1
|
Hwang J, Park A, Kim C, Kim CG, Kwak J, Kim B, Shin H, Ku M, Yang J, Baek A, Choi J, Lim H, No KT, Zhao X, Choi U, Kim TI, Jeong KS, Lee H, Shin SJ. Inhibition of IRP2-dependent reprogramming of iron metabolism suppresses tumor growth in colorectal cancer. Cell Commun Signal 2024; 22:412. [PMID: 39180081 PMCID: PMC11342626 DOI: 10.1186/s12964-024-01769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Dysregulation of iron metabolism is implicated in malignant transformation, cancer progression, and therapeutic resistance. Here, we demonstrate that iron regulatory protein 2 (IRP2) preferentially regulates iron metabolism and promotes tumor growth in colorectal cancer (CRC). METHODS IRP2 knockdown and knockout cells were generated using RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 methodologies, respectively. Cell viability was evaluated using both CCK-8 assay and cell counting techniques. Furthermore, IRP2 inhibition was determined by surface plasmon resonance (SPR) and RNA immunoprecipitation (IP). The suppressive effects of IRP2 were also corroborated in both organoid and mouse xenograft models, providing a comprehensive validation of IRP2's role. RESULTS We have elucidated the role of IRP2 as a preferential regulator of iron metabolism, actively promoting tumorigenesis within CRC. Elevated levels of IRP2 expression in patient samples are correlated with diminished overall survival, thereby reinforcing its potential role as a prognostic biomarker. The functional suppression of IRP2 resulted in a pronounced delay in tumor growth. Building on this proof of concept, we have developed IRP2 inhibitors that significantly reduce IRP2 expression and hinder its interaction with iron-responsive elements in key iron-regulating proteins, such as ferritin heavy chain 1 (FTH1) and transferrin receptor (TFRC), culminating in iron depletion and a marked reduction in CRC cell proliferation. Furthermore, these inhibitors are shown to activate the AMPK-ULK1-Beclin1 signaling cascade, leading to cell death in CRC models. CONCLUSIONS Collectively, these findings highlight the therapeutic potential of targeting IRP2 to exploit the disruption of iron metabolism in CRC, presenting a strategic advancement in addressing a critical area of unmet clinical need.
Collapse
Affiliation(s)
- Jieon Hwang
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Areum Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Chinwoo Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Byungil Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyunjin Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722, Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea
| | - Ayoung Baek
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women's University, Seoul, 02748, Korea
| | - Hocheol Lim
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Incheon, 21983, Korea
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei Unversity, Incheon, 21983, Korea
| | - Xianghua Zhao
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Uyeong Choi
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Hyuk Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea.
| | - Sang Joon Shin
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
2
|
Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci 2023; 10:1229710. [PMID: 37457833 PMCID: PMC10340119 DOI: 10.3389/fmolb.2023.1229710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Cells require iron for essential functions like energy production and signaling. However, iron can also engage in free radical formation and promote cell proliferation thereby contributing to both tumor initiation and growth. Thus, the amount of iron within the body and in individual cells is tightly regulated. At the cellular level, iron homeostasis is maintained post-transcriptionally by iron regulatory proteins (IRPs). Ferroptosis is an iron-dependent form of programmed cell death with vast chemotherapeutic potential, yet while IRP-dependent targets have established roles in ferroptosis, our understanding of the contributions of IRPs themselves is still in its infancy. In this review, we present the growing circumstantial evidence suggesting that IRPs play critical roles in the adaptive response to ferroptosis and ferroptotic cell death and describe how this knowledge can be leveraged to target neoplastic iron dysregulation more effectively.
Collapse
|
3
|
Rethinking IRPs/IRE system in neurodegenerative disorders: Looking beyond iron metabolism. Ageing Res Rev 2022; 73:101511. [PMID: 34767973 DOI: 10.1016/j.arr.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Iron regulatory proteins (IRPs) and iron regulatory element (IRE) systems are well known in the progression of neurodegenerative disorders by regulating iron related proteins. IRPs are also regulated by iron homeostasis. However, an increasing number of studies have suggested a close relationship between the IRPs/IRE system and non-iron-related neurodegenerative disorders. In this paper, we reviewed that the IRPs/IRE system is not only controlled by iron ions, but also regulated by such factors as post-translational modification, oxygen, nitric oxide (NO), heme, interleukin-1 (IL-1), and metal ions. In addition, by regulating the transcription of non-iron related proteins, the IRPs/IRE system functioned in oxidative metabolism, cell cycle regulation, abnormal proteins aggregation, and neuroinflammation. Finally, by emphasizing the multiple regulations of IRPs/IRE system and its potential relationship with non-iron metabolic neurodegenerative disorders, we provided new strategies for disease treatment targeting IRPs/IRE system.
Collapse
|
4
|
Marques O, Porto G, Rêma A, Faria F, Cruz Paula A, Gomez-Lazaro M, Silva P, Martins da Silva B, Lopes C. Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer 2016; 16:187. [PMID: 26944411 PMCID: PMC4779214 DOI: 10.1186/s12885-016-2228-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.
Collapse
Affiliation(s)
- Oriana Marques
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| | - Graça Porto
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Hematology Service, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal.
| | - Alexandra Rêma
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Fátima Faria
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Arnaud Cruz Paula
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| | - Maria Gomez-Lazaro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.
| | - Paula Silva
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal. .,Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| | - Berta Martins da Silva
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Carlos Lopes
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| |
Collapse
|
5
|
Abstract
Cellular iron homeostasis is regulated by post-transcriptional feedback mechanisms, which control the expression of proteins involved in iron uptake, release and storage. Two cytoplasmic proteins with mRNA-binding properties, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a central role in this regulation. Foremost, IRPs regulate ferritin H and ferritin L translation and thus iron storage, as well as transferrin receptor 1 (TfR1) mRNA stability, thereby adjusting receptor expression and iron uptake via receptor-mediated endocytosis of iron-loaded transferrin. In addition splice variants of iron transporters for import and export at the plasma-membrane, divalent metal transporter 1 (DMT1) and ferroportin are regulated by IRPs. These mechanisms have probably evolved to maintain the cytoplasmic labile iron pool (LIP) at an appropriate level. In certain tissues, the regulation exerted by IRPs influences iron homeostasis and utilization of the entire organism. In intestine, the control of ferritin expression limits intestinal iron absorption and, thus, whole body iron levels. In bone marrow, erythroid heme biosynthesis is coordinated with iron availability through IRP-mediated translational control of erythroid 5-aminolevulinate synthase mRNA. Moreover, the translational control of HIF2α mRNA in kidney by IRP1 coordinates erythropoietin synthesis with iron and oxygen supply. Besides IRPs, body iron absorption is negatively regulated by hepcidin. This peptide hormone, synthesized and secreted by the liver in response to high serum iron, downregulates ferroportin at the protein level and thereby limits iron absorption from the diet. Hepcidin will not be discussed in further detail here.
Collapse
Affiliation(s)
- Lukas C Kühn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC - Swiss Institute for Experimental Cancer Research, EPFL_SV_ISREC, Room SV2516, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Ren X, Zhang Q, Wang H, Man C, Hong H, Chen L, Li T, Ye P. Effect of Intravenous Iron Supplementation on Acute Mountain Sickness: A Preliminary Randomized Controlled Study. Med Sci Monit 2015; 21:2050-7. [PMID: 26175087 PMCID: PMC4515939 DOI: 10.12659/msm.891182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the role of intravenous iron supplementation in the prevention of AMS. MATERIAL AND METHODS This was a randomized, double-blinded, placebo-controlled study. Forty-one (n=41) healthy Chinese low-altitude inhabitants living in Beijing, China (altitude of about 50 meters) were randomly assigned into intravenous iron supplementation (ISS group; n=21) and placebo (CON group; n=20) groups. Participants in the ISS group received iron sucrose supplement (200 mg) before flying to Lhasa, China (altitude of 4300 meters). Acute mountain sickness (AMS) severity was assessed with the Lake Louise scoring (LLS) system within 5 days after landing on the plateau (at high altitude). Routine check-ups, clinical biochemistry, and blood tests were performed before departure and 24 h after arrival. RESULTS A total of 38 participants completed the study (ISS group: n=19; CON group: n=19). The rate of subjects with AMS (LLS>3) was lower in the ISS group compared with the CON group, but no significant differences were obtained (P>0.05). There were no differences in patients' baseline characteristics. The physiological indices were similar in both groups except for serum iron concentrations (19.44±10.02 vs. 85.10±26.78 μmol/L) and transferrin saturation rates (28.20±12.14 vs. 68.34±33.12%), which were significantly higher in the ISS group (P<0.05). Finally, heart rate was identified as a contributing factor of LLS. CONCLUSIONS These preliminary findings suggest that intravenous iron supplementation has no significant protective effect on AMS in healthy Chinese low-altitude inhabitants.
Collapse
Affiliation(s)
- Xuewen Ren
- Department of Emergency, General Hospital of PLA, Beijing, China (mainland)
| | - Qiuying Zhang
- Cadre Ward, Beijing Huimin Hospital, Beijing, China (mainland)
| | - Hao Wang
- Department of Geriatric Cardiology, General Hospital of PLA, Beijing, China (mainland)
| | - Chunyan Man
- Military Training Group, Urumqi Academy for Minority Nationality Cadres, Urumqi, Xinjiang, China (mainland)
| | - Heng Hong
- Department of Cardiology, Beijing Shijingshan Hospital, Beijing, China (mainland)
| | - Li Chen
- Department of Emergency, General Hospital of PLA, Beijing, China (mainland)
| | - Tanshi Li
- Department of Emergency, General Hospital of PLA, Beijing, China (mainland)
| | - Ping Ye
- Department of Geriatric Cardiology, General Hospital of PLA, Beijing, China (mainland)
| |
Collapse
|
7
|
Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rösser R, Pierik AJ, Wohlschlegel JA, Lill R. Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab 2013; 18:187-98. [PMID: 23891004 PMCID: PMC3784990 DOI: 10.1016/j.cmet.2013.06.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/18/2013] [Accepted: 06/21/2013] [Indexed: 11/29/2022]
Abstract
Numerous cytosolic and nuclear proteins involved in metabolism, DNA maintenance, protein translation, or iron homeostasis depend on iron-sulfur (Fe/S) cofactors, yet their assembly is poorly defined. Here, we identify and characterize human CIA2A (FAM96A), CIA2B (FAM96B), and CIA1 (CIAO1) as components of the cytosolic Fe/S protein assembly (CIA) machinery. CIA1 associates with either CIA2A or CIA2B and the CIA-targeting factor MMS19. The CIA2B-CIA1-MMS19 complex binds to and facilitates assembly of most cytosolic-nuclear Fe/S proteins. In contrast, CIA2A specifically matures iron regulatory protein 1 (IRP1), which is critical for cellular iron homeostasis. Surprisingly, a second layer of iron regulation involves the stabilization of IRP2 by CIA2A binding or upon depletion of CIA2B or MMS19, even though IRP2 lacks an Fe/S cluster. In summary, CIA2B-CIA1-MMS19 and CIA2A-CIA1 assist different branches of Fe/S protein assembly and intimately link this process to cellular iron regulation via IRP1 Fe/S cluster maturation and IRP2 stabilization.
Collapse
Affiliation(s)
- Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Induction or ectopic overexpression of HO-1 (haem oxygenase 1) protects against a wide variety of disorders. These protective effects have been variably ascribed to generation of carbon monoxide (released during cleavage of the alpha-methene bridge of haem) and/or to production of the antioxidant bilirubin. We investigated HO-1-overexpressing A549 cells and find that, as expected, HO-1-overexpressing cells are resistant to killing by hydrogen peroxide. Surprisingly, these cells have approximately twice the normal amount of intracellular iron which usually tends to amplify oxidant killing. However, HO-1-overexpressing cells contain only ~25% as much 'loose' (probably redox active) iron. Indeed, inhibition of ferritin synthesis [via siRNA (small interfering RNA) directed at the ferritin heavy chain] sensitizes the HO-1-overexpressing cells to peroxide killing. It appears that HO-1 overexpression leads to enhanced destruction of haem, consequent 2-3-fold induction of ferritin, and compensatory increases in transferrin receptor expression and haem synthesis. However, there is no functional haem deficiency because cellular oxygen consumption and catalase activity are similar in both cell types. We conclude that, at least in many cases, the cytoprotective effects of HO-1 induction or forced overexpression may derive from elevated expression of ferritin and consequent reduction of redox active 'loose' iron.
Collapse
|
9
|
Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1468-83. [PMID: 22610083 DOI: 10.1016/j.bbamcr.2012.05.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023]
Abstract
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Cole P Anderson
- Department of Oncological Sciences, University of Utah, 15 N. 2030 E., Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
Collapse
|
11
|
Regulation of neuronal ferritin heavy chain, a new player in opiate-induced chemokine dysfunction. J Neuroimmune Pharmacol 2011; 6:466-76. [PMID: 21465240 DOI: 10.1007/s11481-011-9278-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/21/2011] [Indexed: 12/19/2022]
Abstract
The heavy chain subunit of ferritin (FHC), a ubiquitous protein best known for its iron-sequestering activity as part of the ferritin complex, has recently been described as a novel inhibitor of signaling through the chemokine receptor CXCR4. Levels of FHC as well as its effects on CXCR4 activation increase in cortical neurons exposed to mu-opioid receptor agonists such as morphine, an effect likely specific to neurons. Major actions of CXCR4 signaling in the mature brain include a promotion of neurogenesis, activation of pro-survival signals, and modulation of excitotoxic pathways; thus, FHC up-regulation may contribute to the neuronal dysfunction often associated with opiate drug abuse. This review summarizes our knowledge of neuronal CXCR4 function, its regulation by opiates and the role of FHC in this process, and known mechanisms controlling FHC production. We speculate on the mechanism involved in FHC regulation by opiates and offer FHC as a new target in opioid-induced neuropathology.
Collapse
|
12
|
Recalcati S, Minotti G, Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid Redox Signal 2010; 13:1593-616. [PMID: 20214491 DOI: 10.1089/ars.2009.2983] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eukaryotic cells require iron for survival but, as an excess of poorly liganded iron can lead to the catalytic production of toxic radicals that can damage cell structures, regulatory mechanisms have been developed to maintain appropriate cell and body iron levels. The interactions of iron responsive elements (IREs) with iron regulatory proteins (IRPs) coordinately regulate the expression of the genes involved in iron uptake, use, storage, and export at the post-transcriptional level, and represent the main regulatory network controlling cell iron homeostasis. IRP1 and IRP2 are similar (but not identical) proteins with partially overlapping and complementary functions, and control cell iron metabolism by binding to IREs (i.e., conserved RNA stem-loops located in the untranslated regions of a dozen mRNAs directly or indirectly related to iron metabolism). The discovery of the presence of IREs in a number of other mRNAs has extended our knowledge of the influence of the IRE/IRP regulatory network to new metabolic pathways, and it has been recently learned that an increasing number of agents and physiopathological conditions impinge on the IRE/IRP system. This review focuses on recent findings concerning the IRP-mediated regulation of iron homeostasis, its alterations in disease, and new research directions to be explored in the near future.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milano, Italy
| | | | | |
Collapse
|
13
|
C-terminal domain phosphorylation of ERK3 controlled by Cdk1 and Cdc14 regulates its stability in mitosis. Biochem J 2010; 428:103-11. [PMID: 20236090 DOI: 10.1042/bj20091604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ERK3 (extracellular-signal-regulated kinase 3) is an atypical MAPK (mitogen-activated protein kinase) that is suggested to play a role in cell-cycle progression and cellular differentiation. However, it is not known whether the function of ERK3 is regulated during the cell cycle. In the present paper, we report that ERK3 is stoichiometrically hyperphosphorylated during entry into mitosis and is dephosphorylated at the M-->G1 transition. The phosphorylation of ERK3 is associated with the accumulation of the protein in mitosis. In vitro phosphorylation of a series of ERK3-deletion mutants by mitotic cell extracts revealed that phosphorylation is confined to the unique C-terminal extension of the protein. Using MS analysis, we identified four novel phosphorylation sites, Ser684, Ser688, Thr698 and Ser705, located at the extreme C-terminus of ERK3. All four sites are followed by a proline residue. We have shown that purified cyclin B-Cdk1 (cyclindependent kinase 1) phosphorylates these sites in vitro and demonstrate that Cdk1 acts as a major Thr698 kinase in vivo. Reciprocally, we found that the phosphatases Cdc14A and Cdc14B (Cdc is cell-division cycle) bind to ERK3 and reverse its C-terminal phosphorylation in mitosis. Importantly, alanine substitution of the four C-terminal phosphorylation sites markedly decreased the half-life of ERK3 in mitosis, thereby linking phosphorylation to the stabilization of the kinase. The results of the present study identify a novel regulatory mechanism of ERK3 that operates in a cell-cycle-dependent manner.
Collapse
|
14
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol Cell Biol 2009; 29:2219-29. [PMID: 19223469 DOI: 10.1128/mcb.00004-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Iron regulatory protein 2 (IRP2) is an RNA-binding protein that regulates the posttranscriptional expression of proteins required for iron homeostasis such as ferritin and transferrin receptor 1. IRP2 RNA-binding activity is primarily regulated by iron-mediated proteasomal degradation, but studies have suggested that IRP2 RNA binding is also regulated by thiol oxidation. We generated a model of IRP2 bound to RNA and found that two cysteines (C512 and C516) are predicted to lie in the RNA-binding cleft. Site-directed mutagenesis and thiol modification show that, while IRP2 C512 and C516 do not directly interact with RNA, both cysteines are located within the RNA-binding cleft and must be unmodified/reduced for IRP2-RNA interactions. Oxidative stress induced by cellular glucose deprivation reduces the RNA-binding activity of IRP2 but not IRP2-C512S or IRP2-C516S, consistent with the formation of a disulfide bond between IRP2 C512 and C516 during oxidative stress. Decreased IRP2 RNA binding is correlated with reduced transferrin receptor 1 mRNA abundance. These studies provide insight into the structural basis for IRP2-RNA interactions and reveal an iron-independent mechanism for regulating iron homeostasis through the redox regulation of IRP2 cysteines.
Collapse
|