Mg(2+), even the inactive control DNAzymes showed a similar response, suggesting that the antisense effect might be the dominating phenomenon causing gene silencing. This study has thus clarified the choice of DNAzyme sequence, the effect of metal ions and a potential source of antisense effect.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
17
|
Deng YB, Nong LG, Liang ZR, Zhang L, Qin YH, He P. Hepatitis C virus gene-specific locked nucleic acid enzyme significantly inhibits C gene expression in vitro. Shijie Huaren Xiaohua Zazhi 2014; 22:1992-1997. [DOI: 10.11569/wcjd.v22.i14.1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of locked nucleic acid enzyme targeting the hepatitis C virus (HCV) C gene on HCV RNA replication and expression in HepG2.9706 cells.
METHODS: The sequences encoding DNAzyme, thiolmodificated DNAzyme and LNAzyme targeting the HCV C gene were designed and synthesized. The following experimental groups were set up: lipo-DNAzyme, lipo-S-DNAzyme, lipo-LNAzyme, blank control, empty liposomes, and lipo-random-LNAzyme. Transfection was performed using cationic liposomes. The level of HCV RNA and luciferase gene expression in supernatants were tested by real-time fluorescent quantitative PCR and chemiluminescence technique 24, 48 and 96 h after treatment, respectively. Cytotoxicity of LNAzyme was evaluated by MTT assay.
RESULTS: Significant down-regulation of HCV RNA replication and luciferase gene expression was noted in the lipo-LNAzyme group, lipo-DNAzyme group and lipo-S-DNAzyme group compared with the control group (P < 0.05 for all). Relative to the lipo-DNAzyme group and lipo-S-DNAzyme group, the average inhibition rates in the lipo-LNAzyme group were 47.55% and 52.44%, respectively. With the prolongation of the treatment time, the inhibition rate increased. At 96 h, HCR RNA replication and fluorescent protein expression were significantly lower than those before treatment in the lipo-LNAzyme group (P < 0.01 for both), and the average inhibition rates were 79.40% and 84.05%, respectively. No obvious toxicity was observed.
CONCLUSION: LNAzyme has a significant inhibitory effect on HCV C gene replication and expression in vitro, which is stronger than that of the thiolmodificated DNAzyme.
Collapse
|
18
|
Russo Krauss I, Parkinson GN, Merlino A, Mattia CA, Randazzo A, Novellino E, Mazzarella L, Sica F. A regular thymine tetrad and a peculiar supramolecular assembly in the first crystal structure of an all-LNA G-quadruplex. ACTA ACUST UNITED AC 2014; 70:362-70. [PMID: 24531470 DOI: 10.1107/s1399004713028095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/13/2013] [Indexed: 01/19/2023]
Abstract
Locked nucleic acids (LNAs) are formed by bicyclic ribonucleotides where the O2' and C4' atoms are linked through a methylene bridge and the sugar is blocked in a 3'-endo conformation. They represent a promising tool for therapeutic and diagnostic applications and are characterized by higher thermal stability and nuclease resistance with respect to their natural counterparts. However, structural descriptions of LNA-containing quadruplexes are rather limited, since few NMR models have been reported in the literature. Here, the first crystallographically derived model of an all-LNA-substituted quadruplex-forming sequence 5'-TGGGT-3' is presented refined at 1.7 Å resolution. This high-resolution crystallographic analysis reveals a regular parallel G-quadruplex arrangement terminating in a well defined thymine tetrad at the 3'-end. The detailed picture of the hydration pattern reveals LNA-specific features in the solvent distribution. Interestingly, two closely packed quadruplexes are present in the asymmetric unit. They face one another with their 3'-ends giving rise to a compact higher-order structure. This new assembly suggests a possible way in which sequential quadruplexes can be disposed in the crowded cell environment. Furthermore, as the formation of ordered structures by molecular self-assembly is an effective strategy to obtain nanostructures, this study could open the way to the design of a new class of LNA-based building blocks for nanotechnology.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Gary Nigel Parkinson
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, England
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Carlo Andrea Mattia
- Department of Pharmacy, University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples `Federico II', Via D. Montesano 49, I-80131 Napoli, Italy
| | - Lelio Mazzarella
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples `Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
19
|
Depletion of unwanted nucleic acid templates by selective cleavage: LNAzymes, catalytically active oligonucleotides containing locked nucleic acids, open a new window for detecting rare microbial community members. Appl Environ Microbiol 2012; 79:1534-44. [PMID: 23263968 DOI: 10.1128/aem.03392-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many studies of molecular microbial ecology rely on the characterization of microbial communities by PCR amplification, cloning, sequencing, and phylogenetic analysis of genes encoding rRNAs or functional marker enzymes. However, if the established clone libraries are dominated by one or a few sequence types, the cloned diversity is difficult to analyze by random clone sequencing. Here we present a novel approach to deplete unwanted sequence types from complex nucleic acid mixtures prior to cloning and downstream analyses. It employs catalytically active oligonucleotides containing locked nucleic acids (LNAzymes) for the specific cleavage of selected RNA targets. When combined with in vitro transcription and reverse transcriptase PCR, this LNAzyme-based technique can be used with DNA or RNA extracts from microbial communities. The simultaneous application of more than one specific LNAzyme allows the concurrent depletion of different sequence types from the same nucleic acid preparation. This new method was evaluated with defined mixtures of cloned 16S rRNA genes and then used to identify accompanying bacteria in an enrichment culture dominated by the nitrite oxidizer "Candidatus Nitrospira defluvii." In silico analysis revealed that the majority of publicly deposited rRNA-targeted oligonucleotide probes may be used as specific LNAzymes with no or only minor sequence modifications. This efficient and cost-effective approach will greatly facilitate tasks such as the identification of microbial symbionts in nucleic acid preparations dominated by plastid or mitochondrial rRNA genes from eukaryotic hosts, the detection of contaminants in microbial cultures, and the analysis of rare organisms in microbial communities of highly uneven composition.
Collapse
|
20
|
RNA-Cleaving DNA Enzymes and Their Potential Therapeutic Applications as Antibacterial and Antiviral Agents. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7119987 DOI: 10.1007/978-3-642-27426-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA catalysts are synthetic single-stranded DNA molecules that have been identified by in vitro selection from random sequence DNA pools. The most prominent representatives of DNA catalysts (also known as DNA enzymes, deoxyribozymes, or DNAzymes) catalyze the site-specific cleavage of RNA substrates. Two distinct groups of RNA-cleaving DNA enzymes are the 10-23 and 8-17 enzymes. A typical RNA-cleaving DNA enzyme consists of a catalytic core and two short binding arms which form Watson–Crick base pairs with the RNA targets. RNA cleavage is usually achieved with the assistance of metal ions such as Mg2+, Ca2+, Mn2+, Pb2+, or Zn2+, but several chemically modified DNA enzymes can cleave RNA in the absence of divalent metal ions. A number of studies have shown the use of 10-23 DNA enzymes for modest downregulation of therapeutically relevant RNA targets in cultured cells and in whole mammals. Here we focus on mechanistic aspects of RNA-cleaving DNA enzymes and their potential to silence therapeutically appealing viral and bacterial gene targets. We also discuss delivery options and challenges involved in DNA enzyme-based therapeutic strategies.
Collapse
|
21
|
Suryawanshi H, Lalwani MK, Ramasamy S, Rana R, Scaria V, Sivasubbu S, Maiti S. Antagonism of microRNA function in zebrafish embryos by using locked nucleic acid enzymes (LNAzymes). Chembiochem 2012; 13:584-9. [PMID: 22315191 DOI: 10.1002/cbic.201100789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) have crucial functions in many cellular processes, such as differentiation, proliferation and apoptosis; aberrant expression of miRNAs has been linked to human diseases, including cancer. Tools that allow specific and efficient knockdown of miRNAs would be of immense importance for exploring miRNA function. Zebrafish serves as an excellent vertebrate model system to understand the functions of miRNAs involved in a variety of biological processes. We designed and employed a strategy based on locked nucleic acid enzymes (LNAzymes) for in vivo knockdown of miRNA in zebrafish embryos. We demonstrate that LNAzyme can efficiently knockdown miRNAs with minimal toxicity to the zebrafish embryos.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi 110007, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Doessing H, Vester B. Locked and unlocked nucleosides in functional nucleic acids. Molecules 2011; 16:4511-26. [PMID: 21629180 PMCID: PMC6264650 DOI: 10.3390/molecules16064511] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 12/28/2022] Open
Abstract
Nucleic acids are able to adopt a plethora of structures, many of which are of interest in therapeutics, bio- or nanotechnology. However, structural and biochemical stability is a major concern which has been addressed by incorporating a range of modifications and nucleoside derivatives. This review summarizes the use of locked nucleic acid (LNA) and un-locked nucleic acid (UNA) monomers in functional nucleic acids such as aptamers, ribozymes, and DNAzymes.
Collapse
Affiliation(s)
| | - Birte Vester
- Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark; E-Mail: (H.D.)
| |
Collapse
|
23
|
Kaur H, Scaria V, Maiti S. “Locked onto the target”: increasing the efficiency of antagomirzymes using locked nucleic acid modifications. Biochemistry 2011; 49:9449-56. [PMID: 20879750 DOI: 10.1021/bi101185k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study highlights the effect of incorporation of locked nucleic acid (LNA) on improving the functional efficacy of DNAzymes against microRNAs (antagomirzymes). DNAzymes were designed against two different sites of miR-27a, which were encompassed both within the precursor and mature form of miRNA. The cleavage and functional activities of these DNAzymes have been compared to those of LNA-modified counterparts, containing LNA modification in each of the substrate binding arms. Preliminary examination based on in vitro cleavage demonstrated LNAzyme to be much more effective in the ensuing cleavage of target miRNA under both single- and multiple-turnover conditions. Evaluation of kinetic parameters indicated almost 5-fold higher cleavage efficiency, kobs, for LNAzymes than for DNAzymes, leading to more efficient cleavage of the substrate. We attribute this enhancement in cleavage efficiency to the LNA-mediated improvement in the hybridization of the antagomirzyme·target complex. Functional validation of the relative activities was accomplished through the luciferase reporter assay and quantitative real-time polymerase chain reaction (qRT-PCR). Both the unmodified and LNA-modified antagomirzymes were very active in ensuing efficient miRNA knockdown; however, compared to the DNAzymes, the LNAzymes were almost 25% more active. A direct quantitative estimate of miRNA cleavage, conducted using qRT-PCR, further substantiated the data by indicating that LNAzyme effectively downregulated the levels of mature miRNA (up to 50%) versus the corresponding DNAzymes. Our data thus provide formative evidence of the successful employment of LNA-based antagomirzymes against miRNA.
Collapse
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | | | | |
Collapse
|
24
|
Campbell MA, Wengel J. Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 2011; 40:5680-9. [PMID: 21556437 DOI: 10.1039/c1cs15048k] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.
Collapse
Affiliation(s)
- Meghan A Campbell
- Nucleic Acid Center, Institute for Physics and Chemistry, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
25
|
Schlosser K, Li Y. A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8-17 RNA-Cleaving DNAzyme. Chembiochem 2010; 11:866-79. [DOI: 10.1002/cbic.200900786] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Reyes-Gutiérrez P, Alvarez-Salas LM. Cleavage of HPV-16 E6/E7 mRNA Mediated by Modified 10–23 Deoxyribozymes. Oligonucleotides 2009; 19:233-42. [DOI: 10.1089/oli.2009.0193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pablo Reyes-Gutiérrez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, CINVESTAV, México City, México
| | - Luis M. Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, CINVESTAV, México City, México
| |
Collapse
|
27
|
Julien KR, Sumita M, Chen PH, Laird-Offringa IA, Hoogstraten CG. Conformationally restricted nucleotides as a probe of structure-function relationships in RNA. RNA (NEW YORK, N.Y.) 2008; 14:1632-1643. [PMID: 18596252 PMCID: PMC2491483 DOI: 10.1261/rna.866408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/17/2008] [Indexed: 05/26/2023]
Abstract
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.
Collapse
Affiliation(s)
- Kristine R Julien
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|