1
|
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function. Int J Mol Sci 2023; 24:ijms24065068. [PMID: 36982142 PMCID: PMC10049710 DOI: 10.3390/ijms24065068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Collapse
|
2
|
Knapinska AM, Drotleff G, Chai C, Twohill D, Ernce A, Tokmina-Roszyk D, Grande I, Rodriguez M, Larson B, Fields GB. Screening MT1-MMP Activity and Inhibition in Three-Dimensional Tumor Spheroids. Biomedicines 2023; 11:biomedicines11020562. [PMID: 36831098 PMCID: PMC9953393 DOI: 10.3390/biomedicines11020562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown to be crucial for tumor angiogenesis, invasion, and metastasis, and thus MT1-MMP is a high priority target for potential cancer therapies. To properly evaluate MT1-MMP inhibitors, a screening protocol is desired by which enzyme activity can be quantified in a tumor microenvironment-like model system. In the present study, we applied a fluorogenic, collagen model triple-helical substrate to quantify MT1-MMP activity for tumor spheroids embedded in a collagen hydrogel. The substrate was designed to be MT1-MMP selective and to possess fluorescent properties compatible with cell-based assays. The proteolysis of the substrate correlated to glioma spheroid invasion. In turn, the application of either small molecule or protein-based MMP inhibitors reduced proteolytic activity and glioma spheroid invasion. The presence of MT1-MMP in glioma spheroids was confirmed by western blotting. Thus, spheroid invasion was dependent on MT1-MMP activity, and inhibitors of MT1-MMP and invasion could be conveniently screened in a high-throughput format. The combination of the fluorogenic, triple-helical substrate, the three-dimensional tumor spheroids embedded in collagen, and Hit-Pick software resulted in an easily adaptable in vivo-like tumor microenvironment for rapidly processing inhibitor potential for anti-cancer use.
Collapse
Affiliation(s)
- Anna M. Knapinska
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gary Drotleff
- Alphazyme, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Cedric Chai
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Destiny Twohill
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alexa Ernce
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Isabella Grande
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michelle Rodriguez
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brad Larson
- Agilent Technologies, Raleigh, NC 27606, USA
| | - Gregg B. Fields
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
3
|
Yeung CYC, Dondelinger F, Schoof EM, Georg B, Lu Y, Zheng Z, Zhang J, Hannibal J, Fahrenkrug J, Kjaer M. Circadian regulation of protein cargo in extracellular vesicles. SCIENCE ADVANCES 2022; 8:eabc9061. [PMID: 35394844 PMCID: PMC8993114 DOI: 10.1126/sciadv.abc9061] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/17/2022] [Indexed: 05/19/2023]
Abstract
The circadian clock controls many aspects of physiology, but it remains undescribed whether extracellular vesicles (EVs), including exosomes, involved in cell-cell communications between tissues are regulated in a circadian pattern. We demonstrate a 24-hour rhythmic abundance of individual proteins in small EVs using liquid chromatography-mass spectrometry in circadian-synchronized tendon fibroblasts. Furthermore, the release of small EVs enriched in RNA binding proteins was temporally separated from those enriched in cytoskeletal and matrix proteins, which peaked during the end of the light phase. Last, we targeted the protein sorting mechanism in the exosome biogenesis pathway and established (by knockdown of circadian-regulated flotillin-1) that matrix metalloproteinase 14 abundance in tendon fibroblast small EVs is under flotillin-1 regulation. In conclusion, we have identified proteomic time signatures for small EVs released by tendon fibroblasts, which supports the view that the circadian clock regulates protein cargo in EVs involved in cell-cell cross-talk.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| | - Frank Dondelinger
- Centre for Health Informatics, Computation and Statistics, Lancaster University, Lancaster, UK
| | - Erwin M. Schoof
- Proteomics Core, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zhiyong Zheng
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Xia XD, Alabi A, Wang M, Gu HM, Yang RZ, Wang G, Zhang DW. Membrane-type I matrix metalloproteinase (MT1-MMP), lipid metabolism and therapeutic implications. J Mol Cell Biol 2021; 13:513-526. [PMID: 34297054 PMCID: PMC8530520 DOI: 10.1093/jmcb/mjab048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Lipids exert many essential physiological functions, such as serving as a structural component of biological membranes, storing energy, and regulating cell signal transduction. Dysregulation of lipid metabolism can lead to dyslipidemia related to various human diseases, such as obesity, diabetes, and cardiovascular disease. Therefore, lipid metabolism is strictly regulated through multiple mechanisms at different levels, including the extracellular matrix. Membrane-type I matrix metalloproteinase (MT1-MMP), a zinc-dependent endopeptidase, proteolytically cleaves extracellular matrix components, and non-matrix proteins, thereby regulating many physiological and pathophysiological processes. Emerging evidence supports the vital role of MT1-MMP in lipid metabolism. For example, MT1-MMP mediates ectodomain shedding of low-density lipoprotein receptor and increases plasma low-density lipoprotein cholesterol levels and the development of atherosclerosis. It also increases the vulnerability of atherosclerotic plaque by promoting collagen cleavage. Furthermore, it can cleave the extracellular matrix of adipocytes, affecting adipogenesis and the development of obesity. Therefore, the activity of MT1-MMP is strictly regulated by multiple mechanisms, such as autocatalytic cleavage, endocytosis and exocytosis, and post-translational modifications. Here, we summarize the latest advances in MT1-MMP, mainly focusing on its role in lipid metabolism, the molecular mechanisms regulating the function and expression of MT1-MMP, and their pharmacotherapeutic implications.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China.,Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Adekunle Alabi
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Maggie Wang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Rui Zhe Yang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511500, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6R 2G3, Canada
| |
Collapse
|
5
|
Qiang L, Cao H, Chen J, Weller SG, Krueger EW, Zhang L, Razidlo GL, McNiven MA. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1. J Cell Biol 2018; 218:317-332. [PMID: 30487181 PMCID: PMC6314558 DOI: 10.1083/jcb.201802032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells utilize invadopodia to remodel the surrounding stroma during metastatic invasion. Qiang et al. demonstrate that MTCBP-1 significantly attenuates invadopodia formation and function by binding MT1-MMP and preventing the interaction of MT1-MMP with the actin cytoskeleton. The process by which tumor cells mechanically invade through surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. The directed recruitment of the metalloproteinase MT1-MMP to invadopodia plays a critical role in this invasive process. Here, we provide mechanistic insight into MT1-MMP cytoplasmic tail binding protein 1 (MTCBP-1) with respect to invadopodia formation, matrix remodeling, and invasion by pancreatic tumor cells. MTCBP-1 localizes to invadopodia and interacts with MT1-MMP. We find that this interaction displaces MT1-MMP from invadopodia, thereby attenuating their number and function and reducing the capacity of tumor cells to degrade matrix. Further, we observe an inverse correlation between MTCBP-1 and MT1-MMP expression both in cultured cell lines and human pancreatic tumors. Consistently, MTCBP-1–expressing cells show decreased ability to invade in vitro and metastasize in vivo. These findings implicate MTCBP-1 as an inhibitor of the metastatic process.
Collapse
Affiliation(s)
- Li Qiang
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Hong Cao
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shaun G Weller
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Eugene W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Lizhi Zhang
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Nguyen AT, Chia J, Ros M, Hui KM, Saltel F, Bard F. Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis. Cancer Cell 2017; 32:639-653.e6. [PMID: 29136507 DOI: 10.1016/j.ccell.2017.10.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Cancers grow within tissues through molecular mechanisms still unclear. Invasiveness correlates with perturbed O-glycosylation, a covalent modification of cell-surface proteins. Here, we show that, in human and mouse liver cancers, initiation of O-glycosylation by the GALNT glycosyl-transferases increases and shifts from the Golgi to the endoplasmic reticulum (ER). In a mouse liver cancer model, expressing an ER-targeted GALNT1 (ER-G1) massively increased tumor expansion, with median survival reduced from 23 to 10 weeks. In vitro cell growth was unaffected, but ER-G1 strongly enabled matrix degradation and tissue invasion. Unlike its Golgi-localized counterpart, ER-G1 glycosylates the matrix metalloproteinase MMP14, a process required for tumor expansion. Together, our results indicate that GALNTs strongly promote liver tumor growth after relocating to the ER.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manon Ros
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kam Man Hui
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore; Duke-NUS Graduate Medical School, Singapore, 8 College Road, Singapore 169857, Singapore
| | - Frederic Saltel
- INSERM, U1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000 Bordeaux, France; University of Bordeaux, U1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000 Bordeaux, France
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.
| |
Collapse
|
7
|
Glycosylation of matrix metalloproteases and tissue inhibitors: present state, challenges and opportunities. Biochem J 2017; 473:1471-82. [PMID: 27234584 PMCID: PMC4888457 DOI: 10.1042/bj20151154] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Current knowledge about the glycosylation of matrix metalloproteinases (MMPs) and the inhibitors of metalloproteinases (TIMPs) is reviewed. Whereas structural and functional aspects of the glycobiology of many MMPs is unknown, research on MMP-9 and MMP-14 glycosylation reveals important functional implications, such as altered inhibitor binding and cellular localization. This, together with the fact that MMPs contain conserved and many potential attachment sites for N-linked and O-linked oligosaccharides, proves the need for further studies on MMP glycobiology. Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes.
Collapse
|
8
|
The polarization of the G-protein activated potassium channel GIRK5 to the vegetal pole of Xenopus laevis oocytes is driven by a di-leucine motif. PLoS One 2013; 8:e64096. [PMID: 23717539 PMCID: PMC3661522 DOI: 10.1371/journal.pone.0064096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/07/2013] [Indexed: 11/19/2022] Open
Abstract
The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes.
Collapse
|
9
|
Schröder HM, Hoffmann SC, Hecker M, Korff T, Ludwig T. The tetraspanin network modulates MT1-MMP cell surface trafficking. Int J Biochem Cell Biol 2013; 45:1133-44. [PMID: 23500527 DOI: 10.1016/j.biocel.2013.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
The membrane-type 1 matrix metalloproteinase (MT1-MMP) drives fundamental physiological and pathophysiological processes. Among other substrates, MT1-MMP cleaves components of the extracellular matrix and activates other matrix-cleaving proteases such as MMP-2. Trafficking is a highly effective means to modulate MT1-MMP cell surface expression, and hence regulate its function. Here, we describe the complex interaction of MT1-MMP with tetraspanins, their effects on MT1-MMP intracellular trafficking and proteolytic function. Tetraspanins are credited as membrane organizers that form a network within the membrane to regulate the trafficking of associated proteins. In short, we found MT1-MMP to interact with the tetraspanin-associated EWI-2 protein by a yeast two-hybrid screen. Immunoprecipitation analysis confirmed this interaction and further revealed that MT1-MMP also stably interacts with distinct tetraspanins (CD9, CD37, CD53, CD63, CD81, and CD82) and the tetraspanin-like MAL protein. By using different MT1-MMP truncation constructs and mutants, we observed that all tetraspanins and MAL associated with the hemopexin domain of MT1-MMP. Moreover, this interaction was independent of O-glycosylation of MT1-MMP and exclusively occurred in the endoplasmic reticulum. Here, the respective subcellular compartment was identified by fitting the MT1-MMP interaction pattern to a model for post-translational processing of MT1-MMP. In addition, tetraspanins differentially affected the cell surface localization of MT1-MMP, its capacity to activate pro-MMP-2, and the collagen invasion capacity. Interestingly, the degree of tetraspanin-MT1-MMP association did not correlate with its impact on MT1-MMP function. Tetraspanins thus distinctly affect MT1-MMP subcellular localization and function, and may constitute an effective mechanism to control MT1-MMP-dependent proteolysis at the cell surface.
Collapse
Affiliation(s)
- H M Schröder
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futó K, Timpson P, Nixon C, Ma Y, Anton IM, Visegrády B, Insall RH, Oien K, Blyth K, Norman JC, Machesky LM. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 2012; 199:527-44. [PMID: 23091069 PMCID: PMC3483131 DOI: 10.1083/jcb.201203025] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/28/2012] [Indexed: 11/22/2022] Open
Abstract
Metastasizing tumor cells use matrix metalloproteases, such as the transmembrane collagenase MT1-MMP, together with actin-based protrusions, to break through extracellular matrix barriers and migrate in dense matrix. Here we show that the actin nucleation-promoting protein N-WASP (Neural Wiskott-Aldrich syndrome protein) is up-regulated in breast cancer, and has a pivotal role in mediating the assembly of elongated pseudopodia that are instrumental in matrix degradation. Although a role for N-WASP in invadopodia was known, we now show how N-WASP regulates invasive protrusion in 3D matrices. In actively invading cells, N-WASP promoted trafficking of MT1-MMP into invasive pseudopodia, primarily from late endosomes, from which it was delivered to the plasma membrane. Upon MT1-MMP's arrival at the plasma membrane in pseudopodia, N-WASP stabilized MT1-MMP via direct tethering of its cytoplasmic tail to F-actin. Thus, N-WASP is crucial for extension of invasive pseudopods into which MT1-MMP traffics and for providing the correct cytoskeletal framework to couple matrix remodeling with protrusive invasion.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Blotting, Western
- Breast/metabolism
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Membrane/metabolism
- Cell Movement/physiology
- Extracellular Matrix/metabolism
- Female
- Fluorescence Resonance Energy Transfer
- Fluorescent Antibody Technique
- Humans
- Immunoenzyme Techniques
- Matrix Metalloproteinase 14/metabolism
- Mice
- Neoplasm Invasiveness
- Protein Multimerization
- Protein Transport
- Pseudopodia/metabolism
- Pseudopodia/pathology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
- Wiskott-Aldrich Syndrome Protein, Neuronal/antagonists & inhibitors
- Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
- Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
Collapse
Affiliation(s)
- Xinzi Yu
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Tobias Zech
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Laura McDonald
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Esther Garcia Gonzalez
- Centro Nacional de Biotecnologia (CNB-CSIC) Darwin 3, Campus Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Ang Li
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Iain Macpherson
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Juliane P. Schwarz
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Heather Spence
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Kinga Futó
- Department of Biophysics, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Paul Timpson
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Colin Nixon
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Yafeng Ma
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Ines M. Anton
- Centro Nacional de Biotecnologia (CNB-CSIC) Darwin 3, Campus Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Balázs Visegrády
- Department of Biophysics, Medical School, University of Pécs, Pécs H-7624, Hungary
| | - Robert H. Insall
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Karin Oien
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Karen Blyth
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Jim C. Norman
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Laura M. Machesky
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|
11
|
Kirmse R, Otto H, Ludwig T. The extracellular matrix remodeled: Interdependency of matrix proteolysis, cell adhesion, and force sensing. Commun Integr Biol 2012; 5:71-3. [PMID: 22482015 DOI: 10.4161/cib.17342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell's microenvironment. Cell's must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I.
Collapse
|
12
|
Shuo T, Koshikawa N, Hoshino D, Minegishi T, Ao-Kondo H, Oyama M, Sekiya S, Iwamoto S, Tanaka K, Seiki M. Detection of the heterogeneous O-glycosylation profile of MT1-MMP expressed in cancer cells by a simple MALDI-MS method. PLoS One 2012; 7:e43751. [PMID: 22928028 PMCID: PMC3425508 DOI: 10.1371/journal.pone.0043751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022] Open
Abstract
Background Glycosylation is an important and universal post-translational modification for many proteins, and regulates protein functions. However, simple and rapid methods to analyze glycans on individual proteins have not been available until recently. Methods/Principal Findings A new technique to analyze glycopeptides in a highly sensitive manner by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the liquid matrix 3AQ/CHCA was developed recently and we optimized this technique to analyze a small amount of transmembrane protein separated by SDS-PAGE. We used the MALDI-MS method to evaluate glycosylation status of membrane-type 1 matrix metalloproteinase (MT1-MMP). O-glycosylation of MT1-MMP is reported to modulate its protease activity and thereby to affect cancer cell invasion. MT1-MMP expressed in human fibrosarcoma HT1080 cells was immunoprecipitated and resolved by SDS-PAGE. After in-gel tryptic digestion of the protein, a single droplet of the digest was applied directly to the liquid matrix on a MALDI target plate. Concentration of hydrophilic glycopeptides within the central area occurred due to gradual evaporation of the sample solution, whereas nonglycosylated hydrophobic peptides remained at the periphery. This specific separation and concentration of the glycopeptides enabled comprehensive analysis of the MT1-MMP O-glycosylation. Conclusions/Significance We demonstrate, for the first time, heterogeneous O-glycosylation profile of a protein by a whole protein analysis using MALDI-MS. Since cancer cells are reported to have altered glycosylation of proteins, this easy-to-use method for glycopeptide analysis opens up the possibility to identify specific glycosylation patterns of proteins that can be used as new biomarkers for malignant tumors.
Collapse
Affiliation(s)
- Takuya Shuo
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoko Minegishi
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroko Ao-Kondo
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Stautz D, Wewer UM, Kveiborg M. Functional analysis of a breast cancer-associated mutation in the intracellular domain of the metalloprotease ADAM12. PLoS One 2012; 7:e37628. [PMID: 22662180 PMCID: PMC3360752 DOI: 10.1371/journal.pone.0037628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/26/2012] [Indexed: 11/18/2022] Open
Abstract
A recently identified breast cancer-associated mutation in the metalloprotease ADAM12 alters a potential dileucine trafficking signal, which could affect protein processing and cellular localization. ADAM12 belongs to the group of A Disintegrin And Metalloproteases (ADAMs), which are typically membrane-associated proteins involved in ectodomain shedding, cell-adhesion, and signaling. ADAM12 as well as several members of the ADAM family are over-expressed in various cancers, correlating with disease stage. Three breast cancer-associated somatic mutations were previously identified in ADAM12, and two of these, one in the metalloprotease domain and another in the disintegrin domain, were investigated and found to result in protein misfolding, retention in the secretory pathway, and failure of zymogen maturation. The third mutation, p.L792F in the ADAM12 cytoplasmic tail, was not investigated, but is potentially significant given its location within a di-leucine motif, which is recognized as a potential cellular trafficking signal. The present study was motivated both by the potential relevance of this documented mutation to cancer, as well as for determining the role of the di-leucine motif in ADAM12 trafficking. Expression of ADAM12 p.L792F in mammalian cells demonstrated quantitatively similar expression levels and zymogen maturation as wild-type (WT) ADAM12, as well as comparable cellular localizations. A cell surface biotinylation assay demonstrated that cell surface levels of ADAM12 WT and ADAM12 p.L792F were similar and that internalization of the mutant occurred at the same rate and extent as for ADAM12 WT. Moreover, functional analysis revealed no differences in cell proliferation or ectodomain shedding of epidermal growth factor (EGF), a known ADAM12 substrate between WT and mutant ADAM12. These data suggest that the ADAM12 p.L792F mutation is unlikely to be a driver (cancer causing)-mutation in breast cancer.
Collapse
Affiliation(s)
| | | | - Marie Kveiborg
- Department of Biomedical Sciences & Biotech Research and Innovation Centre, Copenhagen University, Ole Maaløes Vej, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
14
|
Seabold GK, Wang PY, Petralia RS, Chang K, Zhou A, McDermott MI, Wang YX, Milgram SL, Wenthold RJ. Dileucine and PDZ-binding motifs mediate synaptic adhesion-like molecule 1 (SALM1) trafficking in hippocampal neurons. J Biol Chem 2012; 287:4470-84. [PMID: 22174418 PMCID: PMC3281672 DOI: 10.1074/jbc.m111.279661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/22/2011] [Indexed: 12/18/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in neurite outgrowth and synapse formation. Of the five family members, only SALM1, -2, and -3 contain a cytoplasmic C-terminal PDZ-binding motif. We have found that SALM1 is unique among the SALMs because deletion of its PDZ-binding motif (SALM1ΔPDZ) blocks its surface expression in heterologous cells. When expressed in hippocampal neurons, SALM1ΔPDZ had decreased surface expression in dendrites and the cell soma but not in axons, suggesting that the PDZ-binding domain may influence cellular trafficking of SALMs to specific neuronal locations. Endoglycosidase H digestion assays indicated that SALM1ΔPDZ is retained in the endoplasmic reticulum (ER) in heterologous cells. However, when the entire C-terminal tail of SALM1 was deleted, SALM1 was detected on the cell surface. Using serial deletions, we identified a region of SALM1 that contains a putative dileucine ER retention motif, which is not present in the other SALMs. Mutation of this DXXXLL motif allowed SALM1 to leave the ER and enhanced its surface expression in heterologous cells and neurons. An increase in the number of protrusions at the dendrites and cell body was observed when this SALM1 mutant was expressed in hippocampal neurons. With electron microscopy, these protrusions appeared to be irregular, enlarged spines and filopodia. Thus, enrichment of SALM1 on the cell surface affects dendritic arborization, and intracellular motifs regulate its dendritic versus axonal localization.
Collapse
Affiliation(s)
- Gail K Seabold
- Laboratory of Neurochemistry, NIDCD/National Institutes of Health, 50 South Dr., Bldg. 50, Rm. 4144, Bethesda, MD20892-8027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kirmse R, Otto H, Ludwig T. Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J Cell Sci 2011; 124:1857-66. [PMID: 21558415 DOI: 10.1242/jcs.079343] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is becoming increasingly evident that the micromechanics of cells and their environment determine cell fate and function as much as soluble molecular factors do. We hypothesized that extracellular matrix proteolysis by membrane type 1 matrix metalloproteinase (MT1-MMP) depends on adhesion, force generation and rigidity sensing of the cell. Melanoma cells (MV3 clone) stably transfected with MT1-MMP, or the empty vector as a control, served as the model system. α2β1 integrins (cell adhesion), actin and myosin II (force generation and rigidity sensing) were blocked by their corresponding inhibitors (α2β1 integrin antibodies, Cytochalasin D, blebbistatin). A novel, anisotropic matrix array of parallel, fluorescently labeled collagen-I fibrils was used. Cleavage and bundling of the collagen-I fibrils, and spreading and durotaxis of the cells on this matrix array could be readily discerned and quantified by a combined set-up for fluorescence and atomic force microscopy. In short, expression of the protease resulted in the generation of structural matrix defects, clearly indicated by gaps in the collagen lattice and loose fiber bundles. This key feature of matrix remodeling depended essentially on the functionality of α2β1 integrin, the actin filament network and myosin II motor activity. Interference with any of these negatively impacted matrix cleavage and three-dimensional matrix entanglement of cells.
Collapse
Affiliation(s)
- Robert Kirmse
- German Cancer Research Center Heidelberg (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Eisenach PA, Roghi C, Fogarasi M, Murphy G, English WR. MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src. J Cell Sci 2010; 123:4182-93. [PMID: 21062896 DOI: 10.1242/jcs.062711] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level. In this study, we investigated the mechanism by which MT1-MMP regulates the expression of VEGF-A in breast cancer cells. We discovered that MT1-MMP regulates VEGFR-2 cell surface localisation and forms a complex with VEGFR-2 and Src that is dependent on the MT1-MMP hemopexin domain and independent of its catalytic activity. Although the localisation of VEGFR-2 was independent of the catalytic and intracellular domain of MT1-MMP, intracellular signalling dependent on VEGFR-2 activity leading to VEGF-A transcription still required the MT1-MMP catalytic and intracellular domain, including residues Y573, C574 and DKV582. However, there was redundancy in the function of the catalytic activity of MT1-MMP, as this could be substituted with MMP-2 or MMP-7 in cells expressing inactive MT1-MMP. The signalling cascade dependent on the MT1-MMP-VEGFR-2-Src complex activated Akt and mTOR, ultimately leading to increased VEGF-A transcription.
Collapse
Affiliation(s)
- Patricia A Eisenach
- University of Cambridge, Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | |
Collapse
|
17
|
Kim S, Huang W, Mottillo EP, Sohail A, Ham YA, Conley-Lacomb MK, Kim CJ, Tzivion G, Kim HRC, Wang S, Chen YQ, Fridman R. Posttranslational regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in mouse PTEN null prostate cancer cells: Enhanced surface expression and differential O-glycosylation of MT1-MMP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1287-97. [PMID: 20620173 DOI: 10.1016/j.bbamcr.2010.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 12/23/2022]
Abstract
Membrane type 1 (MT1)-matrix metalloproteinase (MT1-MMP) is a membrane-tethered MMP that has been shown to play a key role in promoting cancer cell invasion. MT1-MMP is highly expressed in bone metastasis of prostate cancer (PC) patients and promotes intraosseous tumor growth of PC cells in mice. The majority of metastatic prostate cancers harbor loss-of-function mutations or deletions of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten). However, the role of PTEN inactivation in MT1-MMP expression in PC cells has not been examined. In this study, prostate epithelial cell lines derived from mice that are either heterozygous (PTEN(+/-)) or homozygous (PTEN(-/-)) for PTEN deletion or harboring a wild-type PTEN (PTEN(+/+)) were used to investigate the expression of MT1-MMP. We found that biallelic loss of PTEN is associated with posttranslational regulation of MT1-MMP protein in mouse PC cells. PTEN(-/-) PC cells display higher levels of MT1-MMP at the cell surface when compared to PTEN(+/+) and PTEN(+/-) cells and consequently exhibited enhanced migratory and collagen-invasive activities. MT1-MMP displayed by PTEN(-/-) cells is differentially O-glycosylated and exhibits a slow rate of turnover. MT1-MMP expression in PTEN(-/-) cells is under control of the PI3K/AKT signaling pathway, as determined using pharmacological inhibitors. Interestingly, rapamycin, an mTOR inhibitor, upregulates MT1-MMP expression in PTEN(+/+) cells via PI3K activity. Collectively, these data in a mouse prostate cell system uncover for the first time a novel and complex relationship between PTEN loss-mediated PI3K/AKT activation and posttranslational regulation of MT1-MMP, which may play a role in PC progression.
Collapse
Affiliation(s)
- Seaho Kim
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Roghi C, Jones L, Gratian M, English WR, Murphy G. Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS J 2010; 277:3158-75. [PMID: 20608975 DOI: 10.1111/j.1742-4658.2010.07723.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence. In the present study, we demonstrate a role for the peripheral Golgi matrix protein GRASP55 in the furin-dependent activation of MT1-MMP. MT1-MMP and furin were found to co-localize with Golgi reassembly stacking protein 55 (GRASP55). Further analysis revealed that GRASP55 associated with the cytoplasmic domain of both proteases and that the LLY(573) motif in the MT1-MMP intracellular domain was crucial for the interaction with GRASP55. Overexpression of GRASP55 was found to enhance the formation of a complex between MT1-MMP and furin. Finally, we report that disruption of the interaction between GRASP55 and furin led to a reduction in pro-MT1-MMP activation. Taken together, these data suggest that GRASP55 may function as an adaptor protein coupling MT1-MMP with furin, thus leading to the activation of the zymogen.
Collapse
Affiliation(s)
- Christian Roghi
- Cancer Research UK Cambridge Research Institute, The Li Ka Shing Centre, UK.
| | | | | | | | | |
Collapse
|