1
|
Hong J, Li X, Hao Y, Xu H, Yu L, Meng Z, Zhang J, Zhu M. The PRMT6/STAT1/ACSL1 axis promotes ferroptosis in diabetic nephropathy. Cell Death Differ 2024; 31:1561-1575. [PMID: 39134684 PMCID: PMC11519485 DOI: 10.1038/s41418-024-01357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Hyperglycaemia-induced ferroptosis is a significant contributor to kidney dysfunction in diabetic nephropathy (DN) patients. In addition, targeting ferroptosis has clinical implications for the treatment of DN. However, effective therapeutic targets for ferroptosis have not been identified. In this study, we aimed to explore the precise role of protein arginine methyltransferase 6 (PRMT6) in regulating ferroptosis in DN. In the present study, we utilized a mouse DN model consisting of both wild-type and PRMT6-knockout (PRMT6-/-) mice. Transcriptomic and lipidomic analyses, along with various molecular biological methodologies, were used to determine the potential mechanism by which PRMT6 regulates ferroptosis in DN. Our results indicate that PRMT6 downregulation participates in kidney dysfunction and renal cell death via the modulation of ferroptosis in DN. Moreover, PRMT6 reduction induced lipid peroxidation by upregulating acyl-CoA synthetase long-chain family member 1 (ACSL1) expression, ultimately contributing to ferroptosis. Furthermore, we investigated the molecular mechanism by which PRMT6 interacts with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ACSL1 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. Furthermore, we observed that PRMT6 and STAT1 synergistically regulate ACSL1 transcription to mediate ferroptosis in hyperglycaemic cells. Our study demonstrated that PRMT6 and STAT1 comodulate ACSL1 transcription to induce the production of phospholipid-polyunsaturated fatty acids (PL-PUFAs), thus participating in ferroptosis in DN. These findings suggest that the PRMT6/STAT1/ACSL1 axis is a new therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Jia Hong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingxiang Hao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lang Yu
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Hendrickson-Rebizant T, Sudhakar SRN, Rowley MJ, Frankel A, Davie JR, Lakowski TM. Structure, Function, and Activity of Small Molecule and Peptide Inhibitors of Protein Arginine Methyltransferase 1. J Med Chem 2024; 67:15931-15946. [PMID: 39250434 PMCID: PMC11440505 DOI: 10.1021/acs.jmedchem.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Protein arginine N-methyltransferases (PRMT) are a family of S-adenosyl-l-methionine (SAM)-dependent enzymes that transfer methyl-groups to the ω-N of arginyl residues in proteins. PRMTs are involved in regulating gene expression, RNA splicing, and other activities. PRMT1 is responsible for most cellular arginine methylation, and its dysregulation is involved in many cancers. Accordingly, many groups have targeted PRMT1 using small molecules and peptide inhibitors. In this Perspective, we discuss the structure and function of selected peptide and small molecule inhibitors of PRMT1. We examine inhibitors that target the substrate arginyl peptide, SAM, or both binding sites, and the type of inhibition that results. Small molecules, and peptides that are bisubstrate, and/or PRMT transition state mimic inhibitors as well as inhibitors that alkylate PRMTs will be discussed. We define a structure-activity relationship for the aromatic/heteroaromatic N-methylethylenediamine inhibitors of PRMT1 and review current progress of PRMT1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Thordur Hendrickson-Rebizant
- Pharmaceutical
analysis Laboratory, College of Pharmacy, University of Manitoba, 750 McDermot Avenue West, Winnipeg, Manitoba R3E 0T5, Canada
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
| | - Sadhana R. N. Sudhakar
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael J. Rowley
- Faculty
of Pharmaceutical Sciences, The University
of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam Frankel
- Faculty
of Pharmaceutical Sciences, The University
of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - James R. Davie
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M. Lakowski
- Pharmaceutical
analysis Laboratory, College of Pharmacy, University of Manitoba, 750 McDermot Avenue West, Winnipeg, Manitoba R3E 0T5, Canada
- Paul
Albrechtsen Research Institute, CancerCare
Manitoba, Winnipeg, MB R3E 0 V9, Canada
| |
Collapse
|
3
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
4
|
Roy A, Niharika, Chakraborty S, Mishra J, Singh SP, Patra SK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:261-302. [PMID: 37019596 DOI: 10.1016/bs.pmbts.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Developmental proceedings and maintenance of cellular homeostasis are regulated by the precise orchestration of a series of epigenetic events that eventually control gene expression. DNA methylation and post-translational modifications (PTMs) of histones are well-characterized epigenetic events responsible for fine-tuning gene expression. PTMs of histones bear molecular logic of gene expression at chromosomal territory and have become a fascinating field of epigenetics. Nowadays, reversible methylation on histone arginine and lysine is gaining increasing attention as a significant PTM related to reorganizing local nucleosomal structure, chromatin dynamics, and transcriptional regulation. It is now well-accepted and reported that histone marks play crucial roles in colon cancer initiation and progression by encouraging abnormal epigenomic reprogramming. It is becoming increasingly clear that multiple PTM marks at the N-terminal tails of the core histones cross-talk with one another to intricately regulate DNA-templated biological processes such as replication, transcription, recombination, and damage repair in several malignancies, including colon cancer. These functional cross-talks provide an additional layer of message, which spatiotemporally fine-tunes the overall gene expression regulation. Nowadays, it is evident that several PTMs instigate colon cancer development. How colon cancer-specific PTM patterns or codes are generated and how they affect downstream molecular events are uncovered to some extent. Future studies would address more about epigenetic communication, and the relationship between histone modification marks to define cellular functions in depth. This chapter will comprehensively highlight the importance of histone arginine and lysine-based methylation modifications and their functional cross-talk with other histone marks from the perspective of colon cancer development.
Collapse
|
5
|
Parthasarathy S, Soundararajan P, Sakthivelu M, Karuppiah KM, Velusamy P, Gopinath SC, Pachaiappan R. The role of prognostic biomarkers and their implications in early detection of preeclampsia: A systematic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Fulton MD, Cao M, Ho MC, Zhao X, Zheng YG. The macromolecular complexes of histones affect protein arginine methyltransferase activities. J Biol Chem 2021; 297:101123. [PMID: 34492270 PMCID: PMC8511957 DOI: 10.1016/j.jbc.2021.101123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Histone arginine methylation is a key post-translational modification that mediates epigenetic events that activate or repress gene transcription. Protein arginine methyltransferases (PRMTs) are the driving force for the process of arginine methylation, and the core histone proteins have been shown to be substrates for most PRMT family members. However, previous reports of the enzymatic activities of PRMTs on histones in the context of nucleosomes seem contradictory. Moreover, what governs nucleosomal substrate recognition of different PRMT members is not understood. We sought to address this key biological question by examining how different macromolecular contexts where the core histones reside may regulate arginine methylation catalyzed by individual PRMT members (i.e., PRMT1, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and PRMT8). Our results demonstrated that the substrate context exhibits a huge impact on the histone arginine methylation activity of PRMTs. Although all the tested PRMTs methylate multiple free histones individually, they show a preference for one particular histone substrate in the context of the histone octamer. We found that PRMT1, PRMT3, PRMT5, PRMT6, PRMT7, and PRMT8 preferentially methylate histone H4, whereas PRMT4/coactivator-associated arginine methyltransferase 1 prefers histone H3. Importantly, neither reconstituted nor cell-extracted mononucleosomes could be methylated by any PRMTs tested. Structural analysis suggested that the electrostatic interaction may play a mechanistic role in priming the substrates for methylation by PRMT enzymes. Taken together, this work expands our knowledge on the molecular mechanisms of PRMT substrate recognition and has important implications for understanding cellular dynamics and kinetics of histone arginine methylation in regulating gene transcription and other chromatin-templated processes.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
7
|
Maron MI, Lehman SM, Gayatri S, DeAngelo JD, Hegde S, Lorton BM, Sun Y, Bai DL, Sidoli S, Gupta V, Marunde MR, Bone JR, Sun ZW, Bedford MT, Shabanowitz J, Chen H, Hunt DF, Shechter D. Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases. iScience 2021; 24:102971. [PMID: 34505004 PMCID: PMC8417332 DOI: 10.1016/j.isci.2021.102971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.
Collapse
Affiliation(s)
- Maxim I. Maron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie M. Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joseph D. DeAngelo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - James R. Bone
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Zu-Wen Sun
- EpiCypher, Inc., Research Triangle Park, NC 27709, USA
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
- Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongshan Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Donald F. Hunt
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
9
|
Gong S, Maegawa S, Yang Y, Gopalakrishnan V, Zheng G, Cheng D. Licochalcone A is a Natural Selective Inhibitor of Arginine Methyltransferase 6. Biochem J 2020; 478:BCJ20200411. [PMID: 33245113 PMCID: PMC7850898 DOI: 10.1042/bcj20200411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Arginine methylation is a post-translational modification that is implicated in multiple biological functions including transcriptional regulation. The expression of protein arginine methyltransferases (PRMT) has been shown to be upregulated in various cancers. PRMTs have emerged as attractive targets for the development of new cancer therapies. Here, we describe the identification of a natural compound, licochalcone A, as a novel, reversible and selective inhibitor of PRMT6. Since expression of PRMT6 is upregulated in human breast cancers and is associated with oncogenesis, we used the human breast cancer cell line system to study the effect of licochalcone A treatment on PRMT6 activity, cell viability, cell cycle, and apoptosis. We demonstrated that licochalcone A is a non-S-adenosyl L-methionine (SAM) binding site competitive inhibitor of PRMT6. In MCF-7 cells, it inhibited PRMT6-dependent methylation of histone H3 at arginine 2 (H3R2), which resulted in a significant repression of estrogen receptor activity. Licochalcone A exhibited cytotoxicity towards human MCF-7 breast cancer cells, but not MCF-10A human breast epithelial cells, by upregulating p53 expression and blocking cell cycle progression at G2/M, followed by apoptosis. Thus, licochalcone A has potential for further development as a therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shinji Maegawa
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Yanwen Yang
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Vidya Gopalakrishnan
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, U.S.A
| | - Donghang Cheng
- Departments of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
10
|
Lorton BM, Harijan RK, Burgos ES, Bonanno JB, Almo SC, Shechter D. A Binary Arginine Methylation Switch on Histone H3 Arginine 2 Regulates Its Interaction with WDR5. Biochemistry 2020; 59:3696-3708. [PMID: 32207970 DOI: 10.1021/acs.biochem.0c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by "writers" of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic "reader" protein that interacts with H3R2. Previous studies suggested that H3R2me2s specified a high-affinity interaction with WDR5. However, our prior biological data prompted the hypothesis that WDR5 may also interact with H3R2me1. Here, using highly accurate quantitative binding analysis combined with high-resolution crystal structures of WDR5 in complex with unmodified (me0) and me1/me2s l-arginine amino acids and in complex with the H3R2me1 peptide, we provide a rigorous biochemical study and address long-standing discrepancies of this important biological interaction. Despite modest structural differences at the binding interface, our study supports an interaction model regulated by a binary arginine methylation switch: H3R2me2a prevents interaction with WDR5, whereas H3R2me0, -me1, and -me2s are equally permissive.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
11
|
Brown JI, Page BDG, Frankel A. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1. Methods 2020; 175:10-23. [PMID: 31726226 DOI: 10.1016/j.ymeth.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Protein arginine N-methyltransferases (PRMTs) are a family of 9 enzymes that catalyze mono- or di-methylation of arginine residues using S-adenosyl-l-methionine (SAM). Arginine methylation is an important post-translational modification that can regulate the activity and structure of target proteins. Altered PRMT activity can lead to a variety of health issues including neurodevelopmental disease, autoimmune disorders, cancer, and cardiovascular disease. Thus, developing a robust mechanistic understanding of PRMT function may provide insight into these various disease states and enable the development of potential therapeutic agents. Although PRMTs have been studied for nearly two decades, a consensus regarding the mechanism of action for this class of enzymes has remained noticeably elusive. To address this shortcoming, differential scanning fluorimetry (DSF) was used to gain mechanistic insight into the order of PRMT substrate and cofactor binding. This methodology confirms that PRMT cofactor binding precedes target substrate binding and supports the use of DSF to study bisubstrate enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada; Department of Oncology and Pathology, Karolinska Institutet, Tomtebodavagen 23A, Stockholm, Sweden.
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada.
| |
Collapse
|
12
|
Li ASM, Li F, Eram MS, Bolotokova A, Dela Seña CC, Vedadi M. Chemical probes for protein arginine methyltransferases. Methods 2019; 175:30-43. [PMID: 31809836 DOI: 10.1016/j.ymeth.2019.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to specific arginine residues of their substrates using S-adenosylmethionine as a methyl donor, contributing to regulation of many biological processes including transcription, and DNA damage repair. Dysregulation of PRMT expression is often associated with various diseases including cancers. Different methods have been used to characterize the activities of PRMTs and determine their kinetic parameters including mass spectrometry, radiometric, and antibody-based assays. Here, we present kinetic characterization of PRMTs using a radioactivity-based assay for better comparison along with previously reported values. We also report on full characterization of PRMT9 activity with SAP145 peptide as substrate. We further review the potent, selective and cell-active PRMT inhibitors discovered in recent years to provide a better understanding of available tools to investigate the roles these proteins play in health and disease.
Collapse
Affiliation(s)
- Alice Shi Ming Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Rapid and direct measurement of methyltransferase activity in about 30 min. Methods 2019; 175:3-9. [PMID: 31605745 DOI: 10.1016/j.ymeth.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs to both histone and non-histone proteins. The S-adenosyl-L-methionine (AdoMet or SAM)-dependent modification is catalyzed by the protein arginine methyltransferase (PRMT) family of enzymes. In the last several years a series of both direct and indirect assay formats have been described that allow the rate of methylation to be measured. Here we provide a detailed protocol to directly measure PRMT activity using radiolabeled AdoMet, reversed-phase resin-filled pipette tips (ZipTips®) and a liquid scintillation counter. Because the ZipTips® based quantitation relies only on the straightforward separation of unreacted AdoMet from a methylated substrate, this protocol should be readily adaptable to other methyltransferases. The method is fast, simple to employ with both peptide and protein substrates, and produces very little radioactive waste.
Collapse
|
14
|
Winter DL, Mastellone J, Kabir KMM, Wilkins MR, Donald WA. Separation of Isobaric Mono- and Dimethylated RGG-Repeat Peptides by Differential Ion Mobility-Mass Spectrometry. Anal Chem 2019; 91:11827-11833. [DOI: 10.1021/acs.analchem.9b02504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jordan Mastellone
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - K. M. Mohibul Kabir
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
15
|
Thakur A, Hevel JM, Acevedo O. Examining Product Specificity in Protein Arginine Methyltransferase 7 (PRMT7) Using Quantum and Molecular Mechanical Simulations. J Chem Inf Model 2019; 59:2913-2923. [PMID: 31033288 DOI: 10.1021/acs.jcim.9b00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 7 (PRMT7) catalyzes the formation of monomethylarginine (MMA) but is incapable of performing a dimethylation. Given that PRMT7 performs vital functions in mammalian cells and has been implicated in a variety of diseases, including breast cancer and age-related obesity, elucidating the origin of its strict monomethylation activity is of considerable interest. Three active site residues, Glu172, Phe71, and Gln329, have been reported as particularly important for product specificity and enzymatic activity. To better understand their roles, mixed quantum and molecular mechanical (QM/MM) calculations coupled to molecular dynamics and free energy perturbation theory were carried out for the WT, F71I, and Q329S trypanosomal PRMT7 (TbPRMT7) enzymes bound with S-adenosyl- L-methionine (AdoMet) and an arginine substrate in an unmethylated or methylated form. The Q329S mutation, which experimentally abolished enzymatic activity, was appropriately computed to give an outsized Δ G‡ of 30.1 kcal/mol for MMA formation compared to 16.9 kcal/mol for WT. The F71I mutation, which has been experimentally shown to convert the enzyme from a type III PRMT into a mixed type I/II capable of forming dimethylated arginine products, yielded a reasonable Δ G‡ of 21.9 kcal/mol for the second turnover compared to 28.8 kcal/mol in the WT enzyme. Similar active site orientations for both WT and F71I TbPRMT7 allowed Glu172 and Gln329 to better orient the substrate for SN2 methylation, enhanced the nucleophilicity of the attacking guanidino group by reducing positive charge, and facilitated the binding of the subsequent methylated products.
Collapse
Affiliation(s)
- Abhishek Thakur
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Orlando Acevedo
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| |
Collapse
|
16
|
Jain K, Clarke SG. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch Biochem Biophys 2019; 665:36-45. [PMID: 30802433 PMCID: PMC6461449 DOI: 10.1016/j.abb.2019.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are found in a wide variety of eukaryotic organisms and can regulate gene expression, DNA repair, RNA splicing, and stem cell biology. In mammalian cells, nine genes encode a family of sequence-related enzymes; six of these PRMTs catalyze the formation of ω-asymmetric dimethyl derivatives, two catalyze ω-symmetric dimethyl derivatives, and only one (PRMT7) solely catalyzes ω-monomethylarginine formation. Purified recombinant PRMT7 displays a number of unique enzymatic properties including a substrate preference for arginine residues in R-X-R motifs with additional flanking basic amino acid residues and a temperature optimum well below 37 °C. Evidence has been presented for crosstalk between PRMT7 and PRMT5, where methylation of a histone H4 peptide at R17, a PRMT7 substrate, may activate PRMT5 for methylation of R3. Defects in muscle stem cells (satellite cells) and immune cells are found in mouse Prmt7 homozygous knockouts, while humans lacking PRMT7 are characterized by significant intellectual developmental delays, hypotonia, and facial dysmorphisms. The overexpression of the PRMT7 gene has been correlated with cancer metastasis in humans. Current research challenges include identifying cellular factors that control PRMT7 expression and activity, identifying the physiological substrates of PRMT7, and determining the effect of methylation on these substrates.
Collapse
Affiliation(s)
- Kanishk Jain
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Fulton MD, Brown T, Zheng YG. Mechanisms and Inhibitors of Histone Arginine Methylation. CHEM REC 2018; 18:1792-1807. [PMID: 30230223 PMCID: PMC6348102 DOI: 10.1002/tcr.201800082] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
Histone methylation plays an important regulatory role in chromatin restructuring and RNA transcription. Arginine methylation that is enzymatically catalyzed by the family of protein arginine methyltransferases (PRMTs) can either activate or repress gene expression depending on cellular contexts. Given the strong correlation of PRMTs with pathophysiology, great interest is seen in understanding molecular mechanisms of PRMTs in diseases and in developing potent PRMT inhibitors. Herein, we reviewed key research advances in the study of biochemical mechanisms of PRMT catalysis and their relevance to cell biology. We highlighted how a random binary, ordered ternary kinetic model for PRMT1 catalysis reconciles the literature reports and endorses a distributive mechanism that the enzyme active site utilizes for multiple turnovers of arginine methylation. We discussed the impacts of histone arginine methylation and its biochemical interplays with other key epigenetic marks. Challenges in developing small-molecule PRMT inhibitors were also discussed.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, University of Georgia, Athens, GA 30602
| |
Collapse
|
18
|
Frankel A, Brown JI. Evaluation of kinetic data: What the numbers tell us about PRMTs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:306-316. [PMID: 30342239 DOI: 10.1016/j.bbapap.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Protein arginine N-methyltransferase (PRMT) kinetic parameters have been catalogued over the past fifteen years for eight of the nine mammalian enzyme family members. Like the majority of methyltransferases, these enzymes employ the highly ubiquitous cofactor S-adenosyl-l-methionine as a co-substrate to methylate arginine residues in peptidic substrates with an approximately 4-μM median KM. The median values for PRMT turnover number (kcat) and catalytic efficiency (kcat/KM) are 0.0051 s-1 and 708 M-1 s-1, respectively. When comparing PRMT metrics to entries found in the BRENDA database, we find that while PRMTs exhibit high substrate affinity relative to other enzyme-substrate pairs, PRMTs display largely lower kcat and kcat/KM values. We observe that kinetic parameters for PRMTs and arginine demethylase activity from dual-functioning lysine demethylases are statistically similar, paralleling what the broader enzyme families in which they belong reveal, and adding to the evidence in support of arginine methylation reversibility.
Collapse
Affiliation(s)
- Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
19
|
Brown JI, Koopmans T, van Strien J, Martin NI, Frankel A. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. Chembiochem 2017; 19:85-99. [PMID: 29112789 DOI: 10.1002/cbic.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 01/13/2023]
Abstract
Arginine methylation is a prevalent post-translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N-methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη-hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi-Bi kinetic mechanism for PRMT1, based on steady-state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timo Koopmans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Jolinde van Strien
- Leiden Institute for Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
20
|
Hu H, Luo C, Zheng YG. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1. J Biol Chem 2016; 291:26722-26738. [PMID: 27834681 DOI: 10.1074/jbc.m116.757625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups.
Collapse
Affiliation(s)
- Hao Hu
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602 and
| | - Cheng Luo
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Y George Zheng
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
21
|
Structural basis of arginine asymmetrical dimethylation by PRMT6. Biochem J 2016; 473:3049-63. [PMID: 27480107 DOI: 10.1042/bcj20160537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
PRMT6 is a type I protein arginine methyltransferase, generating the asymmetric dimethylarginine mark on proteins such as histone H3R2. Asymmetric dimethylation of histone H3R2 by PRMT6 acts as a repressive mark that antagonizes trimethylation of H3 lysine 4 by the MLL histone H3K4 methyltransferase. PRMT6 is overexpressed in several cancer types, including prostate, bladder and lung cancers; therefore, it is of great interest to develop potent and selective inhibitors for PRMT6. Here, we report the synthesis of a potent bisubstrate inhibitor GMS [6'-methyleneamine sinefungin, an analog of sinefungin (SNF)], and the crystal structures of human PRMT6 in complex, respectively, with S-adenosyl-L-homocysteine (SAH) and the bisubstrate inhibitor GMS that shed light on the significantly improved inhibition effect of GMS on methylation activity of PRMT6 compared with SAH and an S-adenosyl-L-methionine competitive methyltransferase inhibitor SNF. In addition, we also crystallized PRMT6 in complex with SAH and a short arginine-containing peptide. Based on the structural information here and available in the PDB database, we proposed a mechanism that can rationalize the distinctive arginine methylation product specificity of different types of arginine methyltransferases and pinpoint the structural determinant of such a specificity.
Collapse
|
22
|
Stein C, Nötzold RR, Riedl S, Bouchard C, Bauer UM. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression. PLoS One 2016; 11:e0148892. [PMID: 26848759 PMCID: PMC4746130 DOI: 10.1371/journal.pone.0148892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Riedl
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Jacques SL, Aquino KP, Gureasko J, Boriack-Sjodin PA, Porter Scott M, Copeland RA, Riera TV. CARM1 Preferentially Methylates H3R17 over H3R26 through a Random Kinetic Mechanism. Biochemistry 2016; 55:1635-44. [DOI: 10.1021/acs.biochem.5b01071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Jodi Gureasko
- Epizyme Inc., Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
24
|
Lillico R, Sobral MG, Stesco N, Lakowski TM. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases. J Proteomics 2016; 133:125-133. [PMID: 26721445 DOI: 10.1016/j.jprot.2015.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
|
25
|
Manzanares-Miralles L, Sarikaya-Bayram Ö, Smith EB, Dolan SK, Bayram Ö, Jones GW, Doyle S. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger. J Proteomics 2016; 131:149-162. [DOI: 10.1016/j.jprot.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/25/2022]
|
26
|
Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol 2015; 191:175-83. [PMID: 26094878 DOI: 10.1016/j.jsb.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/19/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Abstract
PRMT6 is a protein arginine methyltransferase involved in transcriptional regulation, human immunodeficiency virus pathogenesis, DNA base excision repair, and cell cycle progression. Like other PRMTs, PRMT6 is overexpressed in several cancer types and is therefore considered as a potential anti-cancer drug target. In the present study, we described six crystal structures of PRMT6 from Mus musculus, solved and refined at 1.34 Å for the highest resolution structure. The crystal structures revealed that the folding of the helix αX is required to stabilize a productive active site before methylation of the bound peptide can occur. In the absence of cofactor, metal cations can be found in the catalytic pocket at the expected position of the guanidinium moiety of the target arginine substrate. Using mass spectrometry under native conditions, we show that PRMT6 dimer binds two cofactor and a single H4 peptide molecules. Finally, we characterized a new site of in vitro automethylation of mouse PRMT6 at position 7.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Justine Mailliot
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Jean-Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France.
| |
Collapse
|
27
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
28
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
29
|
Jahan S, Davie JR. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul 2014; 57:173-84. [PMID: 25263650 DOI: 10.1016/j.jbior.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023]
Abstract
The mammalian genome encodes eleven protein arginine methyltransferases (PRMTs) that are involved in the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the guanidino nitrogen of arginine. The substrates for these enzymes range from histones to several nuclear and cytoplasmic proteins. Methylation of histones by PRMTs can block the docking site for other reader/effector molecules and thus this modification can interfere with histone code orchestration. Several members of the PRMTs have roles in chromatin organization and function. Although PRMT aberrant expression is correlated with several diseases including cancer, the underlying mechanisms are still obscure in most cases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada
| | - James R Davie
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada.
| |
Collapse
|
30
|
Cura V, Troffer-Charlier N, Wurtz JM, Bonnefond L, Cavarelli J. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site. ACTA ACUST UNITED AC 2014; 70:2401-12. [PMID: 25195753 DOI: 10.1107/s1399004714014278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.
Collapse
Affiliation(s)
- Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Jean Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U596, 1 Rue Laurent Fries, F-67404 Illkirch, France
| |
Collapse
|
31
|
Thomas D, Koopmans T, Lakowski TM, Kreinin H, Vhuiyan MI, Sedlock SA, Bui JM, Martin NI, Frankel A. Protein Arginine N-Methyltransferase Substrate Preferences for Different Nη-Substituted Arginyl Peptides. Chembiochem 2014; 15:1607-13. [DOI: 10.1002/cbic.201402045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 01/08/2023]
|
32
|
Proteomic approach to reveal the proteins associated with encystment of the ciliate Euplotes encysticus. PLoS One 2014; 9:e97362. [PMID: 24837719 PMCID: PMC4023950 DOI: 10.1371/journal.pone.0097362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/17/2014] [Indexed: 01/03/2023] Open
Abstract
In order to identify and reveal the proteins related to encystment of the ciliate Euplotes encysticus, we analyzed variation in the abundance of the proteins isolated from the resting cyst comparing with proteins in the vegetative cell. 2-D electrophoresis, MALDI-TOF MS techniques and Bioinformatics were used for proteome separation, quantification and identification. The comparative proteomics studies revealed 26 proteins with changes on the expression in the resting cysts, including 12 specific proteins and 14 differential proteins. 12 specific proteins and 10 out of the 14 differential proteins were selected and identified by MALDI-TOF MS. The identified specific proteins with known functions included type II cytoskeletal 1, keratin, Nop16 domain containing protein, protein arginine n-methyltransferase, epsilon-trimethyllysine hydroxylase and calpain-like protein. The identified differential proteins with known functions included Lysozyme C, keratinocyte growth factor, lysozyme homolog AT-2, formate acetyltransferase, alpha S1 casein and cold-shock protein. We discussed the functions of these proteins as well as their contribution in the process of encystment. These identified proteins covered a wide range of molecular functions, including gene regulation, RNA regulation, proteins degradation and oxidation resistance, stress response, material transport and cytoskeleton organization. Therefore, differential expression of these proteins was essential for cell morphological and physiological changes during encystment. This suggested that the peculiar proteins and differential proteins might play important roles in the process of the vegetative cells transforming into the resting cysts. These observations may be novel findings that bring new insights into the detailed mechanisms of dormancy.
Collapse
|
33
|
H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci U S A 2013; 110:14894-9. [PMID: 23980157 DOI: 10.1073/pnas.1312925110] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone posttranslational modification leads to downstream effects indirectly by allowing or preventing docking of effector molecules, or directly by changing the intrinsic biophysical properties of local chromatin. To date, little has been done to study posttranslational modifications that lie outside of the unstructured tail domains of histones. Core residues, and in particular arginines in H3 and H4, mediate key interactions between the histone octamer and DNA in forming the nucleosomal particle. Using mass spectrometry, we find that one of these core residues, arginine 42 of histone H3 (H3R42), is dimethylated in mammalian cells by the methyltransferases coactivator arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 6 (PRMT6) in vitro and in vivo, and we demonstrate that methylation of H3R42 stimulates transcription in vitro from chromatinized templates. Thus, H3R42 is a new, "nontail" histone methylation site with positive effects on transcription. We propose that methylation of basic histone residues at the DNA interface may disrupt histone:DNA interactions, with effects on downstream processes, notably transcription.
Collapse
|
34
|
Dillon MBC, Rust HL, Thompson PR, Mowen KA. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 2013; 288:27872-80. [PMID: 23946480 DOI: 10.1074/jbc.m113.491092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.
Collapse
Affiliation(s)
- Myles B C Dillon
- From the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | |
Collapse
|
35
|
Singhroy DN, Mesplède T, Sabbah A, Quashie PK, Falgueyret JP, Wainberg MA. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity. Retrovirology 2013; 10:73. [PMID: 23866860 PMCID: PMC3750301 DOI: 10.1186/1742-4690-10-73] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
Background Protein arginine methyltransferase 6 (PRMT6) is a nuclear enzyme that methylates arginine residues on histones and transcription factors. In addition, PRMT6 inhibits HIV-1 replication in cell culture by directly methylating and interfering with the functions of several HIV-1 proteins, i.e. Tat, Rev and nucleocapsid (NC). PRMT6 also displays automethylation capacity but the role of this post-translational modification in its antiretroviral activity remains unknown. Results Here we report the identification by liquid chromatography-mass spectrometry of R35 within PRMT6 as the target residue for automethylation and have confirmed this by site-directed mutagenesis and in vitro and in vivo methylation assays. We further show that automethylation at position 35 greatly affects PRMT6 stability and is indispensable for its antiretroviral activity, as demonstrated in HIV-1 single-cycle TZM-bl infectivity assays. Conclusion These results show that PRMT6 automethylation plays a role in the stability of this protein and that this event is indispensible for its anti-HIV-1 activity.
Collapse
Affiliation(s)
- Diane N Singhroy
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, 3755 Cote Sainte Catherine, Montreal, QC, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Wooderchak WL, Zhou ZS, Hevel J. Assays for S-adenosylmethionine (AdoMet/SAM)-dependent methyltransferases. ACTA ACUST UNITED AC 2013; Chapter 4:Unit4.26. [PMID: 23045008 DOI: 10.1002/0471140856.tx0426s38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modification of small molecules and proteins by methyltransferases impacts a wide range of biological processes. Here we report two methods for measuring methyltransferase activity. First we describe an enzyme-coupled continuous spectrophotometric assay used to quantitatively characterize S-adenosyl-L-methionine (AdoMet or SAM)-dependent methyltransferase activity. In this assay, S-adenosyl-L-homocysteine (AdoHcy or SAH), the transmethylation product of AdoMet-dependent methyltransferase, is hydrolyzed to S-ribohomocysteine and adenine by recombinant AdoHcy nucleosidase. Subsequently, the adenine generated from AdoHcy is further hydrolyzed to homoxanthine and ammonia by recombinant adenine deaminase. This deamination is associated with a decrease in absorbance at 265 nm that can be monitored continuously. Secondly, we describe a discontinuous assay that follows radiolabel incorporation into the methyl receptor. An advantage of both assays is the destruction of AdoHcy by AdoHcy nucleosidase, which alleviates AdoHcy product feedback inhibition of S-adenosylmethionine-dependent methyltransferases. Importantly both methods are inexpensive, robust, and amenable to high throughput.
Collapse
Affiliation(s)
- Whitney L Wooderchak
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | | | | |
Collapse
|
37
|
Lakowski TM, Szeitz A, Pak ML, Thomas D, Vhuiyan MI, Kotthaus J, Clement B, Frankel A. MS³ fragmentation patterns of monomethylarginine species and the quantification of all methylarginine species in yeast using MRM³. J Proteomics 2013; 80:43-54. [PMID: 23333926 DOI: 10.1016/j.jprot.2013.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/06/2023]
Abstract
Protein arginine methylation is one of the epigenetic modifications to proteins that is studied in yeast and is known to be involved in a number of human diseases. All eukaryotes produce Nη-monomethylarginine (ηMMA), asymmetric Nη1, Nη1-dimethylarginine (aDMA), and most produce symmetric Nη1, Nη2-dimethylarginine (sDMA) on proteins, but only yeast produce Nδ-monomethylarginine (δMMA). It has proven difficult to differentiate among all of these methylarginines using mass spectrometry. Accordingly, we demonstrated that the two forms of MMA have indistinguishable primary product ion spectra. However, the secondary product ion spectra of δMMA and ηMMA exhibited distinct patterns of ions. Using incorporation of deuterated methyl-groups in yeast, we determined which secondary product ions were methylated and their structures. Utilizing distinct secondary product ions, a triple quadrupole multiple reaction monitoring cubed (MRM(3)) assay was developed to measure δMMA, ηMMA, sDMA and aDMA derived from hydrolyzed protein. As a proof-of-concept, δMMA and ηMMA were measured using the MRM(3) method in wild type and mutant strains of Saccharomyces cerevisiae and compared to the total MMA measured using an existing assay. The MRM(3) assay represents the only method to directly quantify δMMA and the only method to simultaneously quantify all yeast methylarginines.
Collapse
Affiliation(s)
- Ted M Lakowski
- Faculty of Pharmacy, The University of Manitoba, Winnipeg, Manitoba, Canada.
| | - András Szeitz
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Magnolia L Pak
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Thomas
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mynol I Vhuiyan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joscha Kotthaus
- Pharmaceutical Institute, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Bernd Clement
- Pharmaceutical Institute, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
38
|
Gui S, Wooderchak-Donahue WL, Zang T, Chen D, Daly MP, Zhou ZS, Hevel JM. Substrate-Induced Control of Product Formation by Protein Arginine Methyltransferase 1. Biochemistry 2012; 52:199-209. [DOI: 10.1021/bi301283t] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shanying Gui
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| | | | - Tianzhu Zang
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Dong Chen
- Synthetic Bio-manufacturing Institute, Utah State University, 620 East 1600 North, Suite 226,
Logan, Utah 84341, United States
| | - Michael P. Daly
- Waters Corporation, 100 Cummings Center,
Suite 407N, Beverly, Massachusetts 01915,
United States
| | - Zhaohui Sunny Zhou
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Joan M. Hevel
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| |
Collapse
|
39
|
Diaz E, Machutta CA, Chen S, Jiang Y, Nixon C, Hofmann G, Key D, Sweitzer S, Patel M, Wu Z, Creasy CL, Kruger RG, LaFrance L, Verma SK, Pappalardi MB, Le B, Van Aller GS, McCabe MT, Tummino PJ, Pope AJ, Thrall SH, Schwartz B, Brandt M. Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens. ACTA ACUST UNITED AC 2012; 17:1279-92. [PMID: 22904200 DOI: 10.1177/1087057112453765] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Histone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27). EZH2 is overexpressed in prostate, breast, bladder, brain, and other tumor types and is recognized as a molecular marker for cancer progression and aggressiveness. Several new reagents and assays were developed to aid in the identification of EZH2 inhibitors, and these were used to execute two high-throughput screening campaigns. Activity assays using either an H3K27 peptide or nucleosomes as substrates for methylation are described. The strategy to screen EZH2 with either a surrogate peptide or a natural substrate led to the identification of the same tractable series. Compounds from this series are reversible, are [(3)H]-S-adenosyl-L-methionine competitive, and display biochemical inhibition of H3K27 methylation.
Collapse
Affiliation(s)
- Elsie Diaz
- Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stein C, Riedl S, Rüthnick D, Nötzold RR, Bauer UM. The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 2012; 40:9522-33. [PMID: 22904088 PMCID: PMC3479209 DOI: 10.1093/nar/gks767] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The protein arginine methyltransferase 6 (PRMT6) is a coregulator of gene expression and executes its repressing as well as activating function by asymmetric dimethylation of histone H3 at R2 (H3 R2me2a). Given that elevated expression levels of PRMT6 have been reported in various cancer types, we explore here its role in cell proliferation and senescence. We find that knockdown of PRMT6 results in proliferation defects of transformed as well as non-transformed cells, causes G1-phase arrest and induces senescence. This phenotype is accompanied by transcriptional upregulation of important cell cycle regulators, most prominently the cyclin-dependent kinase (CDK) inhibitor gene p21 (p21CIP1/WAF1, CDKN1A) and p16 (p16INK4A, CDKN2A). Chromatin immuno-precipitation analysis reveals that the p21 gene is a direct target of PRMT6 and the corresponding histone mark H3 R2me2a. Using a cell model of oncogene-induced senescence (OIS), in which p21 is an essential activator of the senescent phenotype, we show that PRMT6 expression declines upon induction of senescence and conversely p21 gene expression increases. Moreover, overexpression of PRMT6 leads to reduced levels of OIS. These findings indicate that the transcriptional repressor activity of PRMT6 facilitates cell proliferation and blocks senescence by regulation of tumor suppressor genes and that this might contribute to the oncogenic capacity of PRMT6.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research, University of Marburg, Emil-Mannkopff-Strasse 2, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
41
|
Neault M, Mallette FA, Vogel G, Michaud-Levesque J, Richard S. Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res 2012; 40:9513-21. [PMID: 22904064 PMCID: PMC3479207 DOI: 10.1093/nar/gks764] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arginine methylation of histones is a well-known regulator of gene expression. Protein arginine methyltransferase 6 (PRMT6) has been shown to function as a transcriptional repressor by methylating the histone H3 arginine 2 [H3R2(me2a)] repressive mark; however, few targets are known. To define the physiological role of PRMT6 and to identify its targets, we generated PRMT6(-/-) mouse embryo fibroblasts (MEFs). We observed that early passage PRMT6(-/-) MEFs had growth defects and exhibited the hallmarks of cellular senescence. PRMT6(-/-) MEFs displayed high transcriptional levels of p53 and its targets, p21 and PML. Generation of PRMT6(-/-); p53(-/-) MEFs prevented the premature senescence, suggesting that the induction of senescence is p53-dependent. Using chromatin immunoprecipitation assays, we observed an enrichment of PRMT6 and H3R2(me2a) within the upstream region of Trp53. The PRMT6 association and the H3R2(me2a) mark were lost in PRMT6(-/-) MEFs and an increase in the H3K4(me3) activator mark was observed. Our findings define a new regulator of p53 transcriptional regulation and define a role for PRMT6 and arginine methylation in cellular senescence.
Collapse
Affiliation(s)
- Mathieu Neault
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Segal Cancer Centre, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology, McGill University, Montréal, Québec, Canada, H3T 1E2
| | | | | | | | | |
Collapse
|
42
|
Kölbel K, Ihling C, Kühn U, Neundorf I, Otto S, Stichel J, Robaa D, Beck-Sickinger AG, Sinz A, Wahle E. Peptide Backbone Conformation Affects the Substrate Preference of Protein Arginine Methyltransferase I. Biochemistry 2012; 51:5463-75. [DOI: 10.1021/bi300373b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Knut Kölbel
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Silke Otto
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| | - Jan Stichel
- Institute of Biochemistry, University of Leipzig, Brüderstrasse 34, 04103
Leipzig, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | | | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse
3, 06120 Halle, Germany
| |
Collapse
|
43
|
|
44
|
Obianyo O, Thompson PR. Reply to Frankel: Inconvenient Truths for PRMT6 Kinetic Studies. J Biol Chem 2012. [DOI: 10.1074/jbc.n111.333609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Obianyo O, Thompson PR. Kinetic mechanism of protein arginine methyltransferase 6 (PRMT6). J Biol Chem 2012; 287:6062-71. [PMID: 22219200 DOI: 10.1074/jbc.m111.333609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the mono- and dimethylation of arginine residues in a variety of proteins. Although these enzymes play important roles in a variety of cellular processes, aberrant PRMT activity is associated with several disease states, including heart disease and cancer. In an effort to guide the development of inhibitors targeting individual PRMTs, we initiated studies to characterize the molecular mechanisms of PRMT catalysis. Herein, we report studies on the kinetic mechanism of PRMT6. Initial velocity, product inhibition, and dead-end analog inhibition studies with the AcH4-21 and R1 peptides, as well as their monomethylated versions, indicate, in contrast to a previous report, that PRMT6 utilizes a rapid equilibrium random mechanism with dead-end EAP and EBQ complexes.
Collapse
Affiliation(s)
- Obiamaka Obianyo
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | |
Collapse
|
46
|
't Hart P, Thomas D, van Ommeren R, Lakowski TM, Frankel A, Martin NI. Analogues of the HIV-Tat peptide containing Nη-modified arginines as potent inhibitors of protein arginine N-methyltransferases. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20161e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Feng Y, Xie N, Jin M, Stahley MR, Stivers JT, Zheng YG. A transient kinetic analysis of PRMT1 catalysis. Biochemistry 2011; 50:7033-44. [PMID: 21736313 DOI: 10.1021/bi200456u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-translational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well-studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well-defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.
Collapse
Affiliation(s)
- You Feng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.
Collapse
|
49
|
't Hart P, Lakowski TM, Thomas D, Frankel A, Martin NI. Peptidic partial bisubstrates as inhibitors of the protein arginine N-methyltransferases. Chembiochem 2011; 12:1427-32. [PMID: 21560220 DOI: 10.1002/cbic.201100074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Peter 't Hart
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Thomas D, Lakowski TM, Pak ML, Kim JJ, Frankel A. Förster resonance energy transfer measurements of cofactor-dependent effects on protein arginine N-methyltransferase homodimerization. Protein Sci 2011; 19:2141-51. [PMID: 20812326 DOI: 10.1002/pro.492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein arginine N-methyltransferase (PRMT) dimerization is required for methyl group transfer from the cofactor S-adenosyl-L-methionine (AdoMet) to arginine residues in protein substrates, forming S-adenosyl-L-homocysteine (AdoHcy) and methylarginine residues. In this study, we use Förster resonance energy transfer (FRET) to determine dissociation constant (K(D)) values for dimerization of PRMT1 and PRMT6. By attaching monomeric Cerulean and Citrine fluorescent proteins to their N-termini, fluorescent PRMTs are formed that exhibit similar enzyme kinetics to unconjugated PRMTs. These fluorescent proteins are used in FRET-based binding studies in a multi-well format. In the presence of AdoMet, fluorescent PRMT1 and PRMT6 exhibit 4- and 6-fold lower dimerization K(D) values, respectively, than in the presence of AdoHcy, suggesting that AdoMet promotes PRMT homodimerization in contrast to AdoHcy. We also find that the dimerization K(D) values for PRMT1 in the presence of AdoMet or AdoHcy are, respectively, 6- and 10-fold lower than the corresponding values for PRMT6. Considering that the affinity of PRMT6 for AdoHcy is 10-fold higher than for AdoMet, PRMT6 function may be subject to cofactor-dependent regulation in cells where the methylation potential (i.e., ratio of AdoMet to AdoHcy) is low. Since PRMT1 affinity for AdoMet and AdoHcy is similar, however, a low methylation potential may not affect PRMT1 function.
Collapse
Affiliation(s)
- Dylan Thomas
- Division of Biomolecular and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|