1
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Thirumalai A, Ganapathy Raman P, Jayavelu T, Subramanian R. Bridging the gap between maleate hydratase, citraconase and isopropylmalate isomerase: Insights into the single broad-specific enzyme. Enzyme Microb Technol 2023; 162:110140. [DOI: 10.1016/j.enzmictec.2022.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
|
3
|
Abstract
α-Amino acids are essential molecular constituents of life, twenty of which are privileged because they are encoded by the ribosomal machinery. The question remains open as to why this number and why this 20 in particular, an almost philosophical question that cannot be conclusively resolved. They are closely related to the evolution of the genetic code and whether nucleic acids, amino acids, and peptides appeared simultaneously and were available under prebiotic conditions when the first self-sufficient complex molecular system emerged on Earth. This report focuses on prebiotic and metabolic aspects of amino acids and proteins starting with meteorites, followed by their formation, including peptides, under plausible prebiotic conditions, and the major biosynthetic pathways in the various kingdoms of life. Coenzymes play a key role in the present analysis in that amino acid metabolism is linked to glycolysis and different variants of the tricarboxylic acid cycle (TCA, rTCA, and the incomplete horseshoe version) as well as the biosynthesis of the most important coenzymes. Thus, the report opens additional perspectives and facets on the molecular evolution of primary metabolism.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic ChemistryLeibniz University HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
4
|
Research Progress on the Construction of Artificial Pathways for the Biosynthesis of Adipic Acid by Engineered Microbes. FERMENTATION 2022. [DOI: 10.3390/fermentation8080393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adipic acid is an important bulk chemical used in the nylon industry, as well as in food, plasticizers and pharmaceutical fields. It is thus considered one of the most important 12 platform chemicals. The current production of adipic acid relies on non-renewable petrochemical resources and emits large amounts of greenhouse gases. The bio-production of adipic acid from renewable resources via engineered microorganisms is regarded as a green and potential method to replace chemical conversion, and has attracted attention all over the world. Herein we review the current status of research on several artificial pathways for the biosynthesis of adipic acid, especially the reverse degradation pathway, which is a full biosynthetic method and has achieved the highest titer of adipic acid so far. Other artificial pathways including the fatty acid degradation pathway, the muconic acid conversion pathway, the polyketide pathway, the α-ketopimelate pathway and the lysine degradation pathway are also discussed. In addition, the challenges in the bio-production of adipic acid via these artificial pathways are analyzed and the prospects are presented with the intention of providing some significant points for the promotion of adipic acid biosynthesis.
Collapse
|
5
|
Martínez-Álvaro M, Auffret MD, Duthie CA, Dewhurst RJ, Cleveland MA, Watson M, Roehe R. Bovine host genome acts on rumen microbiome function linked to methane emissions. Commun Biol 2022; 5:350. [PMID: 35414107 PMCID: PMC9005536 DOI: 10.1038/s42003-022-03293-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/17/2022] [Indexed: 12/28/2022] Open
Abstract
Our study provides substantial evidence that the host genome affects the comprehensive function of the microbiome in the rumen of bovines. Of 1,107/225/1,141 rumen microbial genera/metagenome assembled uncultured genomes (RUGs)/genes identified from whole metagenomics sequencing, 194/14/337 had significant host genomic effects (heritabilities ranging from 0.13 to 0.61), revealing that substantial variation of the microbiome is under host genomic control. We found 29/22/115 microbial genera/RUGs/genes host-genomically correlated (|0.59| to |0.93|) with emissions of the potent greenhouse gas methane (CH4), highlighting the strength of a common host genomic control of specific microbial processes and CH4. Only one of these microbial genes was directly involved in methanogenesis (cofG), whereas others were involved in providing substrates for archaea (e.g. bcd and pccB), important microbial interspecies communication mechanisms (ABC.PE.P), host-microbiome interaction (TSTA3) and genetic information processes (RP-L35). In our population, selection based on abundances of the 30 most informative microbial genes provided a mitigation potential of 17% of mean CH4 emissions per generation, which is higher than for selection based on measured CH4 using respiration chambers (13%), indicating the high potential of microbiome-driven breeding to cumulatively reduce CH4 emissions and mitigate climate change.
Collapse
Affiliation(s)
| | | | | | | | | | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
6
|
Crystal structures of aconitase X enzymes from bacteria and archaea provide insights into the molecular evolution of the aconitase superfamily. Commun Biol 2021; 4:687. [PMID: 34099860 PMCID: PMC8184944 DOI: 10.1038/s42003-021-02147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aconitase superfamily members catalyze the homologous isomerization of specific substrates by sequential dehydration and hydration and contain a [4Fe-4S] cluster. However, monomeric and heterodimeric types of function unknown aconitase X (AcnX) have recently been characterized as a cis-3-hydroxy-L-proline dehydratase (AcnXType-I) and mevalonate 5-phosphate dehydratase (AcnXType-II), respectively. We herein elucidated the crystal structures of AcnXType-I from Agrobacterium tumefaciens (AtAcnX) and AcnXType-II from Thermococcus kodakarensis (TkAcnX) without a ligand and in complex with substrates. AtAcnX and TkAcnX contained the [2Fe-2S] and [3Fe-4S] clusters, respectively, conforming to UV and EPR spectroscopy analyses. The binding sites of the [Fe-S] cluster and substrate were clearlydifferent from those that were completely conserved in other aconitase enzymes; however, theoverall structural frameworks and locations of active sites were partially similar to each other.These results provide novel insights into the evolutionary scenario of the aconitase superfamilybased on the recruitment hypothesis. Seiya Watanabe et al. report the crystal structures of two distinct members of the Aconitase X subfamily, which contain [Fe-S] clusters different from other aconitases. This study provides insight into the molecular evolution of the aconitase superfamily.
Collapse
|
7
|
Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Lin GM, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Muñoz-Velasco I, García-Ferris C, Hernandez-Morales R, Lazcano A, Peretó J, Becerra A. Methanogenesis on Early Stages of Life: Ancient but Not Primordial. ORIGINS LIFE EVOL B 2018; 48:407-420. [PMID: 30612264 DOI: 10.1007/s11084-018-9570-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P., 04510, Ciudad de México, Mexico
| | - Carlos García-Ferris
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Ricardo Hernandez-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Miembro de El Colegio Nacional, El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Ciudad de México, Mexico
| | - Juli Peretó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Functional characterization of aconitase X as a cis-3-hydroxy-L-proline dehydratase. Sci Rep 2016; 6:38720. [PMID: 27929065 PMCID: PMC5144071 DOI: 10.1038/srep38720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to β-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.
Collapse
|
11
|
Turk SCHJ, Kloosterman WP, Ninaber DK, Kolen KPAM, Knutova J, Suir E, Schürmann M, Raemakers-Franken PC, Müller M, de Wildeman SMA, Raamsdonk LM, van der Pol R, Wu L, Temudo MF, van der Hoeven RAM, Akeroyd M, van der Stoel RE, Noorman HJ, Bovenberg RAL, Trefzer AC. Metabolic Engineering toward Sustainable Production of Nylon-6. ACS Synth Biol 2016; 5:65-73. [PMID: 26511532 DOI: 10.1021/acssynbio.5b00129] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.
Collapse
Affiliation(s)
| | - Wigard P. Kloosterman
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- University Medical Center Utrecht, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | - Dennis K. Ninaber
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Julia Knutova
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - Erwin Suir
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- BioscienZ, Goeseelsstraat 10, 4817 MV Breda, The Netherlands
| | - Martin Schürmann
- DSM Innovative Synthesis, PO Box 18, 6160 MD Geleen, The Netherlands
| | | | - Monika Müller
- DSM Innovative Synthesis, PO Box 18, 6160 MD Geleen, The Netherlands
| | | | | | - Ruud van der Pol
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | | | | | - Michiel Akeroyd
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | | | - Henk J. Noorman
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- Synthetic
Biology and Cell Engineering, Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Axel C. Trefzer
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- Life Technologies, GeneArt, Im Gewerbepark B35, 93059 Regensburg, Germany
| |
Collapse
|
12
|
Zhou H, Vonk B, Roubos JA, Bovenberg RAL, Voigt CA. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor. Nucleic Acids Res 2015; 43:10560-70. [PMID: 26519464 PMCID: PMC4666358 DOI: 10.1093/nar/gkv1071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/01/2015] [Indexed: 11/14/2022] Open
Abstract
Optimizing bio-production involves strain and process improvements performed as discrete steps. However, environment impacts genotype and a strain that is optimal under one set of conditions may not be under different conditions. We present a methodology to simultaneously vary genetic and process factors, so that both can be guided by design of experiments (DOE). Advances in DNA assembly and gene insulation facilitate this approach by accelerating multi-gene pathway construction and the statistical interpretation of screening data. This is applied to a 6-aminocaproic acid (6-ACA) pathway in Escherichia coli consisting of six heterologous enzymes. A 32-member fraction factorial library is designed that simultaneously perturbs expression and media composition. This is compared to a 64-member full factorial library just varying expression (0.64 Mb of DNA assembly). Statistical analysis of the screening data from these libraries leads to different predictions as to whether the expression of enzymes needs to increase or decrease. Therefore, if genotype and media were varied separately this would lead to a suboptimal combination. This is applied to the design of a strain and media composition that increases 6-ACA from 9 to 48 mg/l in a single optimization step. This work introduces a generalizable platform to co-optimize genetic and non-genetic factors.
Collapse
Affiliation(s)
- Hui Zhou
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brenda Vonk
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | | | - Roel A L Bovenberg
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Hiseni A, Arends IWCE, Otten LG. New Cofactor-Independent Hydration Biocatalysts: Structural, Biochemical, and Biocatalytic Characteristics of Carotenoid and Oleate Hydratases. ChemCatChem 2014. [DOI: 10.1002/cctc.201402511] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Lee EH, Lee K, Hwang KY. Structural characterization and comparison of the large subunits of IPM isomerase and homoaconitase from Methanococcus jannaschii. ACTA ACUST UNITED AC 2014; 70:922-31. [PMID: 24699638 DOI: 10.1107/s1399004713033762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022]
Abstract
The aconitase family of proteins includes three classes of hydro-lyase enzymes: aconitases, homoaconitases and isopropylmalate (IPM) isomerases. They have a common Fe-S cluster-binding site and catalyze the isomerization of specific substrates by sequential dehydration and hydration. The archaeon Methanococcus jannaschii contains two aconitase family proteins, IPM isomerase and homoaconitase, which have 50% sequence identity. These two enzymes are heterodimeric proteins composed of large and small subunits encoded by separate genes. Although structures have been reported for the small subunits of the two enzymes, the first structures of oxidized and reduced forms of the large subunit of IPM isomerase (ox-MJ0499 and red-MJ0499, respectively) from M. jannaschii are reported here at 1.8 and 2.7 Å resolution, respectively, together with the structure of the large subunit of homoaconitase (MJ1003) at 2.5 Å resolution. The structures of both proteins have unbound Fe-S clusters and contain a fourth cysteine in the active site. The active site of MJ1003 is homologous to that of aconitase, whereas MJ0499 has significant structural distortion at the active site compared with aconitase. In addition, significant large conformational changes were observed in the active site of red-MJ0499 when compared with ox-MJ0499. The active sites of the two proteins adopt two different states before changing to the Fe-S cluster-bound `activated' state observed in aconitase. MJ1003 has an `open' active site, which forms an active pocket for the cluster, while ox-MJ0499 has a `closed' active site, with four cysteines in disulfide bonds. These data will be helpful in understanding the biochemical mechanism of clustering of the Fe-S protein family.
Collapse
Affiliation(s)
- Eun Hye Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong-5, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Kitaik Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong-5, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong-5, Seongbuk-gu, Seoul 136-701, Republic of Korea
| |
Collapse
|
15
|
Kanehisa M. Automated interpretation of metabolic capacity from genome and metagenome sequences. QUANTITATIVE BIOLOGY 2013. [DOI: 10.1007/s40484-013-0019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Milewska MJ, Prokop M, Gabriel I, Wojciechowski M, Milewski S. Antifungal activity of homoaconitate and homoisocitrate analogs. Molecules 2012. [PMID: 23187286 PMCID: PMC6268379 DOI: 10.3390/molecules171214022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Thirteen structural analogs of two initial intermediates of the l-α-aminoadipate pathway of l-lysine biosynthesis in fungi have been designed and synthesized, including fluoro- and epoxy-derivatives of homoaconitate and homoisocitrate. Some of the obtained compounds exhibited at milimolar range moderate enzyme inhibitory properties against homoaconitase and/or homoisocitrate dehydrogenase of Candida albicans. The structural basis for homoisocitrate dehydrogenase inhibition was revealed by molecular modeling of the enzyme-inhibitor complex. On the other hand, the trimethyl ester forms of some of the novel compounds exhibited antifungal effects. The highest antifungal activity was found for trimethyl trans-homoaconitate, which inhibited growth of some human pathogenic yeasts with minimal inhibitory concentration (MIC) values of 16–32 μg/mL.
Collapse
Affiliation(s)
- Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
17
|
Fazius F, Shelest E, Gebhardt P, Brock M. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol Microbiol 2012; 86:1508-30. [PMID: 23106124 PMCID: PMC3556520 DOI: 10.1111/mmi.12076] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
Abstract
Fungi produce α-aminoadipate, a precursor for penicillin and lysine via the α-aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis.
Collapse
Affiliation(s)
- Felicitas Fazius
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
Recursive pathways are broadly defined as those that catalyze a series of reactions such that the key, bond-forming functional group of the substrate is always regenerated in each cycle, allowing for a new cycle of reactions to begin. Recursive carbon-chain elongation pathways in nature produce fatty acids, polyketides, isoprenoids and α-keto acids (αKAs), which all use modular or iterative approaches for chain elongation. Recently, an artificial pathway for αKA elongation has been built that uses an engineered isopropylmalate synthase to recursively condense acetyl-CoA with αKAs. This synthetic approach expands the possibilities for recursive pathways beyond the modular or iterative synthesis of natural products and serves as a case study for understanding the challenges of building recursive pathways from nonrecursive enzymes. There exists the potential to design synthetic recursive pathways far beyond what nature has evolved.
Collapse
|
19
|
Lee EH, Cho YW, Hwang KY. Crystal structure of LeuD from Methanococcus jannaschii. Biochem Biophys Res Commun 2012; 419:160-4. [DOI: 10.1016/j.bbrc.2012.01.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 11/25/2022]
|
20
|
Dairi T, Kuzuyama T, Nishiyama M, Fujii I. Convergent strategies in biosynthesis. Nat Prod Rep 2011; 28:1054-86. [PMID: 21547300 DOI: 10.1039/c0np00047g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review article focuses on how nature sometimes solves the same problem in the biosynthesis of small molecules but using very different approaches. Four examples, involving isopentenyl diphosphate, menaquinone, lysine, and aromatic polyketides, are highlighted that represent different strategies in convergent metabolism.
Collapse
Affiliation(s)
- Tohru Dairi
- Faculty of Engineering and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
21
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
22
|
|
23
|
Manikandan K, Geerlof A, Zozulya AV, Svergun DI, Weiss MS. Structural studies on the enzyme complex isopropylmalate isomerase (LeuCD) fromMycobacterium tuberculosis. Proteins 2010; 79:35-49. [DOI: 10.1002/prot.22856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/08/2010] [Accepted: 07/25/2010] [Indexed: 11/10/2022]
|
24
|
Wohlgemuth R. Asymmetric biocatalysis with microbial enzymes and cells. Curr Opin Microbiol 2010; 13:283-92. [DOI: 10.1016/j.mib.2010.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 01/05/2023]
|
25
|
Jeyakanthan J, Drevland RM, Gayathri DR, Velmurugan D, Shinkai A, Kuramitsu S, Yokoyama S, Graham DE. Substrate Specificity Determinants of the Methanogen Homoaconitase Enzyme: Structure and Function of the Small Subunit,. Biochemistry 2010; 49:2687-96. [DOI: 10.1021/bi901766z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeyaraman Jeyakanthan
- Life Science Group, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinch 30076, Taiwan
| | - Randy M. Drevland
- Chemistry and Biochemistry Department, The University of Texas at Austin, Austin, Texas 78712
| | - Dasara Raju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - David E. Graham
- Chemistry and Biochemistry Department, The University of Texas at Austin, Austin, Texas 78712
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
26
|
Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins. J Bacteriol 2008; 191:1490-7. [PMID: 19114487 DOI: 10.1128/jb.01469-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron-sulfur clusters may have been the earliest catalytic cofactors on earth, and most modern organisms use them extensively. Although members of the Archaea produce numerous iron-sulfur proteins, the major cluster assembly proteins found in the Bacteria and Eukarya are not universally conserved in archaea. Free-living archaea do have homologs of the bacterial apbC and eukaryotic NBP35 genes that encode iron-sulfur cluster carrier proteins. This study exploits the genetic system of Salmonella enterica to examine the in vivo functionality of apbC/NBP35 homologs from three archaea: Methanococcus maripaludis, Methanocaldococcus jannaschii, and Sulfolobus solfataricus. All three archaeal homologs could correct the tricarballylate growth defect of an S. enterica apbC mutant. Additional genetic studies showed that the conserved Walker box serine and the Cys-X-X-Cys motif of the M. maripaludis MMP0704 protein were both required for function in vivo but that the amino-terminal ferredoxin domain was not. MMP0704 protein and an MMP0704 variant protein missing the N-terminal ferredoxin domain were purified, and the Fe-S clusters were chemically reconstituted. Both proteins bound equimolar concentrations of Fe and S and had UV-visible spectra similar to those of known [4Fe-4S] cluster-containing proteins. This family of dimeric iron-sulfur carrier proteins evolved before the archaeal and eukaryal lineages diverged, representing an ancient mode of cluster assembly.
Collapse
|