1
|
Sunder S, Gupta A, Kataria R, Ruhal R. Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass. Appl Biochem Biotechnol 2024; 196:2881-2900. [PMID: 37615852 DOI: 10.1007/s12010-023-04681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Microbial lipids are ideal for developing liquid biofuels because of their sustainability and no dependence on food crops. Especially the bioprocess for microbial lipids may be made economical by using sustainable approaches, e.g., lignocellulose-based carbon sources. This demand led to a search for ideal microorganisms with the ability to utilize efficiently biomass into value-added products. Rhodosporidium toruloides species belongs to the family of oleaginous (OG) yeast, which aggregates up to 70% of its biomass to produce fatty acids which can be converted to a variety of biofuels. R. toruloides is extremely adaptable to different types of feedstocks. Among all feedstock, a lot of effort is going on to develop a bioprocess of fatty acid production from lignocellulose biomass. The lignocellulose biomass is pretreated using harsh conditions of acid, alkali, and other which leads to the generation of a variety of sugars and toxic compounds. Thus, so obtained lignocellulose hydrolysate may have conditions of different pH, variable carbon and nitrogen ratios, and other non-optimum conditions. Accordingly, a detailed investigation is required for molecular level metabolism of R. toruloides in response to the hydrolysate for producing desired biochemicals like fatty acids. The present review focuses on numerous elements and obstacles, including metabolism, biofuel production, cultivation parameters, and genetic alteration of mutants in extracting fatty acids from lignocellulosic materials utilizing Rhodosporidium spp. This review provides useful information on the research working to develop processes for lignocellulose biomass using oleaginous yeast.
Collapse
Affiliation(s)
- Sushant Sunder
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Anshul Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India
- Department of Physics, Technische Universität München, Munich, Germany
| | - Rashmi Kataria
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| | - Rohit Ruhal
- School of Bio Science and Technology, VIT Vellore, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Verwee E, Van de Walle D, De Bruyne M, Mienis E, Sekulic M, Chaerle P, Vyverman W, Foubert I, Dewettinck K. Visualisation of microalgal lipid bodies through electron microscopy. J Microsc 2024; 293:118-131. [PMID: 38149687 DOI: 10.1111/jmi.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.
Collapse
Affiliation(s)
- Ellen Verwee
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- VIB BioImaging Core VIB, Ghent, Belgium
- VIB Center for Inflammation Research VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Mienis
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mirna Sekulic
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology VIB, Ghent, Belgium
| | - Peter Chaerle
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- Department of Biology, BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Joshi AR, Barvkar VT, Kashikar A, Gaikwad P, Ravikumar A. Dynamics of the lipid body lipidome in the oleaginous yeast Yarrowia sp. FEMS Yeast Res 2024; 24:foae021. [PMID: 39025792 PMCID: PMC11305267 DOI: 10.1093/femsyr/foae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024] Open
Abstract
Time-dependent changes in the lipid body (LB) lipidome of two oleaginous yeasts, Yarrowia lipolytica NCIM 3589 and Yarrowia bubula NCIM 3590 differing in growth temperature was investigated. LB size and lipid content were higher in Y. lipolytica based on microscopy, Feret, and integrated density analysis with lipid accumulation and mobilization occurring at 48 h in both strains. Variations in LB lipidome were reflected in interfacial tension (59.67 and 68.59 mN m-1) and phase transition temperatures (30°C-100°C and 60°C-100°C) for Y. lipolytica and Y. bubula, respectively. Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis revealed neutral lipids (NLs), phospholipids, sphingolipids, sterols, and fatty acids as the major classes present in both strains while fatty acid amides were seen only in Y. lipolytica. Amongst the lipid classes, a few species were present in abundance with a number of lipids being less dominant. Permutational multivariate analysis of variance (PERMANOVA) and Analysis of covariance (ANOCOVA) analysis suggest 22 lipids belonging to NLs, fatty acid amides, and free fatty acids were found to be statistically different between the two strains. Analysis of the ratios between different lipid components suggest changes in LB size and mobilization as a function of time. The results indicate influence of temperature and strain variation on the dynamics of LB lipidome in Yarrowia species.
Collapse
Affiliation(s)
- Apoorva Ravindra Joshi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Akanksha Kashikar
- Department of Statistics, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Prashant Gaikwad
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| | - Ameeta Ravikumar
- Department of Biotechnology, Institution of Bioinformatics and Biotechnology, Savitribai Phule Pune University (SPPU), Pune 411007, Maharashtra, India
| |
Collapse
|
4
|
Lu Z, Wang Y, Li Z, Zhang Y, He S, Zhang Z, Leong S, Wong A, Zhang CY, Yu A. Combining Metabolic Engineering and Lipid Droplet Storage Engineering for Improved α-Bisabolene Production in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463315 DOI: 10.1021/acs.jafc.3c02472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Bisabolene is a bioactive sesquiterpene with a wide range of applications in food, cosmetics, medicine, and aviation fuels. Microbial production offers a green, efficient, and sustainable alternative. In this study, we focused on improving the titers of α-bisabolene in Yarrowia lipolytica by applying two strategies, (i) optimizing the metabolic flux of α-bisabolene biosynthetic pathway and (ii) sequestering α-bisabolene in lipid droplet, thus alleviating its inherent toxicity to host cells. We showed that overexpression of DGA1 and OLE1 to increase lipid content and unsaturated fatty acid levels was essential for boosting the α-bisabolene synthesis when supplemented with auxiliary carbon sources. The final engineered strain Po1gαB10 produced 1954.3 mg/L α-bisabolene from the waste cooking oil under shake flask fermentation, which was 96-fold higher than the control strain Po1gαB0. At the time of writing, our study represents the highest reported α-bisabolene titer in the engineered Y. lipolytica cell factory. This work describes novel strategies to improve the bioproduction of α-bisabolene that potentially may be applicable for other high-value terpene products.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yahui Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Sicheng He
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Ziyuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Susanna Leong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
5
|
Greenwood BL, Luo Z, Ahmed T, Huang D, Stuart DT. Saccharomyces cerevisiae Δ9-desaturase Ole1 forms a supercomplex with Slc1 and Dga1. J Biol Chem 2023:104882. [PMID: 37269945 PMCID: PMC10302205 DOI: 10.1016/j.jbc.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023] Open
Abstract
Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be extensive flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of biosynthetic enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remains unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1 and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other without Ole1 acting as a scaffold. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are non-functional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl-terminus were required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1, but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl-chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.
Collapse
Affiliation(s)
- Brianna L Greenwood
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Zijun Luo
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Tareq Ahmed
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Daniel Huang
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - David T Stuart
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada.
| |
Collapse
|
6
|
Abstract
Cells store excess energy in the form of lipid droplets (LDs), a specialized sub-compartment of the endoplasmic reticulum (ER) network. The lipodystrophy protein seipin is a key player in LD biogenesis and ER-LD contact site maintenance. Recent structural and in silico studies have started to shed light on the molecular function of seipin as a LD nucleator in early LD biogenesis, whilst new cell biological work implies a role for seipin in ER-mitochondria contact sites and calcium metabolism. In this minireview, I discuss recent insights into the molecular function of seipin.
Collapse
Affiliation(s)
- Veijo T. Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
7
|
Awadh AA. The Role of Cytosolic Lipid Droplets in Hepatitis C Virus Replication, Assembly, and Release. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5156601. [PMID: 37090186 PMCID: PMC10121354 DOI: 10.1155/2023/5156601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
The hepatitis C virus (HCV) causes chronic hepatitis by establishing a persistent infection. Patients with chronic hepatitis frequently develop hepatic cirrhosis, which can lead to liver cancer-the progressive liver damage results from the host's immune response to the unresolved infection. The HCV replication process, including the entry, replication, assembly, and release stages, while the virus circulates in the bloodstream, it is intricately linked to the host's lipid metabolism, including the dynamic of the cytosolic lipid droplets (cLDs). This review article depicts how this interaction regulates viral cell tropism and aids immune evasion by coining viral particle characteristics. cLDs are intracellular organelles that store most of the cytoplasmic components of neutral lipids and are assumed to play an increasingly important role in the pathophysiology of lipid metabolism and host-virus interactions. cLDs are involved in the replication of several clinically significant viruses, where viruses alter the lipidomic profiles of host cells to improve viral life cycles. cLDs are involved in almost every phase of the HCV life cycle. Indeed, pharmacological modulators of cholesterol synthesis and intracellular trafficking, lipoprotein maturation, and lipid signaling molecules inhibit the assembly of HCV virions. Likewise, small-molecule inhibitors of cLD-regulating proteins inhibit HCV replication. Thus, addressing the molecular architecture of HCV replication will aid in elucidating its pathogenesis and devising preventive interventions that impede persistent infection and prevent disease progression. This is possible via repurposing the available therapeutic agents that alter cLDs metabolism. This review highlights the role of cLD in HCV replication.
Collapse
Affiliation(s)
- Abdullah A. Awadh
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 21423, Saudi Arabia
| |
Collapse
|
8
|
Rogers S, Gui L, Kovalenko A, Zoni V, Carpentier M, Ramji K, Ben Mbarek K, Bacle A, Fuchs P, Campomanes P, Reetz E, Speer NO, Reynolds E, Thiam AR, Vanni S, Nicastro D, Henne WM. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J Cell Biol 2022; 221:213472. [PMID: 36112368 PMCID: PMC9485706 DOI: 10.1083/jcb.202205053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
Lipid droplets (LDs) are reservoirs for triglycerides (TGs) and sterol-esters (SEs), but how these lipids are organized within LDs and influence their proteome remain unclear. Using in situ cryo-electron tomography, we show that glucose restriction triggers lipid phase transitions within LDs generating liquid crystalline lattices inside them. Mechanistically this requires TG lipolysis, which decreases the LD's TG:SE ratio, promoting SE transition to a liquid crystalline phase. Molecular dynamics simulations reveal TG depletion promotes spontaneous TG and SE demixing in LDs, additionally altering the lipid packing of the PL monolayer surface. Fluorescence imaging and proteomics further reveal that liquid crystalline phases are associated with selective remodeling of the LD proteome. Some canonical LD proteins, including Erg6, relocalize to the ER network, whereas others remain LD-associated. Model peptide LiveDrop also redistributes from LDs to the ER, suggesting liquid crystalline phases influence ER-LD interorganelle transport. Our data suggests glucose restriction drives TG mobilization, which alters the phase properties of LD lipids and selectively remodels the LD proteome.
Collapse
Affiliation(s)
- Sean Rogers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anastasiia Kovalenko
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maxime Carpentier
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kamran Ramji
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kalthoum Ben Mbarek
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Amelie Bacle
- Institute Jacques Monod, Centre national de la recherche scientifique, University of Paris, Paris, France
| | - Patrick Fuchs
- Laboratoire des Biomolécules, Paris, France.,Université de Paris, UFR Sciences du Vivant, Paris, France
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Natalie Ortiz Speer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Emma Reynolds
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Braun RJ, Swanson JMJ. Capturing the Liquid-Crystalline Phase Transformation: Implications for Protein Targeting to Sterol Ester-Rich Lipid Droplets. MEMBRANES 2022; 12:949. [PMID: 36295707 PMCID: PMC9607156 DOI: 10.3390/membranes12100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Lipid droplets are essential organelles that store and traffic neutral lipids. The phospholipid monolayer surrounding their neutral lipid core engages with a highly dynamic proteome that changes according to cellular and metabolic conditions. Recent work has demonstrated that when the abundance of sterol esters increases above a critical concentration, such as under conditions of starvation or high LDL exposure, the lipid droplet core can undergo an amorphous to liquid-crystalline phase transformation. Herein, we study the consequences of this transformation on the physical properties of lipid droplets that are thought to regulate protein association. Using simulations of different sterol-ester concentrations, we have captured the liquid-crystalline phase transformation at the molecular level, highlighting the alignment of sterol esters in alternating orientations to form concentric layers. We demonstrate how ordering in the core permeates into the neutral lipid/phospholipid interface, changing the magnitude and nature of neutral lipid intercalation and inducing ordering in the phospholipid monolayer. Increased phospholipid packing is concomitant with altered surface properties, including smaller area per phospholipid and substantially reduced packing defects. Additionally, the ordering of sterol esters in the core causes less hydration in more ordered regions. We discuss these findings in the context of their expected consequences for preferential protein recruitment to lipid droplets under different metabolic conditions.
Collapse
|
10
|
Kim S, Swanson JMJ, Voth GA. Computational Studies of Lipid Droplets. J Phys Chem B 2022; 126:2145-2154. [PMID: 35263109 PMCID: PMC8957551 DOI: 10.1021/acs.jpcb.2c00292] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles whose primary function is energy storage. Known to emerge from the endoplasmic reticulum (ER) bilayer, LDs have a unique structure with a core consisting of neutral lipids, triacylglycerol (TG) or sterol esters (SE), surrounded by a phospholipid (PL) monolayer and decorated by proteins that come and go throughout their complex lifecycle. In this Feature Article, we review recent developments in computational studies of LDs, a rapidly growing area of research. We highlight how molecular dynamics (MD) simulations have provided valuable molecular-level insight into LD targeting and LD biogenesis. Additionally, we review the physical properties of TG from different force fields compared with experimental data. Possible future directions and challenges are discussed.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jessica M. J. Swanson
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Bu X, Lin JY, Duan CQ, Koffas MAG, Yan GL. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:3. [PMID: 34983533 PMCID: PMC8725481 DOI: 10.1186/s12934-021-01723-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background The limitation of storage space, product cytotoxicity and the competition for precursor are the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve β-carotene accumulation in Saccharomyces cerevisiae, a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches. Results The direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of β-carotene in S. cerevisiae. However, due to the competition for precursor between β-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on β-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in β-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to β-carotene pathway and achieved additional 31.7% increase in β-carotene content without adversely affecting cell growth. By inducing an extra constitutive β-carotene synthesis pathway for further conversion precursor farnesol to β-carotene, the final strain produced 11.4 mg/g DCW and 142 mg/L of β-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. Conclusions This strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01723-y.
Collapse
Affiliation(s)
- Xiao Bu
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.,Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Jing-Yuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China. .,Innovation Research Center of Future Foods, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Food Bioengineering (China National Light Industry), China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
12
|
Lopez C, Novales B, Rabesona H, Weber M, Chardot T, Anton M. Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Res Int 2021; 150:110759. [PMID: 34865777 DOI: 10.1016/j.foodres.2021.110759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 01/02/2023]
Abstract
Hemp seed oil bodies (HSOBs) are of growing interest in response to the demand of consumers for healthy and natural plant-based food formulations. In this study, we used minimal processing including aqueous extraction by grinding and centrifugation to obtain HSOBs. We determined the lipid composition of HSBOs, their microstructure, and the impact of the homogenization pressure, pH and minerals on their surface properties and the physical stability of the emulsions. HSOBs contain high levels of well-balanced PUFA with LA/ALA = 2.9, γ-tocopherol, lutein and phytosterols. The mean diameter of HSOBs was 2.3 ± 0.1 μm with an isoelectric point in the range of pH 4.4 to 4.6. Homogenization of hemp seed extracts induced a decrease in the size of HSOBs but did not eliminate the sedimentation of the protein bodies composed of the globulin edestin. By changing the surface properties of HSOBs, pH values below 6 and NaCl induced the aggregation of HSOBs, while CaCl2 induced both aggregation and membrane-fusion mediated coalescence of HSOBs by involving probably the anionic phospholipids together with membrane proteins. This study will contribute to extend the range of novel food products and designed emulsions containing hemp seed proteins and oil bodies.
Collapse
Affiliation(s)
| | - Bruno Novales
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS Facility, F-44316 Nantes, France
| | | | | | - Thierry Chardot
- INRAE, AgroParisTech, Université Paris-Saclay, Institut Jean-Pierre Bourgin, F-78000 Versailles, France
| | | |
Collapse
|
13
|
Kostecka LG, Pienta KJ, Amend SR. Lipid droplet evolution gives insight into polyaneuploid cancer cell lipid droplet functions. Med Oncol 2021; 38:133. [PMID: 34581907 PMCID: PMC8478749 DOI: 10.1007/s12032-021-01584-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.
Collapse
Affiliation(s)
- Laurie G Kostecka
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA. .,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, MD, 21287, USA.,Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
14
|
Royo-García A, Courtois S, Parejo-Alonso B, Espiau-Romera P, Sancho P. Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World J Stem Cells 2021; 13:1307-1317. [PMID: 34630864 PMCID: PMC8474722 DOI: 10.4252/wjsc.v13.i9.1307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Previously regarded as simple fat storage particles, new evidence suggests that lipid droplets (LDs) are dynamic and functional organelles involved in key cellular processes such as membrane biosynthesis, lipid metabolism, cell signalling and inflammation. Indeed, an increased LD content is one of the most apparent features resulting from lipid metabolism reprogramming necessary to support the basic functions of cancer cells. LDs have been associated to different cellular processes involved in cancer progression and aggressiveness, such as tumorigenicity, invasion and metastasis, as well as chemoresistance. Interestingly, all of these processes are controlled by a subpopulation of highly aggressive tumoral cells named cancer stem cells (CSCs), suggesting that LDs may be fundamental elements for stemness in cancer. Considering the key role of CSCs on chemoresistance and disease relapse, main factors of therapy failure, the design of novel therapeutic approaches targeting these cells may be the only chance for long-term survival in cancer patients. In this sense, their biology and functional properties render LDs excellent candidates for target discovery and design of combined therapeutic strategies. In this review, we summarise the current knowledge identifying LDs and CSCs as main contributors to cancer aggressiveness, metastasis and chemoresistance.
Collapse
Affiliation(s)
- Alba Royo-García
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| | - Sarah Courtois
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
15
|
Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. J Pers Med 2021; 11:jpm11080820. [PMID: 34442464 PMCID: PMC8401447 DOI: 10.3390/jpm11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of "fatty kidney disease" and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.
Collapse
|
16
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
17
|
Rahman MA, Kumar R, Sanchez E, Nazarko TY. Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains. Int J Mol Sci 2021; 22:8144. [PMID: 34360917 PMCID: PMC8348048 DOI: 10.3390/ijms22158144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Although once perceived as inert structures that merely serve for lipid storage, lipid droplets (LDs) have proven to be the dynamic organelles that hold many cellular functions. The LDs' basic structure of a hydrophobic core consisting of neutral lipids and enclosed in a phospholipid monolayer allows for quick lipid accessibility for intracellular energy and membrane production. Whereas formed at the peripheral and perinuclear endoplasmic reticulum, LDs are degraded either in the cytosol by lipolysis or in the vacuoles/lysosomes by autophagy. Autophagy is a regulated breakdown of dysfunctional, damaged, or surplus cellular components. The selective autophagy of LDs is called lipophagy. Here, we review LDs and their degradation by lipophagy in yeast, which proceeds via the micrometer-scale raft-like lipid domains in the vacuolar membrane. These vacuolar microdomains form during nutrient deprivation and facilitate internalization of LDs via the vacuolar membrane invagination and scission. The resultant intra-vacuolar autophagic bodies with LDs inside are broken down by vacuolar lipases and proteases. This type of lipophagy is called microlipophagy as it resembles microautophagy, the type of autophagy when substrates are sequestered right at the surface of a lytic compartment. Yeast microlipophagy via the raft-like vacuolar microdomains is a great model system to study the role of lipid domains in microautophagic pathways.
Collapse
Affiliation(s)
- Muhammad Arifur Rahman
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| | - Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, CA 94143, USA;
| | - Enrique Sanchez
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| |
Collapse
|
18
|
Wang M, Yi X. Bulging and budding of lipid droplets from symmetric and asymmetric membranes: competition between membrane elastic energy and interfacial energy. SOFT MATTER 2021; 17:5319-5328. [PMID: 33881134 DOI: 10.1039/d1sm00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid droplets are ubiquitous intracellular organelles regulating the storage and hydrolysis of neutral lipids, and play key roles in cellular metabolism and other functions such as protein trafficking and coordinating with immune responses. Though lipid droplets are widely observed in eukaryotic organisms, it remains unclear how and what aspects of mechanical interaction between the neutral lipids and lipid membranes contribute to the bulging and budding of nascent lipid droplets from the endoplasmic reticulum, and particularly effects of membrane asymmetry and spontaneous curvature on lipid droplet formation are not theoretically rationalized. Here we conduct a comprehensive theoretical study on the mechanical behaviors of lipid droplets embedded in between two lipid monolayers of the same or different mechanical properties, and indicate that the membrane bending rigidity, tension and spontaneous curvature, lipid droplet size, and interfacial energy between the neutral lipids and covering lipid leaflets collectively play key roles in regulating the growth and budding transition of lipid droplets. It is found that the embedded neutral lipids beyond a critical volume could undergo a discontinuous shape transition from a lens-like configuration to a budding state with a spherical bulge configuration. Moreover, a positive lipid monolayer spontaneous curvature and smaller monolayer bending rigidity and tension facilitate the budding transition. Budding phase diagrams accounting for these characteristic interaction states are established. Based on the membrane theory at small deformation before budding and the assumption of spherical configuration after budding, we obtain analytical solutions on the bulge profiles, which can be used to estimate the value of interfacial energy. Our results uncover the fundamental mechanics of the lipid droplet formation and budding, and are of broad interest to the studies of echogenic liposome stability and cellular incorporation of nanoparticles.
Collapse
Affiliation(s)
- Meng Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Xin Yi
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
20
|
Raj A, Nachiappan V. Hydroquinone exposure accumulates neutral lipid by the activation of CDP-DAG pathway in Saccharomyces cerevisiae. Toxicol Res (Camb) 2021; 10:354-367. [PMID: 33884185 DOI: 10.1093/toxres/tfab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 11/13/2022] Open
Abstract
Benzene metabolites (HQ and BQ) are toxic compounds and their presence in human cause alteration in cellular respiration and kidney damage. In the current study, Saccharomyces cerevisiae has been used as a model organism and acute exposure of hydroquinone (HQ) decreased cell growth and increased reactive oxygen species (ROS). The expression of apoptosis regulatory genes (YCA1, NUC1, YSP1 and AIF1) were increased with HQ exposure in the wild-type cells. HQ exposure in the wild-type cells altered both the phospholipid and neutral lipid levels. Phosphatidylcholine is a vital membrane lipid that has a vital role in membrane biogenesis and was increased significantly with HQ. The neutral lipid results were supported with lipid droplets data and mRNA expression study. The phospholipid knockouts (Kennedy pathway) accumulated neutral lipids via the CDP-DAG (cytidine-diphosphate-diacylglycerol) pathway genes both in the presence and absence of HQ.
Collapse
Affiliation(s)
- Abhishek Raj
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
21
|
Kim JJ, David JM, Wilbon SS, Santos JV, Patel DM, Ahmad A, Mitrofanova A, Liu X, Mallela SK, Ducasa GM, Ge M, Sloan AJ, Al-Ali H, Boulina M, Mendez AJ, Contreras GN, Prunotto M, Sohail A, Fridman R, Miner JH, Merscher S, Fornoni A. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 2020; 63:103162. [PMID: 33340991 PMCID: PMC7750578 DOI: 10.1016/j.ebiom.2020.103162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is activated by collagens that is involved in the pathogenesis of fibrotic disorders. Interestingly, de novo production of the collagen type I (Col I) has been observed in Col4a3 knockout mice, a mouse model of Alport Syndrome (AS mice). Deletion of the DDR1 in AS mice was shown to improve survival and renal function. However, the mechanisms driving DDR1-dependent fibrosis remain largely unknown. Methods Podocyte pDDR1 levels, Collagen and cluster of differentiation 36 (CD36) expression was analyzed by Real-time PCR and Western blot. Lipid droplet accumulation and content was determined using Bodipy staining and enzymatic analysis. CD36 and DDR1 interaction was determined by co-immunoprecipitation. Creatinine, BUN, albuminuria, lipid content, and histological and morphological assessment of kidneys harvested from AS mice treated with Ezetimibe and/or Ramipril or vehicle was performed. Findings We demonstrate that Col I-mediated DDR1 activation induces CD36-mediated podocyte lipotoxic injury. We show that Ezetimibe interferes with the CD36/DDR1 interaction in vitro and prevents lipotoxicity in AS mice thus preserving renal function similarly to ramipril. Interpretation Our study suggests that Col I/DDR1-mediated lipotoxicity contributes to renal failure in AS and that targeting this pathway may represent a new therapeutic strategy for patients with AS and with chronic kidney diseases (CKD) associated with Col4 mutations. Funding This study is supported by the NIH grants R01DK117599, R01DK104753, R01CA227493, U54DK083912, UM1DK100846, U01DK116101, UL1TR000460 (Miami Clinical Translational Science Institute, National Center for Advancing Translational Sciences and the National Institute on Minority Health and Health Disparities), F32DK115109, Hoffmann-La Roche and Alport Syndrome Foundation.
Collapse
Affiliation(s)
- Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States.
| | - Judith M David
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Sydney S Wilbon
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Javier V Santos
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Devang M Patel
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anis Ahmad
- Department of Radiation Oncology, University of Miami, FL 33136, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xiaochen Liu
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Shamroop K Mallela
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Gloria M Ducasa
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Alexis J Sloan
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Hassan Al-Ali
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Armando J Mendez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Gabriel N Contreras
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Marco Prunotto
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Drug Discovery center, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL 33136, United States.
| |
Collapse
|
22
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
23
|
Chrissian C, Camacho E, Kelly JE, Wang H, Casadevall A, Stark RE. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J Biol Chem 2020; 295:15083-15096. [PMID: 32859751 DOI: 10.1074/jbc.ra120.015201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.
Collapse
Affiliation(s)
- Christine Chrissian
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John E Kelly
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Hsin Wang
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth E Stark
- Department of Chemistry and Biochemistry and CUNY Institute for Macromolecular Assemblies, City College of New York, New York, New York, USA; Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, New York, USA; Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York, USA.
| |
Collapse
|
24
|
Bianchi F, Spitaler U, Robatscher P, Vogel RF, Schmidt S, Eisenstecken D. Comparative Lipidomics of Different Yeast Species Associated to Drosophila suzukii. Metabolites 2020; 10:E352. [PMID: 32872268 PMCID: PMC7569767 DOI: 10.3390/metabo10090352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Yeasts constitute a dietary source for the spotted wing drosophila (SWD) and produce compounds that attract these flies. The study of the chemical composition of the yeast communities associated with SWD should therefore help to understand the relationship between the biology of the insect and the yeast's metabolism. In the present study, the lipidome of five yeast species isolated from grapes infested by SWD (three Hanseniaspora uvarum strains, Candida sp., Issatchenkia terricola, Metschnikowia pulcherrima and Saccharomycopsis vini) and a laboratory strain of Saccharomyces cerevisiae was explored using an untargeted approach. Additionally, the lipid profile of two species, S. cerevisiae and H. uvarum, which were reported to elicit different responses on SWD flies based on feeding and behavioral trials, was compared with a chemical enrichment approach. Overall, 171 lipids were annotated. The yeast species could be distinguished from each other based on their lipid profile, except for the three strains of H. uvarum, which were very similar to each other. The chemical enrichment analysis emphasized diversities between S. cerevisiae and H. uvarum, that could not be detected based on their global lipid profile. The information concerning differences between species in their lipidome may be of interest to future entomological studies concerning the yeast-insect interaction and could help to explain the responses of SWD to diverse yeast species.
Collapse
Affiliation(s)
- Flavia Bianchi
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Urban Spitaler
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Institute for Agricultural Chemistry and Food Quality, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (F.B.); (P.R.)
| | - Rudi F. Vogel
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Silvia Schmidt
- Entomology Group, Institute for Plant Health, Laimburg Research Centre, Ora (BZ), 39040 Auer, Italy; (U.S.); (S.S.)
| | - Daniela Eisenstecken
- Chair of Technical Microbiology, School of Life Sciences Weihenstephan, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|
25
|
Chattopadhyay A, Singh R, Mitra M, Das AK, Maiti MK. Identification and functional characterization of a lipid droplet protein CtLDP1 from an oleaginous yeast Candida tropicalis SY005. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158725. [DOI: 10.1016/j.bbalip.2020.158725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022]
|
26
|
Jamme F, Cinquin B, Gohon Y, Pereiro E, Réfrégiers M, Froissard M. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:772-778. [PMID: 32381780 PMCID: PMC7206545 DOI: 10.1107/s1600577520003847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.
Collapse
Affiliation(s)
- Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Bertrand Cinquin
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Yann Gohon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Eva Pereiro
- MISTRAL Beamline, ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | - Marine Froissard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
27
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
29
|
Justinić I, Katić A, Uršičić D, Ćurko-Cofek B, Blagović B, Čanadi Jurešić G. Combining proteomics and lipid analysis to unravel Confidor stress response in Saccharomyces cerevisiae. ENVIRONMENTAL TOXICOLOGY 2020; 35:346-358. [PMID: 31696623 DOI: 10.1002/tox.22870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The yeast Saccharomyces cerevisiae is a useful model for studying the influence of different stress factors on eukaryotic cells. In this work we used the pesticide imidacloprid, in the Confidor formulation, as the stress factor and analyzed its influence on the metabolic activity, proteome and lipid content and composition of Saccharomyces cerevisiae yeast. During the cultivation of yeast, the lowest recommended application dose of Confidor (0.025%, v/v) was added to the growth media and its influence on the mitochondria, cytosol with microsomes, and the whole yeast cells was monitored. The results show that under the stress provoked by the toxic effects of Confidor, yeast cells density significantly decreased and the percentage of metabolically disturbed cells significantly increased comparing with untreated control. Also, there was a downregulation of majority of glycolytic, gluconeogenesis, and TCA cycle enzymes (Fba1, Adh1, Hxk2, Tal1, Tdh1,Tdh3, Eno1) thus providing enough acetyl-CoA for the lipid restructuring and accumulation mechanism since we have found the changes in the cell and mitochondrial lipid content and FA composition. This data suggest that lipids could be the molecules that orchestrate the answer of the cells in the stress response to the Confidor treatment.
Collapse
Affiliation(s)
- Iva Justinić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Katić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Deni Uršičić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Patophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Branka Blagović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
30
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
31
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
32
|
Abstract
Lipid droplets are cytoplasmic microscale organelles involved in energy homeostasis and handling of cellular lipids and proteins. The core structure is mainly composed of two kinds of neutral lipids, triglycerides and cholesteryl esters, which are coated by a phospholipid monolayer and proteins. Despite the liquid crystalline nature of cholesteryl esters, the connection between the lipid composition and physical states is poorly understood. Here, we present a universal intracellular phase diagram of lipid droplets, semiquantitatively consistent with the in vitro phase diagram, and reveal that cholesterol esters cause the liquid-liquid crystal phase transition under near-physiological conditions. We moreover combine in vivo and in vitro studies, together with the theory of confined liquid crystals, to suggest that the radial molecular alignments in the liquid crystallized lipid droplets are caused by an anchoring force at the droplet surface. Our findings on the phase transition of lipid droplets and resulting molecular organization contribute to a better understanding of their biological functions and diseases.
Collapse
|
33
|
Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc Natl Acad Sci U S A 2019; 116:16866-16871. [PMID: 31375636 PMCID: PMC6708344 DOI: 10.1073/pnas.1903642116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipids have essential roles in cellular energy homeostasis and are key structural components of membranes and thereby provide the basis of cellular compartmentalization. The maintenance of lipid homeostasis is of fundamental importance to cellular physiology. Lipid droplets (LDs) are central organelles orchestrating lipid fluxes inside cells. By examining pristinely preserved frozen-hydrated HeLa cells with cryoelectron microscopy, we show that LDs exhibit different internal organizations, as well as organelle associations, depending on cellular states. We demonstrate the presence of a liquid-crystalline phase under certain conditions, which are likely to impact the physiological functions of LDs. Furthermore, crystalline droplets are a major component of atherosclerotic lesions in human arteries. Crystalline LDs secreted by cells may therefore have a direct link to pathologies. Lipid droplets (LDs) are ubiquitous organelles comprising a central hub for cellular lipid metabolism and trafficking. This role is tightly associated with their interactions with several cellular organelles. Here, we provide a systematic and quantitative structural description of LDs in their native state in HeLa cells enabled by cellular cryoelectron microscopy. LDs consist of a hydrophobic neutral lipid mixture of triacylglycerols (TAG) and cholesteryl esters (CE), surrounded by a single monolayer of phospholipids. We show that under normal culture conditions, LDs are amorphous and that they transition into a smectic liquid-crystalline phase surrounding an amorphous core at physiological temperature under certain cell-cycle stages or metabolic scenarios. Following determination of the crystal lattice spacing of 3.5 nm and of a phase transition temperature below 43 °C, we attributed the liquid-crystalline phase to CE. We suggest that under mitotic arrest and starvation, relative CE levels increase, presumably due to the consumption of TAG metabolites for membrane synthesis and mitochondrial respiration, respectively, supported by direct visualization of LD–mitochondrial membrane contact sites. We hypothesize that the structural phase transition may have a major impact on the accessibility of lipids in LDs to enzymes or lipid transporters. These may become restricted in the smectic phase, affecting the exchange rate of lipids with surrounding membranes and lead to a different surface occupancy of LD-associated proteins. Therefore, the composition and the resulting internal structure of LDs is expected to play a key role in their function as hubs of cellular lipid flux.
Collapse
|
34
|
Wei H, Wang W, Alper HS, Xu Q, Knoshaug EP, Van Wychen S, Lin CY, Luo Y, Decker SR, Himmel ME, Zhang M. Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. Front Microbiol 2019; 9:3276. [PMID: 30687267 PMCID: PMC6333634 DOI: 10.3389/fmicb.2018.03276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Yarrowia lipolytica, known to accumulate lipids intracellularly, lacks the cellulolytic enzymes needed to break down solid biomass directly. This study aimed to evaluate the potential metabolic burden of expressing core cellulolytic enzymes in an engineered high lipid-accumulating strain of Y. lipolytica. Three fungal cellulases, Talaromyces emersonii-Trichoderma reesei chimeric cellobiohydrolase I (chimeric-CBH I), T. reesei cellobiohydrolase II (CBH II), and T. reesei endoglucanase II (EG II) were expressed using three constitutive strong promoters as a single integrative expression block in a recently engineered lipid hyper-accumulating strain of Y. lipolytica (HA1). In yeast extract-peptone-dextrose (YPD) medium, the resulting cellulase co-expressing transformant YL165-1 had the chimeric-CBH I, CBH II, and EG II secretion titers being 26, 17, and 132 mg L-1, respectively. Cellulase co-expression in YL165-1 in culture media with a moderate C/N ratio of ∼4.5 unexpectedly resulted in a nearly two-fold reduction in cellular lipid accumulation compared to the parental control strain, a sign of cellular metabolic drain. Such metabolic drain was ameliorated when grown in media with a high C/N ratio of 59 having a higher glucose utilization rate that led to approximately twofold more cell mass and threefold more lipid production per liter culture compared to parental control strain, suggesting cross-talk between cellulase and lipid production, both of which involve the endoplasmic reticulum (ER). Most importantly, we found that the chemical chaperone, trimethylamine N-oxide dihydride increased glucose utilization, cell mass and total lipid titer in the transformants, suggesting further amelioration of the metabolic drain. This is the first study examining lipid production in cellulase-expressing Y. lipolytica strains under various C/N ratio media and with a chemical chaperone highlighting the metabolic complexity for developing robust, cellulolytic and lipogenic yeast strains.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Eric P Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Stefanie Van Wychen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yonghua Luo
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
35
|
Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng 2018; 52:134-142. [PMID: 30471360 DOI: 10.1016/j.ymben.2018.11.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and carotenoids, with some engineered compounds displaying cytotoxicity. In this study, we used a nature-inspired strategy to establish an effective platform to improve lipid oil-triacylglycerol (TAG) metabolism and enable increased lycopene accumulation. Through systematic traditional engineering methods, we achieved relatively high-level production at 56.2 mg lycopene/g cell dry weight (cdw). To focus on TAG metabolism in order to increase lycopene accumulation, we overexpressed key genes associated with fatty acid synthesis and TAG production, followed by modulation of TAG fatty acyl composition by overexpressing a fatty acid desaturase (OLE1) and deletion of Seipin (FLD1), which regulates lipid-droplet size. Results showed that the engineered strain produced 70.5 mg lycopene/g cdw, a 25% increase relative to the original high-yield strain, with lycopene production reaching 2.37 g/L and 73.3 mg/g cdw in fed-batch fermentation and representing the highest lycopene yield in S. cerevisiae reported to date. These findings offer an effective strategy for extended systematic metabolic engineering through lipid engineering.
Collapse
|
36
|
Lv X, Liu J, Qin Y, Liu Y, Jin M, Dai J, Chua BT, Yang H, Li P. Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:113-127. [PMID: 30414449 DOI: 10.1016/j.bbalip.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are important organelles involved in energy storage and expenditure. LD dynamics has been investigated using genome-wide image screening methods in yeast and other model organisms. For most studies, genes were identified using two-dimensional images with LD enlargement as readout. Due to imaging limitation, reduction of LD size is seldom explored. Here, we aim to set up a screen that specifically utilizes reduced LD size as the readout. To achieve this, a novel yeast screen is set up to quantitatively and systematically identify genes that regulate LD size through a three-dimensional imaging-based approach. Cidea which promotes LD fusion and growth in mammalian cells was overexpressed in a yeast knockout library to induce large LD formation. Next, an automated, high-throughput image analysis method that monitors LD size was utilized. With this screen, we identified twelve genes that reduced LD size when deleted. The effects of eight of these genes on LD size were further validated in fld1 null strain background. In addition, six genes were previously identified as LD-regulating genes. To conclude, this methodology represents a promising strategy to screen for players in LD size control in both yeast and mammalian cells to aid in the investigation of LD-associated metabolic diseases.
Collapse
Affiliation(s)
- Xuchao Lv
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meijun Jin
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boon Tin Chua
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Peng H, He L, Haritos VS. Enhanced Production of High-Value Cyclopropane Fatty Acid in Yeast Engineered for Increased Lipid Synthesis and Accumulation. Biotechnol J 2018; 14:e1800487. [PMID: 30298619 DOI: 10.1002/biot.201800487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/25/2018] [Indexed: 11/10/2022]
Abstract
The unique strained ring structure in cyclopropane fatty acids (CFA) conveys oxidative stability and lubricity to lipids. These attributes are highly valuable for industrial applications such as cosmetics and specialist lubrication but there is currently no commercial source of the lipid. Here, built on recently engineered strains of Saccharomyces cerevisiae, the authors have developed an efficient strategy for CFA production. Expression of the Escherichia coli cyclopropane fatty acid synthetase (Ec.CFAS) in the engineered yeast resulted in formation of cis-9,10-methylene-hexadecanoic and octadecanoic acids in both the phospholipid (PL) and triacylglycerol (TAG) fractions. CFA concentration in TAG of engineered yeast is 12 mg CFA g-1 DCW (fourfold above the strain expressing CFAS only). The yield of CFA increases from 13.2 to 68.3 mg L-1 , the highest reported in yeast, using a two-stage bioprocess strategy that separated cell growth from the lipid modification stage. Strategies for further improvement of this valuable lipid are proposed.
Collapse
Affiliation(s)
- Huadong Peng
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
38
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
40
|
Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 2018; 50:192-208. [PMID: 30056205 DOI: 10.1016/j.ymben.2018.07.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
The nonconventional, oleaginous yeast, Yarrowia lipolytica is rapidly emerging as a valuable host for the production of a variety of both lipid and nonlipid chemical products. While the unique genetics of this organism pose some challenges, many new metabolic engineering tools have emerged to facilitate improved genetic manipulation in this host. This review establishes a case for Y. lipolytica as a premier metabolic engineering host based on innate metabolic capacity, emerging synthetic tools, and engineering examples. The metabolism underlying the lipid accumulation phenotype of this yeast as well as high flux through acyl-CoA precursors and the TCA cycle provide a favorable metabolic environment for expression of relevant heterologous pathways. These properties allow Y. lipolytica to be successfully engineered for the production of both native and nonnative lipid, organic acid, sugar and acetyl-CoA derived products. Finally, this host has unique metabolic pathways enabling growth on a wide range of carbon sources, including waste products. The expansion of carbon sources, together with the improvement of tools as highlighted here, have allowed this nonconventional organism to act as a cellular factory for valuable chemicals and fuels.
Collapse
Affiliation(s)
- Ahmad M Abdel-Mawgoud
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States.
| |
Collapse
|
41
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
42
|
Klein I, Korber M, Athenstaedt K, Daum G. The impact of nonpolar lipids on the regulation of the steryl ester hydrolases Tgl1p and Yeh1p in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1491-1501. [PMID: 28866104 DOI: 10.1016/j.bbalip.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae degradation of steryl esters is catalyzed by the steryl ester hydrolases Tgl1p, Yeh1p and Yeh2p. The two steryl ester hydrolases Tgl1p and Yeh1p localize to lipid droplets, a cell compartment storing steryl esters and triacylglycerols. In the present study we investigated regulatory aspects of these two hydrolytic enzymes, namely the gene expression level, protein amount, stability and enzyme activity of Tgl1p and Yeh1p in strains lacking both or only one of the two major nonpolar lipids, steryl esters and triacylglycerols. In a strain lacking both nonpolar lipids and consequently lipid droplets, Tgl1p as well as Yeh1p were present at low amount, became highly unstable compared to wild-type cells, and lost their enzymatic activity. Under these conditions both steryl ester hydrolases were retained in the endoplasmic reticulum. The lack of steryl esters alone was not sufficient to cause an altered intracellular localization of Tgl1p and Yeh1p. Surprisingly, the stability of Tgl1p and Yeh1p was markedly reduced in a strain lacking triacylglycerols, but their capacity to mobilize steryl esters remained unaffected. We also tested a possible cross-regulation of Tgl1p and Yeh1p by analyzing the behavior of each hydrolase in the absence of its counterpart steryl ester hydrolases. In summary, this study demonstrates a strong regulation of the two lipid droplet associated steryl ester hydrolases Tgl1p and Yeh1p due to the presence/absence of their host organelle.
Collapse
Affiliation(s)
- Isabella Klein
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria
| | - Martina Korber
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria
| | - Karin Athenstaedt
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria; Institute of Molecular Biosciences, University of Graz, NaWi Graz, Austria.
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Austria.
| |
Collapse
|
43
|
Gao Q, Binns DD, Kinch LN, Grishin NV, Ortiz N, Chen X, Goodman JM. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. J Cell Biol 2017; 216:3199-3217. [PMID: 28801319 PMCID: PMC5626530 DOI: 10.1083/jcb.201610013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/28/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022] Open
Abstract
Pet10p is a yeast lipid droplet protein of unknown function. We show that it binds specifically to and is stabilized by droplets containing triacylglycerol (TG). Droplets isolated from cells with a PET10 deletion strongly aggregate, appear fragile, and fuse in vivo when cells are cultured in oleic acid. Pet10p binds early to nascent droplets, and their rate of appearance is decreased in pet10Δ Moreover, Pet10p functionally interacts with the endoplasmic reticulum droplet assembly factors seipin and Fit2 to maintain proper droplet morphology. The activity of Dga1p, a diacylglycerol acyltransferase, and TG accumulation were both 30-35% lower in the absence of Pet10p. Pet10p contains a PAT domain, a defining property of perilipins, which was not previously known to exist in yeast. We propose that the core functions of Pet10p and other perilipins extend beyond protection from lipases and include the preservation of droplet integrity as well as collaboration with seipin and Fit2 in droplet assembly and maintenance.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Natalie Ortiz
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Xiao Chen
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| |
Collapse
|
44
|
Hokkanen S, Laakso S, Senn CM, Frey AD. The trans-10,cis-12 conjugated linoleic acid increases triacylglycerol hydrolysis in yeast Saccharomyces cerevisiae. J Appl Microbiol 2017; 123:185-193. [PMID: 28276610 DOI: 10.1111/jam.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/13/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
AIMS The trans-10,cis-12 conjugated linoleic acid (CLA) is known for its antilipogenic effect but the mechanism is not fully clear. In this study, the potential of yeast (Saccharomyces cerevisiae) metabolism to offer evidence for the mechanism was investigated. METHODS AND RESULTS The inhibitory effect of CLA on lipid accumulation was studied by analysing the transcript abundance of selected genes involved in triacylglycerol synthesis (LRO1, DGA1, ARE1 and ARE2) in the presence of the two bioactive CLA isomers: trans-10,cis-12 and the cis-9,trans-11 CLA. None of the enzymes was reduced in transcription but the expression of ARE2 was induced by trans-10,cis-12 CLA. However, the ARE2 overexpression did not contribute to lipid accumulation. The expression of the Δ9 desaturase gene, OLE1, was reduced by the cis-9,trans-11 but not by the trans-10,cis-12 isomer. In the TGL3/TGL4-knockout strain the triacylglycerol content also remained high in the CLA fed cells. CONCLUSIONS Triacylglycerol hydrolysis rather than synthesis was the most probable reason for the reduced lipid content in yeast induced by CLA. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed new aspects of the functionality of CLA in eukaryotic lipid metabolism. Yeast was proven to be an applicable model to study further the mechanism of trans-10,cis-12 CLA functionality on lipid metabolism.
Collapse
Affiliation(s)
- S Hokkanen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - S Laakso
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - C M Senn
- Laves-Arzneimittel GmbH, Schötz, Switzerland
| | - A D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
45
|
Meyers A, Weiskittel TM, Dalhaimer P. Lipid Droplets: Formation to Breakdown. Lipids 2017; 52:465-475. [PMID: 28528432 DOI: 10.1007/s11745-017-4263-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
One of the most exciting areas of cell biology during the last decade has been the study of lipid droplets. Lipid droplets allow cells to store non-polar molecules such as neutral lipids in specific compartments where they are sequestered from the aqueous environment of the cell yet can be accessed through regulated mechanisms. These structures are highly conserved, appearing in organisms throughout the phylogenetic tree. Until somewhat recently, lipid droplets were widely regarded as inert, however progress in the field has continued to demonstrate their vast roles in a number of cellular processes in both mitotic and post-mitotic cells. No doubt the increase in the attention given to lipid droplet research is due to their central role in current pressing human diseases such as obesity, type-2 diabetes, and atherosclerosis. This review provides a mechanistic timeline from neutral lipid synthesis through lipid droplet formation and size augmentation to droplet breakdown.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 426 Dougherty Engineering Building, Knoxville, TN, 37996, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
46
|
Geng F, Guo D. Lipid droplets, potential biomarker and metabolic target in glioblastoma. INTERNAL MEDICINE REVIEW (WASHINGTON, D.C. : ONLINE) 2017; 3:10.18103/imr.v3i5.443. [PMID: 29034362 PMCID: PMC5639724 DOI: 10.18103/imr.v3i5.443] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid droplets (LDs) are subcellular organelles that store large amounts of the neutral lipids, triglycerides (TG) and/or cholesteryl esters (CE). LDs are commonly formed in adipocytes, liver cells and macrophages, and their formation has been shown to be associated with the progression of metabolic diseases, i.e., obesity, fatty liver and atherosclerosis. Interestingly, LDs are also found in some tumor tissues. We recently showed that LDs are prevalent in glioblastoma (GBM), the most deadly brain tumor, but are not detectable in low-grade gliomas and normal brain tissues, suggesting that LDs may serve as a novel diagnostic biomarker for GBM. This short review will briefly introduce LD biology, summarize recent observations about LDs in several types of cancer tissues, and discuss LD formation in GBM. Moreover, we will highlight the role of SOAT1 (sterol-O transferase 1), a key enzyme regulating CE synthesis and LD formation in GBM, in the regulation of SREBP (sterol regulatory-element binding protein) activation. The therapeutic potential of LDs and SOAT1 will be discussed.
Collapse
Affiliation(s)
- Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Yadav PK, Rajasekharan R. Cardiolipin deficiency causes triacylglycerol accumulation in Saccharomyces cerevisiae. Mol Cell Biochem 2017; 434:89-103. [PMID: 28432553 DOI: 10.1007/s11010-017-3039-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 01/05/2023]
Abstract
In yeast, the synthesis of cardiolipin (CL) and phosphatidylethanolamine (PE) occurs mainly in mitochondria. CL and PE have overlapping functions, and they are required for mitochondrial function. PE is physiologically linked with triacylglycerol (TAG) metabolism in Saccharomyces cerevisiae, involving an acyl-CoA-independent pathway through the phospholipid:diacylglycerol acyltransferase activity of the Lro1 protein. There is no report on the physiological link between CL and TAG metabolism. Here we report a metabolic link between CL and TAG accumulation in the S. cerevisiae. Our data indicated that CL deficiency causes TAG accumulation, involving an acyl-CoA-dependent pathway through the diacylglycerol acyltransferase activity of the Dga1 protein with no changes in the TAG molecular species. The DGA1 gene deletion from the CL-deficient strains reduced the TAG levels. Data from in vitro and in vivo analyses showed that CL did not affect the enzymatic activity of Dga1. Our data also showed that CL deficiency leads to the up-regulation of acetyl-CoA synthetase genes (ACS1 and ACS2) of the cytosolic pyruvate dehydrogenase bypass pathway. This study establishes a physiological link between CL and TAG metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India
- Academy of Scientific & Innovative Research, CSIR-CFTRI, Mysore, India
| | - Ram Rajasekharan
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India.
- Academy of Scientific & Innovative Research, CSIR-CFTRI, Mysore, India.
| |
Collapse
|
48
|
Gajdoš P, Nicaud JM, Čertík M. Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Eng Life Sci 2016; 17:325-332. [PMID: 32624778 DOI: 10.1002/elsc.201600065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023] Open
Abstract
Oleaginous yeasts are considered as natural single cell oil producers. Engineering the lipid biosynthetic pathway has the potential to increase lipid accumulation by these yeasts. In Yarrowia lipolytica, three diacylglycerol acyltransferases encoded by LRO1, DGA1, and DGA2 genes are involved in lipid formation. Strain JMY3580 was constructed by overexpressing DGA2 gene in Q4 strain (dga1Δ dga2Δ lro1Δ are1Δ). Reconstruction of triacylglycerol synthesis pathway led to significant improvement in lipid accumulation. Strain JMY3580 accumulated over 40% of lipids in biomass, while lipid accumulation in wild-type strain was not able to exceed 20% when grown on a glycerol-based medium with carbon to nitrogen ratio of 90. Higher lipid accumulation (over 50%) was achieved in fed-batch grown cells when glycerol was added during cultivation. The best biomass yield was 18.5 g/L after 144 h with total fatty acid yield 9.9 g/L. Fatty acid composition was altered when Dga2p was the only diacylglycerol acyltransferase present in yeast cells, especially lower percentage of linoleic acid was present in lipids of JMY3580. Microbial oil prepared by conversion of glycerol by genetically engineered Y. lipolytica could be applied for various value-added products based on single cell oils.
Collapse
Affiliation(s)
- Peter Gajdoš
- Department of Biochemical Technology, Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech Université Paris-Saclay Jouy-en-Josas France
| | - Milan Čertík
- Department of Biochemical Technology, Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
| |
Collapse
|
49
|
Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana. J Biol Chem 2016; 291:19734-45. [PMID: 27466365 DOI: 10.1074/jbc.m116.748814] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 02/02/2023] Open
Abstract
Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.
Collapse
Affiliation(s)
- Songkui Cui
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the RIKEN Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, the Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan, and
| | - Yasuko Hayashi
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Masayoshi Otomo
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Shoji Mano
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Makoto Hayashi
- the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama 526-0829, Japan
| | - Mikio Nishimura
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan,
| |
Collapse
|
50
|
Yang PL, Hsu TH, Wang CW, Chen RH. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Mol Biol Cell 2016; 27:2368-80. [PMID: 27307588 PMCID: PMC4966979 DOI: 10.1091/mbc.e16-02-0106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 11/11/2022] Open
Abstract
The neutral lipids steryl ester and triacylglycerol (TAG) are stored in the membrane-bound organelle lipid droplet (LD) in essentially all eukaryotic cells. It is unclear what physiological conditions require the mobilization or storage of these lipids. Here, we study the budding yeast mutant are1Δ are2Δ dga1Δ lro1Δ, which cannot synthesize the neutral lipids and therefore lacks LDs. This quadruple mutant is delayed at cell separation upon release from mitotic arrest. The cells have abnormal septa, unstable septin assembly during cytokinesis, and prolonged exocytosis at the division site at the end of cytokinesis. Lipidomic analysis shows a marked increase of diacylglycerol (DAG) and phosphatidic acid, the precursors for TAG, in the mutant during mitotic exit. The cytokinesis and separation defects are rescued by adding phospholipid precursors or inhibiting fatty acid synthesis, which both reduce DAG levels. Our results suggest that converting excess lipids to neutral lipids for storage during mitotic exit is important for proper execution of cytokinesis and efficient cell separation.
Collapse
Affiliation(s)
- Po-Lin Yang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Han Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|