1
|
Efthymiou C, Print EH, Simmons A, Perkins SJ. Analysis of 363 Genetic Variants in F5 via an Interactive Web Database Reveals New Insights into FV Deficiency and FV Leiden. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2023; 7:e30-e41. [PMID: 36751301 PMCID: PMC9829979 DOI: 10.1055/a-1987-5978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
The inherited bleeding disorder Factor V (FV) deficiency and clotting risk factor FV Leiden are associated with genetic variants in the F5 gene. FV deficiency occurs with mild, moderate, severe, or asymptomatic phenotypes, and either dysfunctional or reduced amounts of plasma FV protein. Here we present an interactive web database containing 363 unique F5 variants derived from 801 patient records, with 199 FV deficiency-associated variants from 245 patient records. Their occurrence is rationalized based on the 2,224 residue sequence and new FV protein structures. The 199 FV deficiency variants correspond to 26 (13%) mild, 22 (11%) moderate, 49 (25%) severe, 35 (18%) asymptomatic, and 67 (34%) unreported phenotypes. Their variant distributions in the FV domains A1, A2, A3, B, C1 and C2 were 28 (14%), 32 (16%), 34 (17%), 42 (21%), 16 (8%), and 19 variants (10%), respectively, showing that these six regions contain similar proportions of variants. Variants associated with FV deficiency do not cluster near known protein-partner binding sites, thus the molecular mechanism leading to the phenotypes cannot be explained. However, the widespread distribution of FV variants in combination with a high proportion of buried variant residues indicated that FV is susceptible to disruption by small perturbations in its globular structure. Variants located in the disordered B domain also appear to disrupt the FV structure. We discuss how the interactive database provides an online resource that clarifies the clinical understanding of FV deficiency.
Collapse
Affiliation(s)
- Christos Efthymiou
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Emily H.T. Print
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Anna Simmons
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stephen J. Perkins
- Research Department of Structural and Molecular Biology, University College London, London, United Kingdom,Address for correspondence Stephen J. Perkins, BA (Oxon), DPhil (Oxon) Department of Structural and Molecular Biology, Darwin Building, University College LondonGower Street, London WC1E 6BTUnited Kingdom
| |
Collapse
|
2
|
Moore GW, Castoldi E, Teruya J, Morishita E, Adcock DM. Factor V Leiden-independent activated protein C resistance: Communication from the plasma coagulation inhibitors subcommittee of the International Society on Thrombosis and Haemostasis Scientific and Standardisation Committee. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:164-174. [PMID: 36695379 DOI: 10.1016/j.jtha.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
Activated protein C resistance (APC-R) due to the single-nucleotide polymorphism factor V Leiden (FVL) is the most common cause of hereditary thrombophilia. It is found predominantly in Caucasians and is uncommon or absent in other populations. Although FVL is responsible for >90% of cases of hereditary APC-R, a number of other F5 variants that also confer various degrees of APC-R and thrombotic risk have been described. Acquired APC-R due to increased levels of coagulation factors, reduced levels of inhibitors, or the presence of autoantibodies occurs in a variety of conditions and is an independent risk factor for thrombosis. It is common for thrombophilia screening protocols to restrict assessment for APC-R to demonstrating the presence or absence of FVL. The aim of this Scientific and Standardisation Committee communication is to detail the causes of FVL-independent APC-R to widen the diagnostic net, particularly in situations in which in vitro APC-R is encountered in the absence of FVL. Predilution clotting assays are not FVL specific and are used to detect clinically significant F5 variants conferring APC-R, whereas different forms of acquired APC-R are preferentially detected using the classical activated partial thromboplastin time-based APC-R assay without predilution and/or endogenous thrombin potential APC-R assays. Resource-specific recommendations are given to guide the detection of FVL-independent APC-R.
Collapse
Affiliation(s)
- Gary W Moore
- Department of Haematology, Specialist Haemostasis Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Faculty of Science and Technology, Middlesex University, London, UK.
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Jun Teruya
- Department of Pathology & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Eriko Morishita
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Dorothy M Adcock
- Laboratory Corporation of America Holdings, Burlington, North Carolina, USA
| |
Collapse
|
3
|
Ayombil F, Petrillo T, Kim H, Camire RM. Regulation of Factor V by the Anticoagulant Protease Activated Protein C: Influence of the B-domain and TFPIα. J Biol Chem 2022; 298:102558. [DOI: 10.1016/j.jbc.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
4
|
Mapping the Prothrombin Binding Site of Pseutarin C by Site-directed PEGylation. Blood 2022; 139:2972-2982. [PMID: 35148539 PMCID: PMC9101250 DOI: 10.1182/blood.2021014878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Results support our previously published model and reveal the surprising role of the a1-loop in presenting Arg320 for initial cleavage. Using pseutarin C as model prothrombinase, the interaction site for prothrombin was probed by site-directed PEGylation and other mutations.
The prothrombinase complex processes prothrombin to thrombin through sequential cleavage at Arg320 followed by Arg271 when cofactor, factor (f) Va, protease, fXa, and substrate, prothrombin, are all bound to the same membrane surface. In the absence of the membrane or cofactor, cleavage occurs in the opposite order. For the less favorable cleavage site at Arg320 to be cleaved first, it is thought that prothrombin docks on fVa in a way that presents Arg320 and hides Arg271 from the active site of fXa. Based on the crystal structure of the prothrombinase complex from the venom of the Australian eastern brown snake, pseutarin C, we modeled an initial prothrombin docking mode, which involved an interaction with discrete portions of the A1 and A2 domains of fV and the loop connecting the 2 domains, known as the a1-loop. We interrogated the proposed interface by site-directed PEGylation and by swapping the a1-loop in pseutarin C with that of human fV and fVIII and measuring the effect on rate and pathway of thrombin generation. PEGylation of residues within our proposed binding site greatly reduced the rate of thrombin generation, without affecting the pathway, whereas those outside the proposed interface had no effect. PEGylation of residues within the a1-loop also reduced the rate of thrombin generation. The sequence of the a1-loop was found to play a critical role in prothrombin binding and in the presentation of Arg320 for initial cleavage.
Collapse
|
5
|
Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021; 121:1122-1137. [PMID: 34214998 PMCID: PMC8432591 DOI: 10.1055/s-0040-1722187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
6
|
Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17:1229-1239. [PMID: 31102425 PMCID: PMC6851895 DOI: 10.1111/jth.14487] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Blood coagulation factor Va serves an indispensable role in hemostasis as cofactor for the serine protease factor Xa. In the presence of an anionic phospholipid membrane and calcium ions, factors Va and Xa assemble into the prothrombinase complex. Following formation of the ternary complex with the macromolecular zymogen substrate prothrombin, the latter is rapidly converted into thrombin, the key regulatory enzyme of coagulation. Over the years, multiple binding sites have been identified in factor Va that play a role in the interaction of the cofactor with factor Xa, prothrombin, or the anionic phospholipid membrane surface. In this review, an overview of the currently available information on these interactive sites in factor Va is provided, and data from biochemical approaches and 3D structural protein complex models are discussed. The structural models have been generated in recent years and provide novel insights into the molecular requirements for assembly of both the prothrombinase and the ternary prothrombinase-prothrombin complexes. Integrated knowledge of functionally important regions in factor Va will allow for a better understanding of factor Va cofactor activity.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter H. Reitsma
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Mitsuhashi T, Takamiya O. Acquired factor V inhibitor-related severe bleeding due to unformed prothrombinase complex. Thromb Res 2018; 171:81-83. [PMID: 30267973 DOI: 10.1016/j.thromres.2018.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Tomoko Mitsuhashi
- National Hospital Organization Kyoto Medical Center, 1-1, Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan.
| | - Osamu Takamiya
- Nagahama Institute of Bio-Science and Technology, Shiga, Japan.
| |
Collapse
|
8
|
Dahlbäck B. Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitorα, and protein S. J Thromb Haemost 2017; 15:1241-1250. [PMID: 28671348 DOI: 10.1111/jth.13665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Factor V (FV) is a regulator of both pro- and anticoagulant pathways. It circulates as a single-chain procofactor, which is activated by thrombin or FXa to FVa that serves as cofactor for FXa in prothrombin activation. The cofactor function of FVa is regulated by activated protein C (APC) and protein S. FV can also function as an anticoagulant APC cofactor in the inhibition of FVIIIa in the membrane-bound tenase complex (FIXa/FVIIIa). In recent years, it has become clear that FV also functions in multiple ways in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. Of particular importance is a FV splice variant (FV-Short) that serves as a carrier and cofactor to TFPIα in the inhibition of FXa. FV-Short is generated through alternative splicing of exon 13 that encodes the large activation B domain. A highly negatively charged binding site for TFPIα is exposed in the C-terminus of the FV-Short B domain, which binds the positively charged C-terminus of TFPIα, thus keeping TFPIα in circulation. The binding of TFPIα to FV-Short is also instrumental in localizing the inhibitor to the surface of negatively charged phospholipids, where TFPIα inhibits FXa in process that is stimulated by protein S. Plasma FV activation intermediates and partially proteolyzed platelet FV similarly bind TFPIα with high affinity and regulate formation of prothrombinase. The novel insights gained into the interaction between FV isoforms, TFPIα, and protein S have opened a new avenue for research about the mechanisms of coagulation regulation and also for future development of therapeutics aimed at modulating coagulation.
Collapse
Affiliation(s)
- B Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital SUS, Malmö, Sweden
| |
Collapse
|
9
|
Pezeshkpoor B, Castoldi E, Mahler A, Hanel D, Müller J, Hamedani NS, Biswas A, Oldenburg J, Pavlova A. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn ) associated with activated protein C resistance. J Thromb Haemost 2016; 14:1353-63. [PMID: 27090446 DOI: 10.1111/jth.13339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. A novel missense mutation (Ala512Val - FVBonn ) was characterized in vitro and in silico. FVBonn is a new cause of APC resistance and venous thrombosis. FVBonn expresses additionally enhanced procoagulant activity in the absence of APC. SUMMARY Background Activated protein C (APC) resistance is a prevalent risk factor for venous thrombosis. This phenotype is most commonly associated with the factor V Arg506Gln mutation (FV Leiden), which impairs the APC-mediated inactivation of both activated FV (FVa) and activated FVIII (FVIIIa). Objectives Here, we report the identification and characterization of a novel FV mutation (Ala512Val, FVBonn ) in six patients with APC resistance and venous thrombosis or recurrent abortions. Methods FVBonn was expressed in a recombinant system and compared with recombinant wild-type (WT) FV and FV Leiden in several functional assays. Results FVBonn conferred APC resistance to FV-depleted plasma, both in the activated partial thromboplastin time (APTT)-based test (APC sensitivity ratio [APCsr] of 1.98 for FVBonn versus 4.31 for WT FV and 1.59 for FV Leiden) and in the thrombin generation-based test (normalized APCsr of 5.41 for FVBonn versus 1.00 for WT FV and 8.99 for FV Leiden). The APC-mediated inactivation of FVaBonn was slower than that of WT FVa (mainly because of delayed cleavage at Arg506), but was greatly stimulated by protein S. The APC cofactor activity of FVBonn in FVIIIa inactivation was ~ 24% lower than that of WT FV. In line with these findings, an in silico analysis showed that the Ala512Val mutation is located in the same loop as the Arg506 APC cleavage site and might hamper its interaction with APC. Moreover, FVBonn was more procoagulant than WT FV and FV Leiden in the absence of APC, because of an increased activation rate and, possibly, an enhanced interaction with activated FX. Conclusions FVBonn induces hypercoagulability via a combination of increased activation/procoagulant activity, decreased susceptibility to APC-mediated inactivation, and slightly reduced APC cofactor activity.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - E Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - D Hanel
- Synlab MVZ, Stuttgart, Germany
| | - J Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - N S Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
10
|
Wiencek JR, Na M, Hirbawi J, Kalafatis M. Amino acid region 1000-1008 of factor V is a dynamic regulator for the emergence of procoagulant activity. J Biol Chem 2013; 288:37026-38. [PMID: 24178294 PMCID: PMC3873559 DOI: 10.1074/jbc.m113.462374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Single chain factor V (fV) circulates as an Mr 330,000 quiescent pro-cofactor. Removal of the B domain and generation of factor Va (fVa) are vital for procoagulant activity. We investigated the role of the basic amino acid region 1000–1008 within the B domain of fV by constructing a recombinant mutant fV molecule with all activation cleavage sites (Arg709/Arg1018/Arg1545) mutated to glutamine (fVQ3), a mutant fV molecule with region 1000–1008 deleted (fVΔB9), and a mutant fV molecule containing the same deletion with activation cleavage sites changed to glutamine (fVΔB9/Q3). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS-7L cells, purified, and assessed for their ability to bind factor Xa (fXa) prior to and following incubation with thrombin. The data showed that fVQ3 was severely impaired in its interaction with fXa before and after incubation with thrombin. In contrast, KD(app) values for fVΔB9 (0.9 nm), fVaΔB9 (0.4 nm), and fVΔB9/Q3 (0.7 nm) were similar to the affinity of fVaWT for fXa (0.3 nm). Two-stage clotting assays revealed that although fVQ3 was deficient in its clotting activity, fVΔB9/Q3 had clotting activity comparable with fVaWT. The kcat value of prothrombinase assembled with fVΔB9/Q3 was minimally affected, whereas the Km value of the reaction was increased 57-fold compared with the Km value obtained with prothrombinase assembled with fVaWT. These findings strongly suggest that amino acid region 1000–1008 of fV is a regulatory sequence protecting the organisms from spontaneous binding to fXa and unnecessary prothrombinase complex formation, which in turn results in catastrophic physiological consequences.
Collapse
Affiliation(s)
- Joesph R Wiencek
- From the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | | | | | | |
Collapse
|
11
|
|
12
|
Bunce MW, Bos MHA, Krishnaswamy S, Camire RM. Restoring the procofactor state of factor Va-like variants by complementation with B-domain peptides. J Biol Chem 2013; 288:30151-30160. [PMID: 24014022 DOI: 10.1074/jbc.m113.506840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.
Collapse
Affiliation(s)
- Matthew W Bunce
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Mettine H A Bos
- From the Division of Hematology, The Children's Hospital of Philadelphia and
| | - Sriram Krishnaswamy
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- From the Division of Hematology, The Children's Hospital of Philadelphia and; the Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
13
|
Abstract
The prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association. Pseutarin C is an intrinsically stable prothrombinase complex preassembled in the venom gland of the Australian Eastern Brown Snake (Pseudonaja textilis). Here we report the crystal structures of the fX-fV complex and of activated fXa from P textilis venom and the derived model of active pseutarin C. Structural analysis supports a single substrate binding channel on fVa, to which prothrombin and the intermediate meizothrombin bind in 2 different orientations, providing insight into the architecture and mechanism of the prothrombinase complex-the molecular engine of blood coagulation.
Collapse
|
14
|
Calzavarini S, Villoutreix BO, Lunghi B, Livaja R, Bernardi F, Dahlbäck B. Molecular basis of coagulation factor V deficiency caused by the R1698W inter-domain mutation. Thromb Haemost 2013; 110:31-8. [PMID: 23616041 DOI: 10.1160/th12-10-0780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/22/2013] [Indexed: 11/05/2022]
Abstract
Coagulation factor V (FV) deficiency is characterised by variable bleeding phenotypes and heterogeneous mutations. To add new insights into the FV genotype-phenotype relationship, we characterised the R1698W change in the A3 domain, at the poorly investigated interface with the A2 domain. The FV R1698W mutation was responsible for a markedly reduced expression level (10% of FV-WT) and specific activity in thrombin generation (0.39). Interestingly, the FVa1698W showed rapid activity decay upon activation due to increased dissociation rate between the heavy and light chains. The importance of the size and charge of the residue at position 1698 was investigated by three additional recombinant mutants, FVR1698A, FVR1698Q, and FVR1698E. FVR1698A and FVR1698Q expression (30 and 45% of FV-WT), specific activity (both 0.57) and stability were all reduced. Noticeably, FVR1698E showed normal activity and stability despite poor expression (10% of FV-WT). These data indicate the essential role of R1698 for normal biosynthetic process and support local flexibility for positively or negatively charged residues to produce stable and functional A3-A2 domain interactions. Their experimental alteration produces a gradient of FV defects, which help to interpret the wide spectrum of phenotypes in FV-deficient patients.
Collapse
Affiliation(s)
- Sara Calzavarini
- Sara Calzavarini, PhD, Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
15
|
Bos MHA, Camire RM. A bipartite autoinhibitory region within the B-domain suppresses function in factor V. J Biol Chem 2012; 287:26342-51. [PMID: 22707727 DOI: 10.1074/jbc.m112.377168] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of blood coagulation factor V (FV) is a key reaction of hemostasis. FV circulates in plasma as an inactive procofactor, and proteolytic removal of a large central B-domain converts it to an active cofactor (FVa) for factor Xa (FXa). Here we show that two short evolutionary conserved segments of the B-domain, together termed the procofactor regulatory region, serve an essential autoinhibitory function. This newly identified motif consists of a basic (963-1008) and an acidic (1493-1537) region and defines the minimal sequence requirements to maintain FV as a procofactor. Our data suggest that dismantling this autoinhibitory region via deletion or proteolysis is the driving force to unveil a high affinity binding site(s) for FXa. These findings document an unexpected sequence-specific role for the B-domain by negatively regulating FV function and preventing activity of the procofactor. These new mechanistic insights point to new ways in which the FV procofactor to cofactor transition could be modulated to alter hemostasis.
Collapse
Affiliation(s)
- Mettine H A Bos
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104, USA
| | | |
Collapse
|
16
|
Oh H, Smith CL. Evolving methods for single nucleotide polymorphism detection: Factor V Leiden mutation detection. J Clin Lab Anal 2012; 25:259-88. [PMID: 21786330 DOI: 10.1002/jcla.20470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The many techniques used to diagnose the Factor V Leiden (FVL) mutation, the most common hereditary hypercoagulation disorder in Eurasians, and the most frequently requested genetic test reflect the evolving strategies in protein and DNA diagnosis. METHODS Here, molecular methods to diagnose the FVL mutation are discussed. RESULTS Protein-based detection assays include the conventional functional activated protein C resistance coagulation test and the recently reported antibody-mediated sensor detection; and DNA-based assays include approaches that use electrophoretic fractionation e.g., restriction fragment length polymorphism, denaturing gradient gel electrophoresis, and single-stranded conformational PCR analysis, DNA hybridization (e.g., microarrays), DNA polymerase-based assays, e.g., extension reactions, fluorescence polarization template-directed dye-terminator incorporation, PCR assays (e.g., amplification-refractory mutation system, melting curve analysis using real-time quantitative PCR, and helicase-dependent amplification), DNA sequencing (e.g., direct sequencing, pyrosequencing), cleavase-based Invader assay and ligase-based assays (e.g., oligonucleotide ligation assay and ligase-mediated rolling circle amplification). CONCLUSION The method chosen by a laboratory to diagnose FVL not only depends on the available technical expertise and equipment, but also the type, variety, and extent of other genetic disorders being diagnosed.
Collapse
Affiliation(s)
- Herin Oh
- Molecular Biotechnology Research Laboratory, Boston University, Boston, MA, USA.
| | | |
Collapse
|
17
|
Complex assemblies of factors IX and X regulate the initiation, maintenance, and shutdown of blood coagulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:51-103. [PMID: 21238934 DOI: 10.1016/b978-0-12-385504-6.00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood hemostasis is accomplished by a complex network of (anti-)coagulatory and fibrinolytic processes. These physiological processes are implemented by the assembly of multiprotein complexes involving both humoral and cellular components. Coagulation factor X, and particularly, factor IX, exemplify the dramatic enhancement that is obtained by the synergistic interaction of cell surface, inorganic and protein cofactors, protease, and substrate. With a focus on structure-function relationship, we review the current knowledge of activity modulation principles in the coagulation proteases factors IX and X and indicate future challenges for hemostasis research. This chapter is organized by describing the principles of hierarchical activation of blood coagulation proteases, including endogenous and exogenous protease activators, cofactor binding, substrate specificities, and protein inhibitors. We conclude by outlining pharmaceutical opportunities for unmet needs in hemophilia and thrombosis.
Collapse
|
18
|
Müller J. Faktoren V und VIII. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|