1
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
2
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
4
|
Mitophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4906434. [PMID: 35126814 PMCID: PMC8813270 DOI: 10.1155/2022/4906434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) contributes to death, and disability worldwide more than any other traumatic insult and damage to cellular components including mitochondria leads to the impairment of cellular functions and brain function. In neurons, mitophagy, autophagy-mediated degradation of damaged mitochondria, is a key process in cellular quality control including mitochondrial homeostasis and energy supply and plays a fundamental role in neuronal survival and health. Conversely, defective mitophagy leads to the accumulation of damaged mitochondria and cellular dysfunction, contributing to inflammation, oxidative stress, and neuronal cell death. Therefore, an extensive characterization of mitophagy-related protective mechanisms, taking into account the complex mechanisms by which each molecular player is connected to the others, may provide a rationale for the development of new therapeutic strategies in TBI patients. Here, we discuss the contribution of defective mitophagy in TBI, and the underlying molecular mechanisms of mitophagy in inflammation, oxidative stress, and neuronal cell death highlight novel therapeutics based on newly discovered mitophagy-inducing strategies.
Collapse
|
5
|
Discovery of a potent FKBP38 agonist that ameliorates HFD-induced hyperlipidemia via mTOR/P70S6K/SREBPs pathway. Acta Pharm Sin B 2021; 11:3542-3552. [PMID: 34900535 PMCID: PMC8642436 DOI: 10.1016/j.apsb.2021.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR)-sterol regulatory element-binding proteins (SREBPs) signaling promotes lipogenesis. However, mTOR inhibitors also displayed a significant side effect of hyperlipidemia. Thus, it is essential to develop mTOR-specific inhibitors to inhibit lipogenesis. Here, we screened the endogenous inhibitors of mTOR, and identified that FKBP38 as a vital regulator of lipid metabolism. FKBP38 decreased the lipid content in vitro and in vivo via suppression of the mTOR/P70S6K/SREBPs pathway. 3,5,6,7,8,3ʹ,4ʹ-Heptamethoxyflavone (HMF), a citrus flavonoid, was found to target FKBP38 to suppress the mTOR/P70S6K/SREBPs pathway, reduce lipid level, and potently ameliorate hyperlipidemia and insulin resistance in high fat diet (HFD)-fed mice. Our findings suggest that pharmacological intervention by targeting FKBP38 to suppress mTOR/P70S6K/SREBPs pathway is a potential therapeutic strategy for hyperlipidemia, and HMF could be a leading compound for development of anti-hyperlipidemia drugs.
Collapse
|
6
|
Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell 2021; 56:811-825.e6. [PMID: 33725483 DOI: 10.1016/j.devcel.2021.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Neuronal activity increases energy consumption and requires balanced production to maintain neuronal function. How activity is coupled to energy production remains incompletely understood. Here, we report that Rheb regulates mitochondrial tricarboxylic acid cycle flux of acetyl-CoA by activating pyruvate dehydrogenase (PDH) to increase ATP production. Rheb is induced by synaptic activity and lactate and dynamically trafficked to the mitochondrial matrix through its interaction with Tom20. Mitochondria-localized Rheb protein is required for activity-induced PDH activation and ATP production. Cell-type-specific gain- and loss-of-function genetic models for Rheb reveal reciprocal changes in PDH phosphorylation/activity, acetyl-CoA, and ATP that are not evident with genetic or pharmacological manipulations of mTORC1. Mechanistically, Rheb physically associates with PDH phosphatase (PDP), enhancing its activity and association with the catalytic E1α-subunit of PDH to reduce PDH phosphorylation and increase its activity. Findings identify Rheb as a nodal point that balances neuronal activity and neuroenergetics via Rheb-PDH axis.
Collapse
|
7
|
Kazak L. Balancing energy demand and production by mitochondrial trafficking of RHEB. Dev Cell 2021; 56:721-722. [PMID: 33756117 DOI: 10.1016/j.devcel.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this issue of Developmental Cell,Yang et al. (2021) discover that, RHEB traffics to mitochondria to promote energy production by stimulating pyruvate dehydrogenase to convert pyruvate to acetyl-CoA.
Collapse
Affiliation(s)
- Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
8
|
Annett S, Moore G, Robson T. FK506 binding proteins and inflammation related signalling pathways; basic biology, current status and future prospects for pharmacological intervention. Pharmacol Ther 2020; 215:107623. [PMID: 32622856 DOI: 10.1016/j.pharmthera.2020.107623] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
FK506 binding (FKBP) proteins are part of the highly conserved immunophilin family and its members have fundamental roles in the regulation of signalling pathways involved in inflammation, adaptive immune responses, cancer and developmental biology. The original member of this family, FKBP12, is a well-known binding partner for the immunosuppressive drugs tacrolimus (FK506) and sirolimus (rapamycin). FKBP12 and its analog, FKBP12.6, function as cis/trans peptidyl prolyl isomerases (PPIase) and they catalyse the interconversion of cis/trans prolyl conformations. Members of this family uniquely contain a PPIase domain, which may not be functional. The larger FKBPs, such as FKBP51, FKBP52 and FKBPL, contain extra regions, including tetratricopeptide repeat (TPR) domains, which are important for their versatile protein-protein interactions with inflammation-related signalling pathways. In this review we focus on the pivotal role of FKBP proteins in regulating glucocorticoid signalling, canonical and non-canonical NF-κB signalling, mTOR/AKT signalling and TGF-β signalling. We examine the mechanism of action of FKBP based immunosuppressive drugs on these cell signalling pathways and how off target interactions lead to the development of side effects often seen in the clinic. Finally, we discuss the latest advances in the role of FKBPs as therapeutic targets and the development of novel agents for a range of indications of unmet clinical need, including glucocorticoid resistance, obesity, stress-induced inflammation and novel cancer immunotherapy.
Collapse
Affiliation(s)
- Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
9
|
Lu Q, Wang M, Gui Y, Hou Q, Gu M, Liang Y, Xiao B, Zhao AZ, Dai C. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Dis 2020; 11:364. [PMID: 32404875 PMCID: PMC7221100 DOI: 10.1038/s41419-020-2539-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/14/2023]
Abstract
Ras homolog enriched in brain (Rheb1), a small GTPase, plays a crucial role in regulating cell growth, differentiation, and survival. However, the role and mechanisms for Rheb1 in tubular cell survival and acute kidney injury (AKI) remain unexplored. Here we found that Rheb1 signaling was activated in kidney tubule of AKI patients and cisplatin-treated mice. A mouse model of tubule-specific deletion of Rheb1 (Tubule-Rheb1−/−) was generated. Compared to control littermates, Tubule-Rheb1−/− mice were phenotypically normal within 2 months after birth but developed more severe kidney dysfunction, tubular cell death including apoptosis, necroptosis and ferroptosis, mitochondrial defect and less PGC-1α expression after cisplatin injection. In primary cultured tubular cells, Rheb1 ablation exacerbated cisplatin-induced cell death and mitochondrial defect. Furthermore, haploinsufficiency for Tsc1 in tubular cells led to Rheb1 activation and mitigated cisplatin-induced cell death, mitochondrial defect and AKI. Together, this study uncovers that Rheb1 may protect against cisplatin-induced tubular cell death and AKI through maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mingjie Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengru Gu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, 518000, Shenzhen, P.R. China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510515, Guangzhou, P.R. China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
De Cicco M, Kiss L, Dames SA. NMR analysis of the backbone dynamics of the small GTPase Rheb and its interaction with the regulatory protein FKBP38. FEBS Lett 2017; 592:130-146. [PMID: 29194576 DOI: 10.1002/1873-3468.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and, thereby, cell growth and metabolism. Here we show that cycling between the inactive GDP- and the active GTP-bound state modulates the backbone dynamics of a C-terminal truncated form, RhebΔCT, which is suggested to influence its interactions. We further investigated the interactions between RhebΔCT and the proposed Rheb-binding domain of the regulatory protein FKBP38. The observed weak interactions with the GTP-analogue- (GppNHp-) but not the GDP-bound state, appear to accelerate the GDP to GTP exchange, but only very weakly compared to a genuine GEF. Thus, FKBP38 is most likely not a GEF but a Rheb effector that may function in membrane targeting of Rheb.
Collapse
Affiliation(s)
- Maristella De Cicco
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Leo Kiss
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Sonja A Dames
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
11
|
NOORI AZRANAJMI, BEHZADI MOHAMMADREZABAHREINI, MOHAMMADABADI MOHAMMADREZA. Expression pattern of Rheb gene in Jabal Barez Red goat. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i11.75890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
According to importance of Rheb gene on growth, cell cycle and cancer, expression of this gene for the first time was studied in Jabal Barez Red goat. Rheb belongs to Ras family that encodes a carboxylterminal CAAX box indicating that the protein may undergo post-translational farnesylation. Over-expressions of Rheb simulate cell growth while knockdown of Rheb expression, inhibits protein synthesis and cell growth. In this study, expression of Rheb gene was investigated by Real-Time PCR and Pfaffl method in various tissues including brain (medulla), brain (cortex), heart, kidney (cortex), kidney (medulla), testis, lung, liver and spleen. For analyzing the data of Pfaffl method, SAS software was used. Results showed that the Rheb gene was expressed in all the tested tissues and the highest level of expression was observed in spleen and the lowest level was detected in lung. Therefore, this gene is expressed in all the tissues and physiological effects of this gene needs to be investigated in different tissues and different animals.
Collapse
|
12
|
De Cicco M, Milroy LG, Dames SA. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study. Protein Sci 2017; 27:546-560. [PMID: 29024217 DOI: 10.1002/pro.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/11/2023]
Abstract
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.
Collapse
Affiliation(s)
- Maristella De Cicco
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Lech-G Milroy
- Department of Biomedical Technology, Laboratory of Chemical Biology, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Sonja A Dames
- Department of Chemistry, Technische Universität München, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
13
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
14
|
Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K. Assessment of mTOR pathway molecules during implantation in rats. Biotech Histochem 2017; 92:450-458. [DOI: 10.1080/10520295.2017.1350749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- G. Ekizceli
- Department of Histology and Embryology, Uludag University Faculty of Medicine, Bursa
| | - S. Inan
- Department of Histology and Embryology, Izmir University of Economics, Faculty of Medicine, Izmir
| | - G. Oktem
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir
| | - E. Onur
- Department of Medical Biochemistry, Celal Bayar University, Faculty of Medicine, Manisa
| | - K. Ozbilgin
- Department of Histology and Embryology, Celal Bayar University, Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
15
|
Tian Q, Smart JL, Clement JH, Wang Y, Derkatch A, Schubert H, Danilchik MV, Marks DL, Fedorov LM. RHEB1 expression in embryonic and postnatal mouse. Histochem Cell Biol 2015; 145:561-72. [PMID: 26708151 DOI: 10.1007/s00418-015-1394-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/16/2022]
Abstract
Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expression pattern of RHEB1 was analyzed in both embryonic (at E3.5-E16.5) and adult (1-month old) mice. RHEB1 immunostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These independent methods revealed similar RHEB1 expression patterns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expression was seen in preimplantation embryos at E3.5 and postimplantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tissues, including the neuroepithelial layer of the mesencephalon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, subcortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary bladder, and muscle. Moreover, adult animals have complex tissue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal development. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development.
Collapse
Affiliation(s)
- Qi Tian
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | | | - Joachim H Clement
- Department of Hematology and Oncology, Jena University Hospital, 07747, Jena, Germany
| | - Yingming Wang
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alex Derkatch
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | | | - Michael V Danilchik
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Friedrich-Schiller-University, 07740, Jena, Germany.
| |
Collapse
|
16
|
Armijo ME, Campos T, Fuentes-Villalobos F, Palma ME, Pincheira R, Castro AF. Rheb signaling and tumorigenesis: mTORC1 and new horizons. Int J Cancer 2015; 138:1815-23. [PMID: 26234902 DOI: 10.1002/ijc.29707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/05/2023]
Abstract
Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1-independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.
Collapse
Affiliation(s)
- Marisol E Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Tania Campos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Francisco Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Mario E Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| |
Collapse
|
17
|
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25:545-55. [PMID: 26159692 DOI: 10.1016/j.tcb.2015.06.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
18
|
Wang X, Wang Y, Zheng X, Hao X, Liang Y, Wu M, Wang X, Wang Z. Direct Interaction between Ras Homolog Enriched in Brain and FK506 Binding Protein 38 in Cashmere Goat Fetal Fibroblast Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1671-7. [PMID: 25358358 PMCID: PMC4213676 DOI: 10.5713/ajas.2014.14145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/27/2022]
Abstract
Ras homolog enriched in brain (Rheb) and FK506 binding protein 38 (FKBP38) are two important regulatory proteins in the mammalian target of rapamycin (mTOR) pathway. There are contradictory data on the interaction between Rheb and FKBP38 in human cells, but this association has not been examined in cashmere goat cells. To investigate the interaction between Rheb and FKBP38, we overexpressed goat Rheb and FKBP38 in goat fetal fibroblasts, extracted whole proteins, and performed coimmunoprecipitation to detect them by western blot. We found Rheb binds directly to FKBP38. Then, we constructed bait vectors (pGBKT7-Rheb/FKBP38) and prey vectors (pGADT7-Rheb/FKBP38), and examined their interaction by yeast two-hybrid assay. Their direct interaction was observed, regardless of which plasmid served as the prey or bait vector. These results indicate that the 2 proteins interact directly in vivo. Novel evidence is presented on the mTOR signal pathway in Cashmere goat cells.
Collapse
Affiliation(s)
- Xiaojing Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Yanfeng Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xu Zheng
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xiyan Hao
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Yan Liang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Manlin Wu
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xiao Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Zhigang Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| |
Collapse
|
19
|
Gámez-Pozo A, Pérez Carrión RM, Manso L, Crespo C, Mendiola C, López-Vacas R, Berges-Soria J, López IÁ, Margeli M, Calero JLB, Farre XG, Santaballa A, Ciruelos EM, Afonso R, Lao J, Catalán G, Gallego JVÁ, López JM, Bofill FJS, Borrego MR, Espinosa E, Vara JAF, Zamora P. The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy. PLoS One 2014; 9:e109611. [PMID: 25330188 PMCID: PMC4203741 DOI: 10.1371/journal.pone.0109611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Trastuzumab improves survival outcomes in patients with HER2+ metastatic breast cancer. The Long-Her study was designed to identify clinical and molecular markers that could differentiate long-term survivors from patients having early progression after trastuzumab treatment. Methods Data were collected from women with HER2-positive metastatic breast cancer treated with trastuzumab that experienced a response or stable disease during at least 3 years. Patients having a progression in the first year of therapy with trastuzumab were used as a control. Genes related with trastuzumab resistance were identified and investigated for network and gene functional interrelation. Models predicting poor response to trastuzumab were constructed and evaluated. Finally, a mutational status analysis of selected genes was performed in HER2 positive breast cancer samples. Results 103 patients were registered in the Long-HER study, of whom 71 had obtained a durable complete response. Median age was 58 years. Metastatic disease was diagnosed after a median of 24.7 months since primary diagnosis. Metastases were present in the liver (25%), lungs (25%), bones (23%) and soft tissues (23%), with 20% of patients having multiple locations of metastases. Median duration of response was 55 months. The molecular analysis included 35 patients from the group with complete response and 18 patients in a control poor-response group. Absence of trastuzumab as part of adjuvant therapy was the only clinical factor associated with long-term survival. Gene ontology analysis demonstrated that PI3K pathway was associated with poor response to trastuzumab-based therapy: tumours in the control group usually had four or five alterations in this pathway, whereas tumours in the Long-HER group had two alterations at most. Conclusions Trastuzumab may provide a substantial long-term survival benefit in a selected group of patients. Whole genome expression analysis comparing long-term survivors vs. a control group predicted early progression after trastuzumab-based therapy. Multiple alterations in genes related to the PI3K-mTOR pathway seem to be required to confer resistance to this therapy.
Collapse
Affiliation(s)
- Angelo Gámez-Pozo
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | | | - Luis Manso
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Crespo
- Medical Oncology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Cesar Mendiola
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Rocío López-Vacas
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Julia Berges-Soria
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Isabel Álvarez López
- Medical Oncology Department, Hospital de Donostia, San Sebastián, Pais Vasco, Spain
| | - Mireia Margeli
- Medical Oncology Department, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | - Ana Santaballa
- Medical Oncology Department, Hospital La Fe, Valencia, Spain
| | - Eva M. Ciruelos
- Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Ruth Afonso
- Medical Oncology Department, Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan Lao
- Medical Oncology Department, Hospital Miguel Servet, Zaragoza, Spain
| | - Gustavo Catalán
- Medical Oncology Department, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | | | - José Miramón López
- Medical Oncology Department, Hospital Serranía de Ronda, Ronda, Málaga, Spain
| | | | | | | | - Juan A. Fresno Vara
- Instituto de Genética Médica y Molecular (INGEMM) – IdiPAZ, Hospital La Paz, Madrid, Spain
| | - Pilar Zamora
- Medical Oncology Department, Hospital La Paz, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Swer PB, Bhadoriya P, Saran S. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression. J Biosci 2014; 39:75-84. [PMID: 24499792 DOI: 10.1007/s12038-013-9405-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.
Collapse
Affiliation(s)
- Pynskhem Bok Swer
- School of Life Science, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
21
|
Zheng X, Hao XY, Chen YH, Zhang X, Yang JF, Wang ZG, Liu DJ. Molecular Characterization and Tissue-specific Expression of a Novel FKBP38 Gene in the Cashmere Goat (Capra hircus). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:758-63. [PMID: 25049623 PMCID: PMC4093086 DOI: 10.5713/ajas.2011.11398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/24/2012] [Accepted: 12/29/2011] [Indexed: 12/01/2022]
Abstract
As a member of a subclass of immunophilins, it is controversial that FKBP38 acts an upstream regulator of mTOR signaling pathway, which control the process of cell-growth, proliferation and differentiation. In order to explore the relationship between FKBP38 and mTOR in the Cashmere goat (Capra hircus) cells, a full-length cDNA was cloned (GenBank accession number JF714970) and expression pattern was analyzed. The cloned FKBP38 gene is 1,248 bp in length, containing an open reading frame (ORF) from nucleotide 13 to 1,248 which encodes 411 amino acids, and 12 nucleotides in front of the initiation codon. The full cDNA sequence shares 98% identity with cattle, 94% with horse and 90% with human. The putative amino acid sequence shows the higher homology which is 98%, 97% and 94%, correspondingly. The bioinformatics analysis showed that FKBP38 contained a FKBP_C domain, two TPR domains and a TM domain. Psite analysis suggested that the ORF encoding protein contained a leucine-zipper pattern and a Prenyl group binding site (CAAX box). Tissue-specific expression analysis was performed by semi-quantitative RT-PCR and showed that the FKBP38 expression was detected in all the tested tissues and the highest level of mRNA accumulation was detected in testis, suggesting that FKBP38 plays an important role in goat cells.
Collapse
Affiliation(s)
- X Zheng
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| | - X Y Hao
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China ; TEDA School of Biological Sciences and Biotechnology, Nankai University, 23HongDa Street, Tianjin 300457, China
| | - Y H Chen
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| | - X Zhang
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| | - J F Yang
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| | - Z G Wang
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| | - D J Liu
- College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021, China
| |
Collapse
|
22
|
Recent progress in the study of the Rheb family GTPases. Cell Signal 2014; 26:1950-7. [PMID: 24863881 DOI: 10.1016/j.cellsig.2014.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
In this review we highlight recent progress in the study of Rheb family GTPases. Structural studies using X-ray crystallography and NMR have given us insight into unique features of this GTPase. Combined with mutagenesis studies, these works have expanded our understanding of residues that affect Rheb GTP/GDP bound ratios, effector protein interactions, and stimulation of mTORC1 signaling. Analysis of cancer genome databases has revealed that several human carcinomas contain activating mutations of the protein. Rheb's role in activating mTORC1 signaling at the lysosome in response to stimuli has been further elucidated. Rheb has also been suggested to play roles in other cellular pathways including mitophagy and peroxisomal ROS response. A number of studies in mice have demonstrated the importance of Rheb in development, as well as in a variety of functions including cardiac protection and myelination. We conclude with a discussion of future prospects in the study of Rheb family GTPases.
Collapse
|
23
|
Rider MA, Zou J, Vanlandingham D, Nuckols JT, Higgs S, Zhang Q, Lacey M, Kim J, Wang G, Hong YS. Quantitative proteomic analysis of the Anopheles gambiae (Diptera: Culicidae) midgut infected with o'nyong-nyong virus. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1077-1088. [PMID: 24180113 DOI: 10.1603/me12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alphaviruses are arthropod-borne pathogens that infect a range of hosts. In humans and other mammals, alphavirus infection can cause severe disease. In mosquito hosts, however, there are generally few symptoms. Little is known about the cellular responses of mosquitoes that allow them to cope with infection. In this investigation, a six-plex tandem mass tagging proteomic approach was used to study protein accumulation changes in the midgut of Anopheles gambiae (Giles) (Diptera: Culicidae) mosquitoes infected with o'nyong-nyong virus (Togaviridae, Alphavirus). Five hundred thirty-six nonredundant proteins were identified. Twenty-two were found in significantly different quantities in infected midguts compared with controls. Of interest, analysis revealed molecular pathways possibly targeted by virus proteins, such as those involving TAF4 and DNA polymerase phi proteins. Also identified was an FK506-binding protein. FK506-binding protein orthologs have been described as conserved host resistance factors, which suppress dengue and West Nile virus infection in human HeLa cells. This investigation constitutes the first study of the midgut-specific proteome of An. gambiae in relation to alphavirus infection. Our findings offer insight into mosquito immunity, including factors that possibly contribute to the different pathological outcomes observed in vertebrate and insect hosts.
Collapse
Affiliation(s)
- Mark A Rider
- Department of Tropical Medicine, Tulane University, 1430 Tulane Ave, SL-17, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
FK506-binding proteins (FKBP) belong to the immunophilin family and are best known for their ability to enable the immunosuppressive properties of FK506 and rapamycin. For rapamycin, this is achieved by inducing inhibitory ternary complexes with the kinase mTOR. The essential accessory protein for this gain-of-function was thought to be FKBP12. We recently showed that this view might be too restricted, since larger FK506-binding proteins can functionally substitute for FKBP12 in mammalian cells. Recent studies have also shown that FK506-binding proteins can modulate Akt-mTOR signaling in the absence of rapamycin. Here we discuss the role of FK506-binding proteins for the mechanism of rapamycin as well as their intrinsic actions on the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Felix Hausch
- Max Planck Institute of Psychiatry; Munich, Germany
| | | | | | | |
Collapse
|
25
|
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, Rossignol R, Bénard G. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-30. [PMID: 23602449 DOI: 10.1016/j.cmet.2013.03.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/09/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Su Melser
- EA4576, Maladies Rares: Génétique et Métabolisme, 33000 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yadav RB, Burgos P, Parker AW, Iadevaia V, Proud CG, Allen RA, O'Connell JP, Jeshtadi A, Stubbs CD, Botchway SW. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol 2013; 14:3. [PMID: 23311891 PMCID: PMC3549280 DOI: 10.1186/1471-2121-14-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) signalling pathway has a key role in cellular regulation and several diseases. While it is thought that Rheb GTPase regulates mTOR, acting immediately upstream, while raptor is immediately downstream of mTOR, direct interactions have yet to be verified in living cells, furthermore the localisation of Rheb has been reported to have only a cytoplasmic cellular localization. RESULTS In this study a cytoplasmic as well as a significant sub-cellular nuclear mTOR localization was shown , utilizing green and red fluorescent protein (GFP and DsRed) fusion and highly sensitive single photon counting fluorescence lifetime imaging microscopy (FLIM) of live cells. The interaction of the mTORC1 components Rheb, mTOR and raptor, tagged with EGFP/DsRed was determined using fluorescence energy transfer-FLIM. The excited-state lifetime of EGFP-mTOR of ~2400 ps was reduced by energy transfer to ~2200 ps in the cytoplasm and to 2000 ps in the nucleus when co-expressed with DsRed-Rheb, similar results being obtained for co-expressed EGFP-mTOR and DsRed-raptor. The localization and distribution of mTOR was modified by amino acid withdrawal and re-addition but not by rapamycin. CONCLUSIONS The results illustrate the power of GFP-technology combined with FRET-FLIM imaging in the study of the interaction of signalling components in living cells, here providing evidence for a direct physical interaction between mTOR and Rheb and between mTOR and raptor in living cells for the first time.
Collapse
Affiliation(s)
- Rahul B Yadav
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Pierre Burgos
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Anthony W Parker
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Valentina Iadevaia
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Christopher G Proud
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | | | | | - Ananya Jeshtadi
- School of Life Sciences, Headington Campus, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Christopher D Stubbs
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| | - Stanley W Botchway
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxon OX110QX, UK
| |
Collapse
|
27
|
MacLea KS, Abuhagr AM, Pitts NL, Covi JA, Bader BD, Chang ES, Mykles DL. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle. ACTA ACUST UNITED AC 2012; 215:590-604. [PMID: 22279066 DOI: 10.1242/jeb.062869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.
Collapse
Affiliation(s)
- Kyle S MacLea
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Haupt K, Jahreis G, Linnert M, Maestre-Martínez M, Malesevic M, Pechstein A, Edlich F, Lücke C. The FKBP38 catalytic domain binds to Bcl-2 via a charge-sensitive loop. J Biol Chem 2012; 287:19665-73. [PMID: 22523079 DOI: 10.1074/jbc.m111.317214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FKBP38 is a regulator of the prosurvival protein Bcl-2, but in the absence of detailed structural insights, the molecular mechanism of the underlying interaction has remained unknown. Here, we report the contact regions between Bcl-2 and the catalytic domain of FKBP38 derived by heteronuclear NMR spectroscopy. The data reveal that a previously identified charge-sensitive loop near the putative active site of FKBP38 is mainly responsible for Bcl-2 binding. The corresponding binding epitope of Bcl-2 could be identified via a peptide library-based membrane assay. Site-directed mutagenesis of the key residues verified the contact sites of this electrostatic protein/protein interaction. The derived structure model of the complex between Bcl-2 and the FKBP38 catalytic domain features both electrostatic and hydrophobic intermolecular contacts and provides a rationale for the regulation of the FKBP38/Bcl-2 interaction by Ca(2+).
Collapse
Affiliation(s)
- Katja Haupt
- Max Planck Research Unit for Enzymology of Protein Folding, 06120 Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hornberger TA. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 2011; 43:1267-76. [PMID: 21621634 PMCID: PMC3146557 DOI: 10.1016/j.biocel.2011.05.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 12/20/2022]
Abstract
Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling.
Collapse
Affiliation(s)
- Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
30
|
FKBP38-Bcl-2 interaction: a novel link to chemoresistance. Curr Opin Pharmacol 2011; 11:354-9. [PMID: 21571591 DOI: 10.1016/j.coph.2011.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/02/2011] [Accepted: 04/27/2011] [Indexed: 12/31/2022]
Abstract
FKBP38, a noncanonical member of the immunosuppressive drug FK506 binding protein (FKBP) family members, possesses an inducible rotamase. FKBP38 interacts with several proteins and regulates multiple signaling pathways such as cell survival, apoptosis, proliferation, and metastasis. Deregulation of apoptosis is associated with chemoresistance and tumor relapse. The antiapoptotic protein Bcl-2 is a key player for increasing the apoptotic threshold in response to various cytotoxic drugs. The molecular interaction of Bcl-2 with FKBP38 potentiates the biological function of Bcl-2 and contributes to tumorigenesis and chemoresistance. Here, we discuss recent advances in the role of FKBP38 in connection with Bcl-2 and its possible link to chemotherapeutic resistance.
Collapse
|
31
|
From cell death to viral replication: the diverse functions of the membrane-associated FKBP38. Curr Opin Pharmacol 2011; 11:348-53. [PMID: 21514222 DOI: 10.1016/j.coph.2011.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
Abstract
FKBP38 is in many ways an exceptional member of the FK506-binding proteins. The calmodulin-regulated activity of FKBP38 for instance is unique within this protein family. The activated FKBP38 participates in apoptosis signaling by inhibiting the anti-apoptotic Bcl-2. Beyond this role in programmed cell death, FKBP38 seems to be involved in very different cellular processes that do not necessarily depend on the FKBP domain. These functions involve regulation of the kinase mTOR, regulation of neural tube formation, regulation of cellular hypoxia response, but also Hepatitis C virus replication. Pharmacological targeting of FKBP38 might therefore prove a successful strategy for intervention in different FKBP38-dependent processes, including programmed cell death in cancer or neurodegenerative diseases.
Collapse
|
32
|
Maestre-Martínez M, Haupt K, Edlich F, Jahreis G, Jarczowski F, Erdmann F, Fischer G, Lücke C. New structural aspects of FKBP38 activation. Biol Chem 2010; 391:1157-67. [DOI: 10.1515/bc.2010.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The human FK506-binding protein 38 (FKBP38) regulates Bcl-2 in neuronal apoptosis. To control Bcl-2 activity, FKBP38 requires a prior interaction with the Ca2+-sensor calmodulin (CaM). The resulting FKBP38/CaM complex is unique within the FKBP family. Here, we present novel insights into the structural arrangement of this complex. Chemical shift perturbation analyses of the individual protein domains revealed two separate interaction sites between FKBP38 and CaM. On the one hand, residues Glu303, Tyr307 and Leu311, belonging to the predicted CaM-binding site at the C-terminal end of FKBP38, become embedded in the hydrophobic target protein-binding cleft of the C-terminal CaM lobe. On the other hand, in a second binding interaction, the N-terminal end of the catalytic FKBP38 domain shows surface contacts to the AB and CD loops of CaM as well as the adjacent helices. Furthermore, a Glu-rich region at the non-structured FKBP38 N-terminus features additional contacts to CaM helix A. In combination with previous results, we thus conclude that the FKBP38/CaM complex is constituted by (i) a Ca2+-dependent interaction of the CaM-binding motif at the C-terminal end of FKBP38 with the C-terminal CaM lobe and (ii) a Ca2+-independent interaction between the N-terminal CaM lobe and the N-terminal region of the catalytic FKBP38 domain.
Collapse
|
33
|
Suryawan A, Davis TA. The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age. J Appl Physiol (1985) 2010; 109:1448-54. [PMID: 20724570 DOI: 10.1152/japplphysiol.00428.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) signaling is crucial for the regulation of protein synthesis. Most of known mTORC1 regulators have been isolated and characterized using cell culture systems, and the physiological roles of these regulators have not been fully tested in vivo. Previously we demonstrated that the insulin (INS) and amino acid (AA)-induced activation of mTORC1 is developmentally regulated in skeletal muscle (Suryawan A et al. Am J Physiol Endocrinol Metab 293: E1597-E1605, 2007). The present study aimed to characterize in more detail the effects of the postprandial rise in INS and AA on the activation and abundance of mTORC1 regulators in muscle and how this is modified by development. Overnight fasted 6- and 26-day-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic conditions (control), 2) euinsulinemic-euglycemic-hyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, enhanced the PRAS40 phosphorylation, and this effect was greater in 6- than in 26-day old pigs. Phospholipase D1 (PLD1) abundance and phosphorylation, and the association of PLD1 with Ras homolog enriched in brain (Rheb), were greater in the younger pigs. Neither INS, AA, nor age altered the abundance of Rheb, vacuolar protein sorting 34 (Vps34), or FK506-binding protein 38 (FKBP38). Although INS and AA had no effect, the abundance of ras-related GTP binding B (RagB) and the association of RagB with Raptor were greater in 6- than in 26-day-old pigs. Neither INS, AA, nor age altered AMPK-induced phosphorylation of Raptor. Our results suggest that the enhanced activation of mTORC1 in muscle of neonatal pigs is in part due to regulation by PRAS40, PLD1, and the Rag GTPases.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agriculture Research Service Children's Nutrition Research Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
34
|
Abstract
The protein mammalian target of rapamycin (mTOR) plays a central role in cell growth and proliferation. Excessive mTOR activity is a prominent feature of many neoplasms and hamartoma syndromes, including lymphangioleiomyomatosis (LAM), a destructive lung disease that causes progressive respiratory failure in women. Although pharmacological inhibitors of mTOR should directly target the pathogenesis of these disorders, their clinical efficacy has been suboptimal. Recent scientific findings reviewed here have greatly improved our understanding of mTOR signaling mechanisms, provided new insights into the control of cell growth and proliferation, and facilitated the development of new therapeutic approaches in LAM, as well as other neoplastic disorders that exhibit excessive mTOR activity.
Collapse
Affiliation(s)
- Arnold S Kristof
- Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Ma D, Bai X, Zou H, Lai Y, Jiang Y. Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J Biol Chem 2010; 285:8621-7. [PMID: 20048149 PMCID: PMC2838284 DOI: 10.1074/jbc.m109.092353] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Indexed: 11/06/2022] Open
Abstract
FKBP38 is a member of the family of FK506-binding proteins that acts as an inhibitor of the mammalian target of rapamycin (mTOR). The inhibitory action of FKBP38 is antagonized by Rheb, an oncogenic small GTPase, which interacts with FKBP38 and prevents its association with mTOR. In addition to the role in mTOR regulation, FKBP38 is also involved in binding and recruiting Bcl-2 and Bcl-X(L), two anti-apoptotic proteins, to mitochondria. In this study, we investigated the possibility that Rheb controls apoptosis by regulating the interaction of FKBP38 with Bcl-2 and Bcl-X(L). We demonstrate in vitro that the interaction of FKBP38 with Bcl-2 is regulated by Rheb in a GTP-dependent manner. In cultured cells, the interaction is controlled by Rheb in response to changes in amino acid and growth factor conditions. Importantly, we found that the Rheb-dependent release of Bcl-X(L) from FKBP38 facilitates the association of this anti-apoptotic protein with the pro-apoptotic protein Bak. Consequently, when Rheb activity increases, cells become more resistant to apoptotic inducers. Our findings reveal a novel mechanism through which growth factors and amino acids control apoptosis.
Collapse
Affiliation(s)
- Dongzhu Ma
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Xiaochun Bai
- the Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huafei Zou
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Yumei Lai
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| | - Yu Jiang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 and
| |
Collapse
|
36
|
Maestre-Martínez M, Haupt K, Edlich F, Neumann P, Parthier C, Stubbs MT, Fischer G, Lücke C. A charge-sensitive loop in the FKBP38 catalytic domain modulates Bcl-2 binding. J Mol Recognit 2010; 24:23-34. [DOI: 10.1002/jmr.1020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Bai X, Jiang Y. Key factors in mTOR regulation. Cell Mol Life Sci 2010; 67:239-53. [PMID: 19823764 PMCID: PMC4780839 DOI: 10.1007/s00018-009-0163-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/12/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a protein serine/threonine kinase that controls a wide range of growth-related cellular processes. In the past several years, many factors have been identified that are involved in controlling mTOR activity. Those factors in turn are regulated by diverse signaling cascades responsive to changes in intracellular and environmental conditions. The molecular connections between mTOR and its regulators form a complex signaling network that governs cellular metabolism, growth and proliferation. In this review, we discuss some key factors in mTOR regulation and mechanisms by which these factors control mTOR activity.
Collapse
Affiliation(s)
- Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| |
Collapse
|
38
|
Abstract
Rheb belongs to a unique family within the Ras superfamily of G-proteins. Although initially identified in rat brain, this G-protein is highly conserved from yeast to human. While only one Rheb is present in lower eukaryotes, two Rheb proteins exist in mammalian cells. A number of studies establish that one of the functions of Rheb is to activate mTOR leading to growth. In particular, the ability of Rheb to activate mTORC1 in vitro points to direct interaction of Rheb with the mTORC1 complex. Additional functions of Rheb that are independent of mTOR have also been suggested.
Collapse
Affiliation(s)
- Nitika Parmar
- Biology Program, California State University Channel Islands, 1 University Drive, Camarillo, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
39
|
Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 2009; 29:380-91. [PMID: 19838215 PMCID: PMC2809798 DOI: 10.1038/onc.2009.336] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Rheb1 and Rheb2 small GTPases and their effector mTOR are aberrantly activated in human cancer and are attractive targets for anti-cancer drug discovery. Rheb is targeted to endomembranes via its C-terminal CAAX (C = cysteine, A = aliphatic, X = terminal amino acid) motif, a substrate for posttranslational modification by a farnesyl isoprenoid. Following farnesylation, Rheb undergoes two additional CAAX-signaled processing steps, Rce1-catalyzed cleavage of the AAX residues and Icmt-mediated carboxylmethylation of the farnesylated cysteine. However, whether these post-prenylation processing steps are required for Rheb signaling through mTOR is not known. We found that Rheb1 and Rheb2 localize primarily to the endoplasmic reticulum and Golgi apparatus. We determined that Icmt and Rce1 processing is required for Rheb localization, but is dispensable for Rheb-induced activation of the mTOR substrate p70 S6 kinase (S6K). Finally, we evaluated whether farnesylthiosalicylic acid (FTS) blocks Rheb localization and function. Surprisingly, FTS prevented S6K activation induced by a constitutively active mTOR mutant, indicating that FTS inhibits mTOR at a level downstream of Rheb. We conclude that inhibitors of Icmt and Rce1 will not block Rheb function, but FTS could be a promising treatment for Rheb- and mTOR-dependent cancers.
Collapse
|
40
|
Galat A. On transversal hydrophobicity of some proteins and their modules. J Chem Inf Model 2009; 49:1821-30. [PMID: 19569645 DOI: 10.1021/ci9001316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrophobicity of proteins encoded in the genomes of diverse organisms was quantified using two novel concepts: (A) amino acid (AA) bulkiness-dependent hydrophobicity profiles and (B) spatial context of hydrophobicity distribution in AA triads. Both concepts were introduced into an algorithm that was used for extracting protein clusters from diverse genomic databases whose sequence attributes were similar to those in the multiple sequence alignment (MSA) of a given family of proteins. The sequences of the G protein-coupled receptors (GPCRs) encoded in different genomes were used as templates for testing the above concepts. The following sequence attributes were used for protein clustering: (A) sequence similarity scores (IDs); (B) amino acid composition (AAC); (C) hydrophobicity; (D) AA-bulkiness; and (E) alpha-helical propensity potentials. Diverse GPCRs display variable distributions of AA bulkiness-dependent buildups and declines in the hydrophobicity profiles that may be related to their function-dependent way of packing and allostery in the membrane. It is shown that intramolecular transversal nonbonded interactions between the TM segments in diverse GPCRs involve about 50% of hydrophobic atoms. Similar interaction networks exist between alpha-helices of tetratricopeptide (TPR) motifs-containing immunophilins and other proteins containing alpha-helical bundles.
Collapse
Affiliation(s)
- Andrzej Galat
- Institute de Biologie et de Technologies de Saclay, IBiTec/DSV/CEA, CE-Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
41
|
Herrmann JL, Markel TA, Abarbanell AM, Weil BR, Wang M, Wang Y, Tan J, Meldrum DR. Proinflammatory stem cell signaling in cardiac ischemia. Antioxid Redox Signal 2009; 11:1883-96. [PMID: 19187005 PMCID: PMC2872207 DOI: 10.1089/ars.2009.2434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell-based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways.
Collapse
Affiliation(s)
- Jeremy L Herrmann
- Clarian Cardiovascular Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dunlop E, Tee A. Mammalian target of rapamycin complex 1: Signalling inputs, substrates and feedback mechanisms. Cell Signal 2009; 21:827-35. [DOI: 10.1016/j.cellsig.2009.01.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/02/2009] [Indexed: 01/16/2023]
|
43
|
Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr Opin Cell Biol 2009; 21:209-18. [DOI: 10.1016/j.ceb.2009.01.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 01/15/2009] [Indexed: 11/26/2022]
|
44
|
Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 2009; 284:12783-91. [PMID: 19299511 DOI: 10.1074/jbc.m809207200] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
45
|
Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. VI. Expression of FK506-binding protein 12-rapamycin complex-associated protein 1 (FRAP1) and regulators and effectors of mTORC1 and mTORC2 complexes in ovine uteri and conceptuses. Biol Reprod 2009; 81:87-100. [PMID: 19299312 DOI: 10.1095/biolreprod.109.076257] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
FRAP1 (FK506-binding protein 12-rapamycin complex-associated protein 1), a component of the nutrient-sensing cell signaling pathway, is critical for cell growth and metabolism. The present study determined expression of FRAP1 and associated members of the mTORC1 and mTORC2 cell signaling pathways in uteri of cyclic and pregnant ewes and conceptuses, as well as effects of pregnancy, progesterone (P4), and interferon tau (IFNT) on their expression. The mRNAs for FRAP1, LST8, MAPKAP1, RAPTOR, RICTOR, TSC1, TSC2, RHEB, and EIF4EBP1 were localized to luminal, superficial glandular, and glandular epithelia and stromal cells of uteri from cyclic and pregnant ewes, as well as trophectoderm and endoderm of conceptuses between Days 13 and 18 of pregnancy. The abundance of FRAP1, RAPTOR, RICTOR, TSC1, and TSC2 mRNAs in endometria was unaffected by pregnancy status or by day of the estrous cycle or pregnancy; however, levels of LST8, MAPKAP1, RHEB, and EIF4EBP1 mRNA increased in endometria during early pregnancy. In ovariectomized ewes, P4 and IFNT stimulated expression of RHEB and EIF4EBP1 in uterine endometria. Total endometrial FRAP1 protein and phosphorylated FRAP1 protein levels were affected by pregnancy status and by day after onset of estrus, and phosphorylated FRAP1 protein was detected in nuclei of uterine epithelia and conceptuses. In endometria of pregnant ewes, increases in abundance of mRNAs for RICTOR, RHEB, and EIF4EBP1, as well as RHEB protein, correlated with rapid conceptus growth and development during the peri-implantation period. These results suggest that the FRAP1 cell signaling pathway mediates interactions between the maternal uterus and peri-implantation conceptuses and that P4 and IFNT affect this pathway by regulating expression of RHEB and EIF4EBP1.
Collapse
Affiliation(s)
- Haijun Gao
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
46
|
Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 2009; 583:965-70. [PMID: 19222999 DOI: 10.1016/j.febslet.2009.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
The small G-protein Rheb regulates cell growth via the mTORC1 complex by incompletely understood mechanisms. Recent studies document that Rheb activates mTORC1 via direct, GTP-dependent interaction with the peptidyl-prolyl-cis/trans-isomerase FKBP38, which is proposed to act as an inhibitor of mTORC1. We have conducted a comprehensive biochemical characterization of the Rheb/FKBP38 interaction. Using three different in vitro assays we did not detect an interaction between Rheb and FKBP38. Cell biological experiments illustrate that FKBP38 plays only a very minor, if any, role in mTORC1 activation. Our data document that FKBP38 is not the long-sought Rheb effector linking Rheb to mTORC1 activation.
Collapse
Affiliation(s)
- Katharina Uhlenbrock
- Department of Structural Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor. Biochem Soc Trans 2009; 37:223-6. [PMID: 19143636 DOI: 10.1042/bst0370223] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signalling function of mTOR complex 1 is activated by Rheb-GTP, which controls the catalytic competence of the mTOR (mammalian target of rapamycin) kinase domain by an incompletely understood mechanism. Rheb can bind directly to the mTOR kinase domain, and association with inactive nucleotide-deficient Rheb mutants traps mTOR in a catalytically inactive state. Nevertheless, Rheb-GTP targets other than mTOR, such as FKBP38 (FK506-binding protein 38) and/or PLD1 (phospholipase D(1)), may also contribute to mTOR activation. Once activated, the mTOR catalytic domain phosphorylates substrates only when they are bound to raptor (regulatory associated protein of mTOR), a separate polypeptide within the complex. The mechanism of insulin/nutrient stimulation of mTOR complex 1 signalling, in addition to Rheb-GTP activation of the mTOR catalytic function, also involves a stable modification of the configuration of mTORC1 (mTOR complex 1) that increases access of substrates to their binding site on the raptor polypeptide. The mechanism underlying this second step in the activation of mTORC1 is unknown.
Collapse
|