2
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
5
|
Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S, Racherla M, Leitch CC, Silipino L, Hadi S, Weiss-Gayet M, Barras E, Schmid CD, Ait-Lounis A, Barnes A, Song Y, Eisenman DJ, Eliyahu E, Frolenkov GI, Strome SE, Durand B, Zaghloul NA, Jones SM, Reith W, Hertzano R. RFX transcription factors are essential for hearing in mice. Nat Commun 2015; 6:8549. [PMID: 26469318 PMCID: PMC4634137 DOI: 10.1038/ncomms9549] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/04/2015] [Indexed: 01/23/2023] Open
Abstract
Sensorineural hearing loss is a common and currently irreversible disorder, because mammalian hair cells (HCs) do not regenerate and current stem cell and gene delivery protocols result only in immature HC-like cells. Importantly, although the transcriptional regulators of embryonic HC development have been described, little is known about the postnatal regulators of maturating HCs. Here we apply a cell type-specific functional genomic analysis to the transcriptomes of auditory and vestibular sensory epithelia from early postnatal mice. We identify RFX transcription factors as essential and evolutionarily conserved regulators of the HC-specific transcriptomes, and detect Rfx1,2,3,5 and 7 in the developing HCs. To understand the role of RFX in hearing, we generate Rfx1/3 conditional knockout mice. We show that these mice are deaf secondary to rapid loss of initially well-formed outer HCs. These data identify an essential role for RFX in hearing and survival of the terminally differentiating outer HCs.
Collapse
Affiliation(s)
- Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Beatrice Milon
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Laura Morrison
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Manan Shah
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska Lincoln, Lincoln, Nebraska 68583-0738, USA
| | - Manoj Racherla
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Carmen C. Leitch
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| | - Lorna Silipino
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Shadan Hadi
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | - Michèle Weiss-Gayet
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, 69622 Villeurbanne, France
| | - Emmanuèle Barras
- Department of Pathology and Immunology, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Christoph D. Schmid
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, and University of Basel, 4051 Basel, Switzerland
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Ashley Barnes
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - David J. Eisenman
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Gregory I. Frolenkov
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | - Scott E. Strome
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon-1, 69622 Villeurbanne, France
| | - Norann A. Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, University of Nebraska Lincoln, Lincoln, Nebraska 68583-0738, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Ronna Hertzano
- Department of Otorhinolaryngology, School of Medicine, University of Maryland Baltimore, 16 South Eutaw Street Suite 500, Baltimore, Maryland 21201, USA,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA,
| |
Collapse
|
6
|
iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014; 10:e1003731. [PMID: 25058159 PMCID: PMC4109854 DOI: 10.1371/journal.pcbi.1003731] [Citation(s) in RCA: 643] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org. Gene regulatory networks control developmental, homeostatic, and disease processes by governing precise levels and spatio-temporal patterns of gene expression. Determining their topology can provide mechanistic insight into these processes. Gene regulatory networks consist of interactions between transcription factors and their direct target genes. Each regulatory interaction represents the binding of the transcription factor to a specific DNA binding site near its target gene. Here we present a computational method, called iRegulon, to identify master regulators and direct target genes in a human gene signature, i.e. a set of co-expressed genes. iRegulon relies on the analysis of the regulatory sequences around each gene in the gene set to detect enriched TF motifs or ChIP-seq peaks, using databases of nearly 10.000 TF motifs and 1000 ChIP-seq data sets or “tracks”. Next, it associates enriched motifs and tracks with candidate transcription factors and determines the optimal subset of direct target genes. We validate iRegulon on ENCODE data, and use it in combination with RNA-seq and ChIP-seq data to map a p53 downstream network with new predicted co-factors and targets. iRegulon is available as a Cytoscape plugin, supporting human, mouse, and Drosophila genes, and provides access to hundreds of cancer-related TF-target subnetworks or “regulons”.
Collapse
|
8
|
Li F, Tian L, Gu L, Li GM. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 2009; 284:33056-61. [PMID: 19808662 DOI: 10.1074/jbc.m109.049874] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of chromatin structure on DNA metabolic processes, including DNA replication and repair, has been a matter of intensive studies in recent years. Although the human mismatch repair (MMR) reaction has been reconstituted using purified proteins, the influence of chromatin structure on human MMR is unknown. This study examines the interaction between human MutSalpha and a mismatch located within a nucleosome or between two nucleosomes. The results show that, whereas MutSalpha specifically recognizes both types of nucleosomal heteroduplexes, the protein bound the mismatch within a nucleosome with much lower efficiency than a naked heteroduplex or a heterology free of histone proteins but between two nucleosomes. Additionally, MutSalpha displays reduced ATPase- and ADP-binding activity when interacting with nucleosomal heteroduplexes. Interestingly, nucleosomes block ATP-induced MutSalpha sliding along the DNA helix when the mismatch is in between two nucleosomes. These findings suggest that nucleosomes may inhibit MMR in eukaryotic cells. The implications of these findings for our understanding of eukaryotic MMR are discussed.
Collapse
Affiliation(s)
- Feng Li
- Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
9
|
He W, Zhao Y, Zhang C, An L, Hu Z, Liu Y, Han L, Bi L, Xie Z, Xue P, Yang F, Hang H. Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1. Nucleic Acids Res 2008; 36:6406-17. [PMID: 18842633 PMCID: PMC2582629 DOI: 10.1093/nar/gkn686] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.
Collapse
Affiliation(s)
- Wei He
- National Laboratory of Biomacromolecules, Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|