1
|
Gill-Hille M, Wang A, Murcha MW. Presequence translocase-associated motor subunits of the mitochondrial protein import apparatus are dual-targeted to mitochondria and plastids. FRONTIERS IN PLANT SCIENCE 2022; 13:981552. [PMID: 36438081 PMCID: PMC9695410 DOI: 10.3389/fpls.2022.981552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The import and assembly of most of the mitochondrial proteome is regulated by protein translocases located within the mitochondrial membranes. The Presequence Translocase-Associated Motor (PAM) complex powers the translocation of proteins across the inner membrane and consists of Hsp70, the J-domain containing co-chaperones, Pam16 and Pam18, and their associated proteins Tim15 and Mge1. In Arabidopsis, multiple orthologues of Pam16, Pam18, Tim15 and Mge1 have been identified and a mitochondrial localization has been confirmed for most. As the localization of Pam18-1 has yet to be determined and a plastid localization has been observed for homologues of Tim15 and Mge1, we carried out a comprehensive targeting analysis of all PAM complex orthologues using multiple in vitro and in vivo methods. We found that, Pam16 was exclusively targeted to the mitochondria, but Pam18 orthologues could be targeted to both the mitochondria and plastids, as observed for the PAM complex interacting partner proteins Tim15 and Mge1.
Collapse
Affiliation(s)
- Mabel Gill-Hille
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Andre Wang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Monika W. Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Hammel A, Zimmer D, Sommer F, Mühlhaus T, Schroda M. Absolute Quantification of Major Photosynthetic Protein Complexes in Chlamydomonas reinhardtii Using Quantification Concatamers (QconCATs). FRONTIERS IN PLANT SCIENCE 2018; 9:1265. [PMID: 30214453 PMCID: PMC6125352 DOI: 10.3389/fpls.2018.01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 05/03/2023]
Abstract
For modeling approaches in systems biology, knowledge of the absolute abundances of cellular proteins is essential. One way to gain this knowledge is the use of quantification concatamers (QconCATs), which are synthetic proteins consisting of proteotypic peptides derived from the target proteins to be quantified. The QconCAT protein is labeled with a heavy isotope upon expression in E. coli and known amounts of the purified protein are spiked into a whole cell protein extract. Upon tryptic digestion, labeled and unlabeled peptides are released from the QconCAT protein and the native proteins, respectively, and both are quantified by LC-MS/MS. The labeled Q-peptides then serve as standards for determining the absolute quantity of the native peptides/proteins. Here, we have applied the QconCAT approach to Chlamydomonas reinhardtii for the absolute quantification of the major proteins and protein complexes driving photosynthetic light reactions in the thylakoid membranes and carbon fixation in the pyrenoid. We found that with 25.2 attomol/cell the Rubisco large subunit makes up 6.6% of all proteins in a Chlamydomonas cell and with this exceeds the amount of the small subunit by a factor of 1.56. EPYC1, which links Rubisco to form the pyrenoid, is eight times less abundant than RBCS, and Rubisco activase is 32-times less abundant than RBCS. With 5.2 attomol/cell, photosystem II is the most abundant complex involved in the photosynthetic light reactions, followed by plastocyanin, photosystem I and the cytochrome b6/f complex, which range between 2.9 and 3.5 attomol/cell. The least abundant complex is the ATP synthase with 2 attomol/cell. While applying the QconCAT approach, we have been able to identify many potential pitfalls associated with this technique. We analyze and discuss these pitfalls in detail and provide an optimized workflow for future applications of this technique.
Collapse
|
3
|
Nyakundi DO, Vuko LAM, Bentley SJ, Hoppe H, Blatch GL, Boshoff A. Plasmodium falciparum Hep1 Is Required to Prevent the Self Aggregation of PfHsp70-3. PLoS One 2016; 11:e0156446. [PMID: 27253881 PMCID: PMC4890766 DOI: 10.1371/journal.pone.0156446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 11/29/2022] Open
Abstract
The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria.
Collapse
Affiliation(s)
- David O. Nyakundi
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Loyiso A. M. Vuko
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
- * E-mail:
| |
Collapse
|
4
|
Dores-Silva PR, Beloti LL, Minari K, Silva SMO, Barbosa LRS, Borges JC. Structural and functional studies of Hsp70-escort protein--Hep1--of Leishmania braziliensis. Int J Biol Macromol 2015; 79:903-12. [PMID: 26071939 DOI: 10.1016/j.ijbiomac.2015.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Hep1 is a mitochondrial Hsp70 (mtHsp70) co-chaperone that presents a zinc finger domain essential for its function. This co-chaperone acts to maintain mtHsp70 in its soluble and functional state. In this work, we have demonstrated that Leishmania braziliensis mtHsp70 (LbmtHsp70) is also dependent on the assistance of Hep1. To understand the L. braziliensis Hep1 (LbHep1) structure-function relationship, we produced LbHep1 and two truncated mutants corresponding to the C-terminal zinc finger domain and the N-terminal region. We observed that LbHep1 is composed of an unfolded N-terminal region and a β-sheet-folded C-terminal domain, which holds the zinc-binding motif. Both LbHep1 and the zinc finger domain construction maintained LbmtHsp70 solubility in co-expression systems after cell lysis. In solution, LbHep1 behaved as a highly elongated monomer, probably due to the unfolded N-terminal region. Furthermore, we also observed that the zinc ion interacted with LbHep1 with high affinity and was critical for LbHep1 structure and stability because its removal from LbHep1 solutions altered the protein structure and stability. In vitro, LbHep1 protected, in sub-stoichiometric fashion, LbmtHsp70 from thermally induced aggregation but did not present intrinsic chaperone activity on model client proteins. Therefore, LbHep1 is a specific chaperone for LbmtHsp70.
Collapse
Affiliation(s)
- P R Dores-Silva
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - L L Beloti
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - K Minari
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil; Post-Graduation Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos - UFSCar, São Carlos, SP 13565-905, Brazil
| | - S M O Silva
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil
| | - L R S Barbosa
- Institute of Physics, University of São Paulo - USP, São Paulo, SP 05508-090, Brazil
| | - J C Borges
- Institute of Chemistry of São Carlos, University of São Paulo - USP, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
5
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
6
|
Regev-Rudzki N, Gabriel K, Bursać D. The evolution and function of co-chaperones in mitochondria. Subcell Biochem 2015; 78:201-217. [PMID: 25487023 DOI: 10.1007/978-3-319-11731-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mitochondrial chaperones mediate and affect critical organellar processes, essential for cellular function. These chaperone systems have both prokaryotic and eukaryotic features. While some of the mitochondrial co-chaperones have clear homologues in prokaryotes, some are unique to eukaryotes and have no homologues in the chaperone machinery of other cellular compartments. The mitochondrial co-chaperones are required for protein import into the organelle and in enforcing the structure of the main chaperones. In addition to novel types of interaction with their senior partners, unexpected and essential interactions between the co-chaperones themselves have recently been described.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovolt, Israel,
| | | | | |
Collapse
|
7
|
In vitro characterization of bacterial and chloroplast Hsp70 systems reveals an evolutionary optimization of the co-chaperones for their Hsp70 partner. Biochem J 2014; 460:13-24. [PMID: 24564700 DOI: 10.1042/bj20140001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chloroplast Hsp70 (heat-shock protein of 70 kDa) system involved in protein folding in Chlamydomonas reinhardtii consists of HSP70B, the DnaJ homologue CDJ1 and the GrpE-type nucleotide-exchange factor CGE1. The finding that HSP70B needs to be co-expressed with HEP2 (Hsp70 escort protein 2) to become functional allowed the reconstitution of the chloroplast Hsp70 system in vitro and comparison with the homologous Escherichia coli system. Both systems support luciferase refolding and display ATPase and holdase activities. Steady-state activities are low and strongly stimulated by the co-chaperones, whose concentrations need to be balanced to optimally support luciferase refolding. Although the co-chaperones of either system generally stimulate ATPase and folding-assistance activities of the other, luciferase refolding is reduced ~10-fold and <2-fold if either Hsp70 is supplemented with the foreign DnaJ and GrpE protein respectively, suggesting an evolutionary specialization of the co-chaperones for their Hsp70 partner. Distinct features are that HSP70B's steady-state ATPase exhibits ~20-fold higher values for Vmax and Km and that the HSP70B system displays a ~6-fold higher folding assistance on denatured luciferase. Although truncating up to 16 N-terminal amino acids of CGE1 does not affect HSP70B's general ATPase and folding-assistance activities in the physiological temperature range, further deletions hampering dimerization of CGE1 via its N-terminal coiled coil do.
Collapse
|
8
|
Liu L, McNeilage RT, Shi LX, Theg SM. ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens. THE PLANT CELL 2014; 26:1246-55. [PMID: 24596240 PMCID: PMC4001381 DOI: 10.1105/tpc.113.121822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/12/2013] [Accepted: 02/09/2014] [Indexed: 05/20/2023]
Abstract
The 70-kD family of heat shock proteins (Hsp70s) is involved in a number of seemingly disparate cellular functions, including folding of nascent proteins, breakup of misfolded protein aggregates, and translocation of proteins across membranes. They act through the binding and release of substrate proteins, accompanied by hydrolysis of ATP. Chloroplast stromal Hsp70 plays a crucial role in the import of proteins into plastids. Mutations of an ATP binding domain Thr were previously reported to result in an increase in the Km for ATP and a decrease in the enzyme's kcat. To ask which chloroplast stromal chaperone, Hsp70 or Hsp93, both of which are ATPases, dominates the energetics of the motor responsible for protein import, we made transgenic moss (Physcomitrella patens) harboring the Km-altering mutation in the essential stromal Hsp70-2 and measured the effect on the amount of ATP required for protein import into chloroplasts. Here, we report that increasing the Km for ATP hydrolysis of Hsp70 translated into an increased Km for ATP usage by chloroplasts for protein import. This thus directly demonstrates that the ATP-derived energy long known to be required for chloroplast protein import is delivered via the Hsp70 chaperones and that the chaperone's ATPase activity dominates the energetics of the reaction.
Collapse
|
9
|
Lewrenz I, Rietzschel N, Guiard B, Lill R, van der Laan M, Voos W. The functional interaction of mitochondrial Hsp70s with the escort protein Zim17 is critical for Fe/S biogenesis and substrate interaction at the inner membrane preprotein translocase. J Biol Chem 2013; 288:30931-43. [PMID: 24030826 DOI: 10.1074/jbc.m113.465997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The yeast protein Zim17 belongs to a unique class of co-chaperones that maintain the solubility of Hsp70 proteins in mitochondria and plastids of eukaryotic cells. However, little is known about the functional cooperation between Zim17 and mitochondrial Hsp70 proteins in vivo. To analyze the effects of a loss of Zim17 function in the authentic environment, we introduced novel conditional mutations within the ZIM17 gene of the model organism Saccharomyces cerevisiae that allowed a recovery of temperature-sensitive but respiratory competent zim17 mutant cells. On fermentable growth medium, the mutant cells were prone to acquire respiratory deficits and showed a strong aggregation of the mitochondrial Hsp70 Ssq1 together with a concomitant defect in Fe/S protein biogenesis. In contrast, under respiring conditions, the mitochondrial Hsp70s Ssc1 and Ssq1 exhibited only a partial aggregation. We show that the induction of the zim17 mutant phenotype leads to strong import defects for Ssc1-dependent matrix-targeted precursor proteins that correlate with a significantly reduced binding of newly imported substrate proteins to Ssc1. We conclude that Zim17 is not only required for the maintenance of mtHsp70 solubility but also directly assists the functional interaction of mtHsp70 with substrate proteins in a J-type co-chaperone-dependent manner.
Collapse
Affiliation(s)
- Ilka Lewrenz
- From the Institut für Biochemie und Molekularbiologie, Universität Bonn, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET. EMBO J 2013; 32:1639-49. [PMID: 23624933 DOI: 10.1038/emboj.2013.89] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/21/2013] [Indexed: 11/08/2022] Open
Abstract
The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions.
Collapse
|
11
|
Abstract
Hep1 acts as a specialized chaperone to mediate the de novo folding of yeast mitochondrial Hsp70. Chaperones mediate protein folding and prevent deleterious protein aggregation in the cell. However, little is known about the biogenesis of chaperones themselves. In this study, we report on the biogenesis of the yeast mitochondrial Hsp70 (mtHsp70) chaperone, which is essential for the functionality of mitochondria. We show in vivo and in organello that mtHsp70 rapidly folds after its import into mitochondria, with its ATPase domain and peptide-binding domain (PBD) adopting their structures independently of each other. Importantly, folding of the ATPase domain but not of the PBD was severely affected in the absence of the Hsp70 escort protein, Hep1. We reconstituted the folding of mtHsp70, demonstrating that Hep1 and ATP/ADP were required and sufficient for its de novo folding. Our data show that Hep1 bound to a folding intermediate of mtHsp70. Binding of an adenine nucleotide triggered release of Hep1 and folding of the intermediate into native mtHsp70. Thus, Hep1 acts as a specialized chaperone mediating the de novo folding of an Hsp70 chaperone.
Collapse
Affiliation(s)
- Marta Blamowska
- Adolf-Butenandt-Institut, Lehrstuhl für Physiologische Chemie, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | | |
Collapse
|
12
|
Kluth J, Schmidt A, März M, Krupinska K, Lorbiecke R. Arabidopsis
Zinc Ribbon 3 is the ortholog of yeast mitochondrial HSP70 escort protein HEP1 and belongs to an ancient protein family in mitochondria and plastids. FEBS Lett 2012; 586:3071-6. [DOI: 10.1016/j.febslet.2012.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 01/14/2023]
|
13
|
Vu MT, Zhai P, Lee J, Guerra C, Liu S, Gustin MC, Silberg JJ. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci 2012; 21:258-67. [PMID: 22162012 DOI: 10.1002/pro.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 01/20/2023]
Abstract
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones.
Collapse
Affiliation(s)
- Michael T Vu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhai P, Vu MT, Hoff KG, Silberg JJ. A conserved histidine in human DNLZ/HEP is required for stimulation of HSPA9 ATPase activity. Biochem Biophys Res Commun 2011; 408:589-94. [PMID: 21530495 DOI: 10.1016/j.bbrc.2011.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
The DNL-type zinc-finger protein DNLZ regulates the activity and solubility of the human mitochondrial chaperone HSPA9. To identify DNLZ residues that are critical for chaperone regulation, we carried out an alanine mutagenesis scan of charged residues in a W115I mutant of human DNLZ and assessed the effect of each mutation on interactions with HSPA9. All mutants analyzed promote the solubility of HSPA9 upon expression in Escherichia coli. However, binding studies examining the effect of DNLZ mutants on chaperone tryptophan fluorescence identified three mutations (R81A, H107A, and D111A) that decrease DNLZ binding affinity for nucleotide-free chaperone. In addition, ATPase measurements revealed that DNLZ-R81A and DNLZ-D111A both stimulate the catalytic activity HSPA9, whereas DNLZ-H107A does not elicit an increase in activity even when present at a concentration that is 10-fold higher than the level required for half-maximal stimulation by DNLZ. These findings implicate a conserved histidine as critical for DNLZ regulation of mitochondrial HSPA9 catalytic activity.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | |
Collapse
|
15
|
Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe–S clusters and interact with stromal HSP70B. Biochem J 2010; 427:205-15. [DOI: 10.1042/bj20091412] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present study we report on the identification and characterization of three novel chloroplast-targeted DnaJ-like proteins CDJ3–5, which in addition to their J-domains contain bacterial-type ferredoxin domains. In sequence databases we could identify homologues of CDJ3–5 in green algae, moss and higher plants, but not in cyanobacteria. Phylogenetic analyses allowed us to distinguish two clades containing CDJ3/4 and CDJ5 that must have diverged early in the ancestor of the ‘green lineage’ and have further diversified later on. Molecular and biochemical analysis of CDJ3 and CDJ4 from Chlamydomonas reinhardtii revealed that both proteins are weakly expressed and appear to be localized to the stroma and to thylakoid membranes respectively. The low transcript levels of the CDJ3 and CDJ4 genes declined even further in the initial phase of heat shock, but CDJ3 transcript levels strongly increased after a dark-to-light shift. Accordingly, the Arabidopsis orthologue of CDJ5 was also found to be light-inducible and to be under strong circadian control. CDJ3 and CDJ4 proteins could both be expressed in Escherichia coli and had redox-active Fe–S clusters. In vitro cross-linking studies demonstrated that CDJ3 and CDJ4 interact with chloroplast ATP-bound HSP70B (heat-shock protein 70B), presumably as dimers, and immunoprecipitation studies showed that CDJ3/4 were also in a complex with HSP70B in Chlamydomonas cell extracts. Finally, CDJ3 was found in complexes with apparent molecular masses of approx. 550–2800 kDa, which appeared to contain RNA. We speculate that the CDJ3–5 proteins might represent redox switches that act by recruiting HSP70B for the reorganization of regulatory protein complexes.
Collapse
|
16
|
New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:75-113. [DOI: 10.1016/b978-0-12-381047-2.00002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Blamowska M, Sichting M, Mapa K, Mokranjac D, Neupert W, Hell K. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1. J Biol Chem 2009; 285:4423-31. [PMID: 20007714 DOI: 10.1074/jbc.m109.061697] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.
Collapse
Affiliation(s)
- Marta Blamowska
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Heide H, Nordhues A, Drepper F, Nick S, Schulz-Raffelt M, Haehnel W, Schroda M. Application of quantitative immunoprecipitation combined with knockdown and cross-linking to Chlamydomonas
reveals the presence of vesicle-inducing protein in plastids 1 in a common complex with chloroplast HSP90C. Proteomics 2009; 9:3079-89. [DOI: 10.1002/pmic.200800872] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Schroda M, Mühlhaus T. A 'foldosome' in the chloroplast? PLANT SIGNALING & BEHAVIOR 2009; 4:301-3. [PMID: 19794845 PMCID: PMC2664489 DOI: 10.4161/psb.4.4.7758] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 01/05/2009] [Indexed: 05/20/2023]
Abstract
The proper functioning of many cytosolic proteins involved in signal transduction depends on protein folding steps carried out cooperatively by a multichaperone complex containing the Hsp90 and Hsp70 machineries. We have recently found that also in the chloroplast the Hsp90 and Hsp70 machineries form a multichaperone complex, although chloroplast Hsp90 and Hsp70 are from eukaryotic and prokaryotic origin, respectively. In earlier work by others it was shown that plants expressing a mutated form of a chloroplast-targeted Hsp90 were impaired in the light induction of several nuclear genes. These data suggest that, like in the cytosol, the folding of chloroplast proteins involved in chloroplast-to-nucleus signalling might depend on the cooperative action of the chloroplast Hsp70–Hsp90 machineries.
Collapse
Affiliation(s)
- Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | |
Collapse
|
20
|
Zhai P, Stanworth C, Liu S, Silberg JJ. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis. J Biol Chem 2008; 283:26098-106. [PMID: 18632665 DOI: 10.1074/jbc.m803475200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| | | | | | | |
Collapse
|