1
|
Barbosa ACC, Venceslau SS, Ferreira D, Neukirchen S, Sousa FL, Melo MN, Pereira IAC. Characterization of DsrD and its interaction with the DsrAB dissimilatory sulfite reductase. Protein Sci 2024; 33:e5222. [PMID: 39548845 PMCID: PMC11568415 DOI: 10.1002/pro.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Microbial dissimilatory sulfate reduction is a key process in the global sulfur and carbon cycles in anoxic ecosystems. In this anaerobic respiration, sulfate is phosphorylated and reduced to sulfite, which is further reduced to a DsrC-trisulfide by the dissimilatory sulfite reductase DsrAB. DsrD is a small protein that acts as an allosteric activator of DsrAB, increasing the efficiency of sulfite reduction. Here, we report a detailed study of DsrD and its interaction with DsrAB. Sequence similarity analyses show that there are three groups of DsrD in organisms with a reductive-type DsrAB. The protein regions involved in the DsrD-DsrAB interaction and activity-promoting effect were investigated through in vitro and in silico studies, including mutations of conserved DsrD residues. The results reveal that the conserved β-loop of DsrD is involved in the interaction, contributing to a better understanding of its mechanism of action.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Sinje Neukirchen
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary EcologyUniversity of ViennaWienAustria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary EcologyUniversity of ViennaWienAustria
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
2
|
Tao Y, Zeng Z, Deng Y, Zhang M, Wang F, Wang Y. Phylogeny and evolution of dissimilatory sulfite reduction in prokaryotes. Mol Phylogenet Evol 2024; 201:108208. [PMID: 39343112 DOI: 10.1016/j.ympev.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sulfate is the second most common nonmetallic ion in modern oceans, as its concentration dramatically increased alongside tectonic activity and atmospheric oxidation in the Proterozoic. Microbial sulfate/sulfite metabolism, involving organic carbon or hydrogen oxidation, is linked to sulfur and carbon biogeochemical cycles. However, the coevolution of microbial sulfate/sulfite metabolism and Earth's history remains unclear. Here, we conducted a comprehensive phylogenetic analysis to explore the evolutionary history of the dissimilatory sulfite reduction (Dsr) pathway. The phylogenies of the Dsr-related genes presented similar branching patterns but also some incongruencies, indicating the complex origin and evolution of Dsr. Among these genes, dsrAB is the hallmark of sulfur-metabolizing prokaryotes. Our detailed analyses suggested that the evolution of dsrAB was shaped by vertical inheritance and multiple horizontal gene transfer events and that selection pressure varied across distinct lineages. Dated phylogenetic trees indicated that key evolutionary events of dissimilatory sulfur-metabolizing prokaryotes were related to the Great Oxygenation Event (2.4-2.0 Ga) and several geological events in the "Boring Billion" (1.8-0.8 Ga), including the fragmentation of the Columbia supercontinent (approximately 1.6 Ga), the rapid increase in marine sulfate (1.3-1.2 Ga), and the Neoproterozoic glaciation event (approximately 1.0 Ga). We also proposed that the voluminous iron formations (approximately 1.88 Ga) might have induced the metabolic innovation of iron reduction. In summary, our study provides new insights into Dsr evolution and a systematic view of the coevolution of dissimilatory sulfur-metabolizing prokaryotes and the Earth's environment.
Collapse
Affiliation(s)
- Yuxin Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zichao Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhui Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghan Zhang
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200438, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Ghazi Esfahani B, Walia N, Neselu K, Garg Y, Aragon M, Askenasy I, Wei HA, Mendez JH, Stroupe ME. Structure of dimerized assimilatory NADPH-dependent sulfite reductase reveals the minimal interface for diflavin reductase binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599029. [PMID: 38915618 PMCID: PMC11195156 DOI: 10.1101/2024.06.14.599029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Escherichia coli NADPH-dependent assimilatory sulfite reductase (SiR) reduces sulfite by six electrons to make sulfide for incorporation into sulfur-containing biomolecules. SiR has two subunits: an NADPH, FMN, and FAD-binding diflavin flavoprotein and a siroheme/Fe4S4 cluster-containing hemoprotein. The molecular interactions that govern subunit binding have been unknown since the discovery of SiR over 50 years ago because SiR is flexible, thus has been intransigent for traditional high-resolution structural analysis. We used a combination of the chameleon plunging system with a fluorinated lipid to overcome the challenges of preserving a flexible molecule to determine a 2.78 Å-resolution cryo-EM structure of a dimeric complex between the subunits. chameleon, combined with the fluorinated lipid, overcame persistent denaturation at the air-water interface. Using a previously characterized minimal dimer between the subunits reduced the heterogeneity of a structurally heterogeneous complex to a level that could be analyzed using multi-conformer cryo-EM image analysis algorithms. Here, we report the first near-atomic resolution structure of the flavoprotein/hemoprotein complex, revealing how they interact in a minimal interface. Further, we determined the structural elements that discriminate between pairing a hemoprotein with a diflavin reductase, as in the E. coli homolog, or a ferredoxin partner, as in maize (Zea mays).
Collapse
Affiliation(s)
- Behrouz Ghazi Esfahani
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| | - Nidhi Walia
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
- Current Location: Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kasahun Neselu
- New York Structural Biology Center, New York, NY, 10027, USA
| | - Yashika Garg
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| | - Mahira Aragon
- New York Structural Biology Center, New York, NY, 10027, USA
| | - Isabel Askenasy
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
- Current Location: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Hui Alex Wei
- New York Structural Biology Center, New York, NY, 10027, USA
- Current Location: Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren St. Room E440U, Newark, NJ, 07103
| | | | - M. Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32303, USA
| |
Collapse
|
4
|
Hidalgo KJ, Centurion VB, Lemos LN, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Oliveira VM. Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer. Biodegradation 2024; 36:7. [PMID: 39557683 DOI: 10.1007/s10532-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Spills of petroleum or its derivatives in the environment lead to an enrichment of microorganisms able to degrade such compounds. The interactions taking place in such microbial communities are complex and poorly understood, since they depend on multiple factors, including diversity and metabolic potential of the microorganisms and a broad range of fluctuating environmental conditions. In our previous study, a complete characterization, based on high-throughput sequencing, was performed in a jet-fuel plume using soil samples and in in-situ microcosms amended with hydrocarbons and exposed for 120 days. Herein, we propose a metabolic model to describe the monoaromatic hydrocarbon degradation process that takes place in such jet-fuel-contaminated sites, by combining genome-centered analysis, functional predictions, and flux balance analysis (FBA). In total, twenty high/medium quality MAGs were recovered; three of them assigned to anaerobic bacteria (Thermincolales, Geobacter and Pelotomaculaceace) and one affiliated to the aerobic bacterium Acinetobacter radioresistens, potentially the main players of hydrocarbon degradation in jet-fuel plumes. Taxonomic assignment of the genes indicated that a putative new species of Geobacteria has the potential for anaerobic degradation pathway, while the Pelotomaculaceae and Thermincolales members probably act via syntrophy oxidizing acetate and hydrogen (fermentation products of oil degradation) via sulfate and/or nitrate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil.
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP, 13083-862, Brazil.
| | - V B Centurion
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121, Padua, Italy
| | - L N Lemos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Cidade Universitária, Ilha do Fundão, Av. Horácio Macedo, 950, Rio de Janeiro, 21941-915, Brazil
| | - H H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5B, 04103, Leipzig, Germany
| | - C Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Av. Alexandre Cazellato, 999, Paulínia, SP, 13148-218, Brazil
| |
Collapse
|
5
|
Bhattacharya A, Samanta S, Nath AK, Ghatak A, Dey SG, Dey A. Intermediates involved in the reduction of SO 2: insight into the mechanism of sulfite reductases. Chem Commun (Camb) 2024; 60:7709-7712. [PMID: 38963718 DOI: 10.1039/d4cc02124j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Sulfite reductases (SiRs) catalyze the reduction of SO32- to H2S in biosynthetic sulfur assimilation and dissimilation of sulfate. The mechanism of the 6e-/6H+ reduction of SO32- at the siroheme cofactor is debated, and proposed intermediates involved in this 6e- reduction are yet to be spectroscopically characterized. The reaction of SO2 with a ferrous iron porphyrin is investigated, and two intermediates are trapped and characterized: an initial Fe(III)-SO22- species, which undergoes proton-assisted S-O bond cleavage to form an Fe(III)-SO species. These species are characterized using a combination of resonance Raman (with 34S-labelled SO2), EPR and DFT calculations. Results obtained help reconcile the different proposed mechanisms for the SiRs.
Collapse
Affiliation(s)
- Aishik Bhattacharya
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| | - Soumya Samanta
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| | - Arnab Kumar Nath
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| | - Arnab Ghatak
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| | - Abhishek Dey
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A & 2B, Raja SC Mullick Road, Kolkata, West Bengal PIN-700032, India.
| |
Collapse
|
6
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Reaction Mechanism Catalyzed by the Dissimilatory Sulfite Reductase - The Role of the Siroheme-[4FeS4] Cofactor. Chemphyschem 2024; 25:e202400327. [PMID: 38602444 DOI: 10.1002/cphc.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
The present work is another part of our investigation on the pathway of dissimilatory sulfate reduction and covers a theoretical study on the reaction catalyzed by dissimilatory sulfite reductase (dSIR). dSIR is the terminal enzyme involved in this metabolic pathway, which uses the siroheme-[4Fe4S] cofactor for six-electron reduction of sulfite to sulfide. In this study we use a large cluster model containing siroheme-[4Fe4S] cofactor and protein residues involved in the direct interactions with the substrate, to get insight into the most feasible reaction mechanism and to understand the role of each considered active site component. In combination with earlier studies reported in the literature, our results lead to several interesting insights. One of the most important conclusions is that the reaction mechanism consists of three steps of two-electron reduction of sulfur and the probable role of the siroheme-[4Fe4S] cofactor is to ensure the delivery of packages of two electrons to the reactant.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Cracow, Poland
| | - A Johannes Johansson
- Swedish Nuclear Fuel and Waste Management Co (SKB), Box 3091, 169 03, Solna, Sweden
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239, Cracow, Poland
| |
Collapse
|
7
|
Wang C, Zheng R, Sun C. Multi-omics analyses provide insights into the sulfur metabolism of a novel deep-sea sulfate-reducing bacterium. iScience 2024; 27:110095. [PMID: 38947506 PMCID: PMC11214288 DOI: 10.1016/j.isci.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Sulfate-reducing bacteria (SRB) are ubiquitously distributed across various biospheres and play key roles in global sulfur and carbon cycles. However, few deep-sea SRB have been cultivated and studied in situ, limiting our understanding of the true metabolism of deep-sea SRB. Here, we firstly clarified the high abundance of SRB in deep-sea sediments and successfully isolated a sulfate-reducing bacterium (zrk46) from a cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain zrk46 is a novel species, which we propose as Pseudodesulfovibrio serpens. We found that supplementation with sulfate, thiosulfate, or sulfite promoted strain zrk46 growth by facilitating energy production through the dissimilatory sulfate reduction, which was coupled to the oxidation of organic matter in both laboratory and deep-sea conditions. Moreover, in situ metatranscriptomic results confirmed that other deep-sea SRB also performed the dissimilatory sulfate reduction, strongly suggesting that SRB may play undocumented roles in deep-sea sulfur cycling.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Scuvée D, Goñi-Urriza M, Tessier E, Gassie C, Ranchou-Peyruse M, Amouroux D, Guyoneaud R, Khalfaoui-Hassani B. Molybdate inhibits mercury methylation capacity of Pseudodesulfovibrio hydrargyri BerOc1 regardless of the growth metabolism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42686-42697. [PMID: 38878247 DOI: 10.1007/s11356-024-33901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
Molybdate inhibits sulfate respiration in sulfate-reducing bacteria (SRB). It is used as an inhibitor to indirectly evaluate the role of SRB in mercury methylation in the environment. Here, the SRB Pseudodesulfovibrio hydrargyri BerOc1 was used to assess the effect of molybdate on cell growth and mercury methylation under various metabolic conditions. Geobacter sulfurreducens PCA was used as the non-SRB counterpart strain with the ability to methylate mercury. While PCA growth and methylation are not affected by molybdate, 1 mM of molybdate inhibits BerOc1 growth under sulfate respiration (50% inhibition) but also under fumarate respiration (complete inhibition). Even more surprising, mercury methylation of BerOc1 is totally inhibited at 0.1 mM of molybdate when grown under sulfate or fumarate respiration with pyruvate as the electron donor. As molybdate is expected to reduce cellular ATP level, the lower Hg methylation observed with pyruvate could be the consequence of lower energy production. Although molybdate alters the expression of hgcA (mercury methylation marker) and sat (involved in sulfate reduction and molybdate sensitivity) in a metabolism-dependent manner, no relationship with mercury methylation rates could be found. Our results show, for the first time, a specific mercury methylation inhibition by molybdate in SRB.
Collapse
Affiliation(s)
- Diva Scuvée
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | |
Collapse
|
9
|
Kümpel C, Grosser M, Tanabe TS, Dahl C. Fe/S proteins in microbial sulfur oxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119732. [PMID: 38631440 DOI: 10.1016/j.bbamcr.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Iron-sulfur clusters serve as indispensable cofactors within proteins across all three domains of life. Fe/S clusters emerged early during the evolution of life on our planet and the biogeochemical cycle of sulfur is one of the most ancient and important element cycles. It is therefore no surprise that Fe/S proteins have crucial roles in the multiple steps of microbial sulfur metabolism. During dissimilatory sulfur oxidation in prokaryotes, Fe/S proteins not only serve as electron carriers in several steps, but also perform catalytic roles, including unprecedented reactions. Two cytoplasmic enzyme systems that oxidize sulfane sulfur to sulfite are of particular interest in this context: The rDsr pathway employs the reverse acting dissimilatory sulfite reductase rDsrAB as its key enzyme, while the sHdr pathway utilizes polypeptides resembling the HdrA, HdrB and HdrC subunits of heterodisulfide reductase from methanogenic archaea. Both pathways involve components predicted to bind unusual noncubane Fe/S clusters acting as catalysts for the formation of disulfide or sulfite. Mapping of Fe/S cluster machineries on the sulfur-oxidizing prokaryote tree reveals that ISC, SUF, MIS and SMS are all sufficient to meet the Fe/S cluster maturation requirements for operation of the sHdr or rDsr pathways. The sHdr pathway is dependent on lipoate-binding proteins that are assembled by a novel pathway, involving two Radical SAM proteins, namely LipS1 and LipS2. These proteins coordinate sulfur-donating auxiliary Fe/S clusters in atypical patterns by three cysteines and one histidine and act as lipoyl synthases by jointly inserting two sulfur atoms to an octanoyl residue. This article is part of a Special Issue entitled: Biogenesis and Function of Fe/S proteins.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Pimenta AI, Bernardino RM, Pereira IAC. Role of sulfidogenic members of the gut microbiota in human disease. Adv Microb Physiol 2024; 85:145-200. [PMID: 39059820 DOI: 10.1016/bs.ampbs.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.
Collapse
Affiliation(s)
- Andreia I Pimenta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel M Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
11
|
Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Proc Natl Acad Sci U S A 2024; 121:e2313650121. [PMID: 38285932 PMCID: PMC10861901 DOI: 10.1073/pnas.2313650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| |
Collapse
|
12
|
Klier KM, Martin C, Langwig MV, Anantharaman K. Evolutionary history and origins of Dsr-mediated sulfur oxidation. THE ISME JOURNAL 2024; 18:wrae167. [PMID: 39206688 PMCID: PMC11406059 DOI: 10.1093/ismejo/wrae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microorganisms play vital roles in sulfur cycling through the oxidation of elemental sulfur and reduction of sulfite. These metabolisms are catalyzed by dissimilatory sulfite reductases (Dsr) functioning in either the reductive or reverse, oxidative direction. Dsr-mediated sulfite reduction is an ancient metabolism proposed to have fueled energy metabolism in some of Earth's earliest microorganisms, whereas sulfur oxidation is believed to have evolved later in association with the widespread availability of oxygen on Earth. Organisms are generally believed to carry out either the reductive or oxidative pathway, yet organisms from diverse phyla have been discovered with gene combinations that implicate them in both pathways. A comprehensive investigation into the metabolisms of these phyla regarding Dsr is currently lacking. Here, we selected one of these phyla, the metabolically versatile candidate phylum SAR324, to study the ecology and evolution of Dsr-mediated metabolism. We confirmed that diverse SAR324 encode genes associated with reductive Dsr, oxidative Dsr, or both. Comparative analyses with other Dsr-encoding bacterial and archaeal phyla revealed that organisms encoding both reductive and oxidative Dsr proteins are constrained to a few phyla. Further, DsrAB sequences from genomes belonging to these phyla are phylogenetically positioned at the interface between well-defined oxidative and reductive bacterial clades. The phylogenetic context and dsr gene content in these organisms points to an evolutionary transition event that ultimately gave way to oxidative Dsr-mediated metabolism. Together, this research suggests that SAR324 and other phyla with mixed dsr gene content are associated with the evolution and origins of Dsr-mediated sulfur oxidation.
Collapse
Affiliation(s)
- Katherine M Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Marguerite V Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Wang X, Lu H, Li Q, Hong Z, Liu X, Zhou J. Anaerobic biotransformation of sulfonated anthraquinones by Pseudomonas nitroreducens WA and the fate of the sulfonic acid group in the presence of nitrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131887. [PMID: 37348367 DOI: 10.1016/j.jhazmat.2023.131887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
The presence of the sulfonic acid group in sulfonated anthraquinones (SAs) resulted in the difficulty in the mineralization of anthraquinone ring. Little information is available on the removal pathway of the sulfonic acid group of SAs under aerobic/anaerobic conditions. Herein, sodium 1-aminoanthraquinone-2-sulfonate (ASA-2) was used as an important intermediate of SAs. A novel Pseudomonas nitroreducens WA capable of ASA-2 desulfonation was isolated from the Reactive Blue 19-degrading consortium WRB. Anaerobic desulfonation efficiency of 0.165 mM ASA-2 by strain WA reached 99% in 36 h at pH 7.5 and 35 ℃ using glucose as an electron donor. Further analysis showed that ASA-2 as an electron acceptor could be anaerobically transformed into 1-aminoanthraquinone and sulfite via the cleavage of C-S bond. Strain WA could also desulfonate sodium 1-amino-4-bromoanthraquinone-2-sulfonate and sodium anthraquinone-2-sulfonate. Under denitrification conditions, the formed sulfite could be oxidized to sulfate by nitrite via a chemical reaction, which was beneficial for nitrite removal. This phenomenon was observed in consortium WRB-amended system. Moreover, the consortium WRB could reduce the formed sulfite to sulfide due to the presence of Desulfovibrio. These results provide a theoretical basis for the anaerobic biodesulfonation of SAs along with nitrate removal and support for the development of sulfite-based biotechnology.
Collapse
Affiliation(s)
- Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongqiang Hong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Jespersen M, Wagner T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol 2023:10.1038/s41564-023-01398-8. [PMID: 37277534 DOI: 10.1038/s41564-023-01398-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Collapse
Affiliation(s)
- Marion Jespersen
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Wagner
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
15
|
Ferreira D, Venceslau SS, Bernardino R, Preto A, Zhang L, Waldbauer JR, Leavitt WD, Pereira IAC. DsrC is involved in fermentative growth and interacts directly with the FlxABCD-HdrABC complex in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 2023; 25:962-976. [PMID: 36602077 DOI: 10.1111/1462-2920.16335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD-HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD-HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.
Collapse
Affiliation(s)
- Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André Preto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Jespersen M, Pierik AJ, Wagner T. Structures of the sulfite detoxifying F 420-dependent enzyme from Methanococcales. Nat Chem Biol 2023; 19:695-702. [PMID: 36658338 DOI: 10.1038/s41589-022-01232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are main actors in the carbon cycle but are sensitive to reactive sulfite. Some methanogens use a sulfite detoxification system that combines an F420H2-oxidase with a sulfite reductase, both of which are proposed precursors of modern enzymes. Here, we present snapshots of this coupled system, named coenzyme F420-dependent sulfite reductase (Group I Fsr), obtained from two marine methanogens. Fsr organizes as a homotetramer, harboring an intertwined six-[4Fe-4S] cluster relay characterized by spectroscopy. The wire, spanning 5.4 nm, electronically connects the flavin to the siroheme center. Despite a structural architecture similar to dissimilatory sulfite reductases, Fsr shows a siroheme coordination and a reaction mechanism identical to assimilatory sulfite reductases. Accordingly, the reaction of Fsr is unidirectional, reducing sulfite or nitrite with F420H2. Our results provide structural insights into this unique fusion, in which a primitive sulfite reductase turns a poison into an elementary block of life.
Collapse
Affiliation(s)
| | - Antonio J Pierik
- Biochemistry, Faculty of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
17
|
Koner S, Chen JS, Rathod J, Hussain B, Hsu BM. Unravelling the ultramafic rock-driven serpentine soil formation leading to the geo-accumulation of heavy metals: An impact on the resident microbiome, biogeochemical cycling and acclimatized eco-physiological profiles. ENVIRONMENTAL RESEARCH 2023; 216:114664. [PMID: 36336091 DOI: 10.1016/j.envres.2022.114664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In the present study, we have underpinned the serpentine rock, serpentinized ultramafic soil and rhizosphere's microbial communities, signifying their heavy metals-exposed taxa signatures and functional repertoires in comparison to non-serpentine soils. The results revealed that the serpentine rock embedded soil highlighted the geo-accumulation of higher amount of Cr and Ni impacting soil microbial diversity negatively by metal stress-driven selection. Biolog Ecoplate CLPP defined a restricted spectrum of C-utilization in the higher heavy metal-containing serpentine samples compared to non-serpentine. The linear discriminant analysis (LDA) score identified a higher abundance of Desulfobacterota, Opitutales, and Bacteroidales in low Cr and Ni-stressed non-serpentine-exposed samples. Whereas the abundance of Propionibacteriales and Actinobacteriota were significantly enriched in the serpentine niche. Further, the C, N, S, Fe, and methane biogeochemical cycles linked functional members were identified, and showing higher functional diversity in low Cr and Ni concentration-containing rhizosphere JS-soils. The Pearson correlation coefficient (r) value confirmed the abundance of functional members linked to specific biogeochemical cycle, positively correlated with relevant pathway enrichment. Ultimately, this study highlighted the heavy metal stress within a serpentine setting that could limit the resident microbial community's metabolic diversity and further select the bacteria that could thrive in the serpentine-associated heavy metal-stressed soils. These acclimatized microbes could pave the way for the future applications in the soil conservation and management.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Jagat Rathod
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance and Tec (GIFT)-City, Gandhinagar, 382355, Gujarat, India
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
18
|
Han S, Li Y, Gao H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants (Basel) 2022; 11:antiox11122487. [PMID: 36552695 PMCID: PMC9774590 DOI: 10.3390/antiox11122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. It has long been known that H2S is toxic to cells at high concentrations, but now this gaseous molecule, at the physiological level, is recognized as a signaling molecule and a regulator of critical biological processes. Recently, many metabolites of H2S, collectively called reactive sulfur species (RSS), have been gradually appreciated as having similar or divergent regulatory roles compared with H2S in living organisms, especially mammals. In prokaryotes, even in bacteria, investigations into generation and physiology of RSS remain preliminary and an understanding of the relevant biological processes is still in its infancy. Despite this, recent and exciting advances in the fields are many. Here, we discuss abiotic and biotic generation of H2S/RSS, sulfur-transforming enzymes and their functioning mechanisms, and their physiological roles as well as the sensing and regulation of H2S/RSS.
Collapse
|
19
|
Khan SN, Griffith A, De Proft F, Miliordos E, Havenith RWA, Bykov D, Cunha AV. [Fe 4S 4] cubane in sulfite reductases: new insights into bonding properties and reactivity. Phys Chem Chem Phys 2022; 24:18543-18551. [PMID: 35904932 DOI: 10.1039/d2cp02124b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissimilatory sulfite reductase enzyme has very characteristic active site where the substrate binds to an iron site, ligated by a siroheme macrocycle and a thiol directly connected to a [Fe4S4] cluster. This arrangement gives the enzyme remarkable efficiency in reducing sulfite and nitrite all the way to hydrogen sulfide and ammonia. For the first time we present a theoretical study where substrate binding modalities and activation are elucidated using active site models containing proton supply side chains and the [Fe4S4] cluster. Density functional theory (DFT) was deployed in conjunction with the energy decomposition scheme (as implemented in AMS), the quantum theory of atoms in molecules (QTAIM), and conceptual DFT (cDFT) descriptors. We quantified the role of the electrostatic interactions inside the active site created by the side chains as well as the influence of the [Fe4S4] cluster on the substrate binding. Furthermore, using conceptual DFT results we shed light of the activation process, thus, laying foundation for further mechanistic studies. We found that the bonding of the ligands to the iron complex is dominated by electrostatic interactions, but the presence of the [Fe4S4] cubane leads to substantial changes in electronic interaction. The spin state of the cubane, however, affects the binding energy only marginally. The conceptual DFT results show that the presence of the [Fe4S4] cubane affects the reactivity of the active site as it is involved in electron transfer. This is corroborated by an increase in the electrophilicity index, thus making the active site more prone to react with the ligands. The interaction energies between the ligand and the siroheme group are also increased upon the presence of the cubane group, thus, suggesting that the siroheme group is not an innocent spectator but plays an active role in the reactivity of the dSIR active site.
Collapse
Affiliation(s)
- Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Alexa Griffith
- Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA.
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Remco W A Havenith
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium
| | - Dmytro Bykov
- Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA.
| | - Ana V Cunha
- Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA. .,Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.,Department of Chemistry of the University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
20
|
A Reduced F 420-Dependent Nitrite Reductase in an Anaerobic Methanotrophic Archaeon. J Bacteriol 2022; 204:e0007822. [PMID: 35695516 PMCID: PMC9295563 DOI: 10.1128/jb.00078-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F420-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. M. jannaschii Fsr (MjFsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. MjFsrI reduces sulfite to sulfide with reduced F420 (F420H2), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition. However, the function of FsrIIs in ANME, which also rely on Mcr and live in sulfidic environments, is unknown. We have determined the catalytic properties of FsrII from a member of ANME-2c. Since ANME remain to be isolated, we expressed ANME2c-FsrII in a closely related methanogen, Methanosarcina acetivorans. Purified recombinant FsrII contained siroheme, indicating that the methanogen, which lacks a native sulfite reductase, produced this coenzyme. Unexpectedly, FsrII could not reduce sulfite or thiosulfate with F420H2. Instead, it acted as an F420H2-dependent nitrite reductase (FNiR) with physiologically relevant Km values (nitrite, 5 μM; F420H2, 14 μM). From kinetic, thermodynamic, and structural analyses, we hypothesize that in FNiR, F420H2-derived electrons are delivered at the oxyanion reduction site at a redox potential that is suitable for reducing nitrite (E0' [standard potential], +440 mV) but not sulfite (E0', -116 mV). These findings and the known nitrite sensitivity of Mcr suggest that FNiR may protect nondenitrifying ANME from nitrite toxicity. Remarkably, by reorganizing the reductant processing system, Fsr transforms two analogous oxyanions in two distinct archaeal lineages with different physiologies and ecologies. IMPORTANCE Coenzyme F420-dependent sulfite reductase (Fsr) protects methanogenic archaea inhabiting deep-sea hydrothermal vents from the inactivation of methyl coenzyme M reductase (Mcr), one of their essential energy production enzymes. Anaerobic methanotrophic archaea (ANME) that oxidize methane and rely on Mcr, carry Fsr homologs that form a distinct clade. We show that a member of this clade from ANME-2c functions as F420-dependent nitrite reductase (FNiR) and lacks Fsr activity. This specialization arose from a distinct feature of the reductant processing system and not the substrate recognition element. We hypothesize FNiR may protect ANME Mcr from inactivation by nitrite. This is an example of functional specialization within a protein family that is induced by changes in electron transfer modules to fit an ecological need.
Collapse
|
21
|
Colman DR, Labesse G, Swapna G, Stefanakis J, Montelione GT, Boyd ES, Royer CA. Structural evolution of the ancient enzyme, dissimilatory sulfite reductase. Proteins 2022; 90:1331-1345. [PMID: 35122336 PMCID: PMC9018543 DOI: 10.1002/prot.26315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 07/21/2023]
Abstract
Dissimilatory sulfite reductase is an ancient enzyme that has linked the global sulfur and carbon biogeochemical cycles since at least 3.47 Gya. While much has been learned about the phylogenetic distribution and diversity of DsrAB across environmental gradients, far less is known about the structural changes that occurred to maintain DsrAB function as the enzyme accompanied diversification of sulfate/sulfite reducing organisms (SRO) into new environments. Analyses of available crystal structures of DsrAB from Archaeoglobus fulgidus and Desulfovibrio vulgaris, representing early and late evolving lineages, respectively, show that certain features of DsrAB are structurally conserved, including active siro-heme binding motifs. Whether such structural features are conserved among DsrAB recovered from varied environments, including hot spring environments that host representatives of the earliest evolving SRO lineage (e.g., MV2-Eury), is not known. To begin to overcome these gaps in our understanding of the evolution of DsrAB, structural models from MV2.Eury were generated and evolutionary sequence co-variance analyses were conducted on a curated DsrAB database. Phylogenetically diverse DsrAB harbor many conserved functional residues including those that ligate active siro-heme(s). However, evolutionary co-variance analysis of monomeric DsrAB subunits revealed several False Positive Evolutionary Couplings (FPEC) that correspond to residues that have co-evolved despite being too spatially distant in the monomeric structure to allow for direct contact. One set of FPECs corresponds to residues that form a structural path between the two active siro-heme moieties across the interface between heterodimers, suggesting the potential for allostery or electron transfer within the enzyme complex. Other FPECs correspond to structural loops and gaps that may have been selected to stabilize enzyme function in different environments. These structural bioinformatics results suggest that DsrAB has maintained allosteric communication pathways between subunits as SRO diversified into new environments. The observations outlined here provide a framework for future biochemical and structural analyses of DsrAB to examine potential allosteric control of this enzyme.
Collapse
Affiliation(s)
- Daniel R. Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS UMR 5048, Montpellier, France 34090
| | - G.V.T. Swapna
- Dept of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, NJ, 08854 USA
| | | | - Gaetano T. Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
22
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
23
|
Das JK, Heryakusuma C, Susanti D, Choudhury PP, Mukhopadhyay B. Reduced Protein Sequence Patterns in Identifying Key Structural Elements of Dissimilatory Sulfite Reductase Homologs. Comput Biol Chem 2022; 98:107691. [DOI: 10.1016/j.compbiolchem.2022.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
|
24
|
The DsrD functional marker protein is an allosteric activator of the DsrAB dissimilatory sulfite reductase. Proc Natl Acad Sci U S A 2022; 119:2118880119. [PMID: 35064091 PMCID: PMC8794893 DOI: 10.1073/pnas.2118880119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Metagenomic data have recently transformed our view of the role played by sulfur metabolism in anoxic environments by showing that this trait is much more widespread than previously believed. A key enzyme in sulfur metabolism is the dissimilatory sulfite reductase DsrAB that is ubiquitous in organisms with a reductive, oxidative, or disproportionating activity. However, the function of some dsr genes, such as dsrD, has so far been unknown despite its use as a functional marker to genomically assign the type of sulfur energy metabolism, sometimes with unclear results. Here, we disclose the function of DsrD as an activator of DsrAB that significantly increases its activity, providing important insights into the mechanism of this enzyme in different types of sulfur metabolism. Dissimilatory sulfur metabolism was recently shown to be much more widespread among bacteria and archaea than previously believed. One of the key pathways involved is the dsr pathway that is responsible for sulfite reduction in sulfate-, sulfur-, thiosulfate-, and sulfite-reducing organisms, sulfur disproportionators and organosulfonate degraders, or for the production of sulfite in many photo- and chemotrophic sulfur-oxidizing prokaryotes. The key enzyme is DsrAB, the dissimilatory sulfite reductase, but a range of other Dsr proteins is involved, with different gene sets being present in organisms with a reductive or oxidative metabolism. The dsrD gene codes for a small protein of unknown function and has been widely used as a functional marker for reductive or disproportionating sulfur metabolism, although in some cases this has been disputed. Here, we present in vivo and in vitro studies showing that DsrD is a physiological partner of DsrAB and acts as an activator of its sulfite reduction activity. DsrD is expressed in respiratory but not in fermentative conditions and a ΔdsrD deletion strain could be obtained, indicating that its function is not essential. This strain grew less efficiently during sulfate and sulfite reduction. Organisms with the earliest forms of dsrAB lack the dsrD gene, revealing that its activating role arose later in evolution relative to dsrAB.
Collapse
|
25
|
Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S. Microbial sulfur metabolism and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146085. [PMID: 33714092 DOI: 10.1016/j.scitotenv.2021.146085] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Sulfur as a macroelement plays an important role in biochemistry in both natural environments and engineering biosystems, which can be further linked to other important element cycles, e.g. carbon, nitrogen and iron. Consequently, the sulfur cycling primarily mediated by sulfur compounds oxidizing microorganisms and sulfur compounds reducing microorganisms has enormous environmental implications, particularly in wastewater treatment and pollution bioremediation. In this review, to connect the knowledge in microbial sulfur metabolism to environmental applications, we first comprehensively review recent advances in understanding microbial sulfur metabolisms at molecular-, cellular- and ecosystem-levels, together with their energetics. We then discuss the environmental implications to fight against soil and water pollution, with four foci: (1) acid mine drainage, (2) water blackening and odorization in urban rivers, (3) SANI® and DS-EBPR processes for sewage treatment, and (4) bioremediation of persistent organic pollutants. In addition, major challenges and further developments toward elucidation of microbial sulfur metabolisms and their environmental applications are identified and discussed.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021; 7. [PMID: 34241589 PMCID: PMC8477390 DOI: 10.1099/mgen.0.000603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current methods in comparative genomic analyses for metabolic potential prediction of proteins involved in, or associated with the Dsr (dissimilatory sulphite reductase)-dependent dissimilatory sulphur metabolism are both time-intensive and computationally challenging, especially when considering metagenomic data. We developed DiSCo, a Dsr-dependent dissimilatory sulphur metabolism classification tool, which automatically identifies and classifies the protein type from sequence data. It takes user-supplied protein sequences and lists the identified proteins and their classification in terms of protein family and predicted type. It can also extract the sequence data from user-input to serve as basis for additional downstream analyses. DiSCo provides the metabolic functional prediction of proteins involved in Dsr-dependent dissimilatory sulphur metabolism with high levels of accuracy in a fast manner. We ran DiSCo against a dataset composed of over 190 thousand (meta)genomic records and efficiently mapped Dsr-dependent dissimilatory sulphur proteins in 1798 lineages across both prokaryotic domains. This allowed the identification of new micro-organisms belonging to Thaumarchaeota and Spirochaetes lineages with the metabolic potential to use the Dsr-pathway for energy conservation. DiSCo is implemented in Perl 5 and freely available under the GNU GPLv3 at https://github.com/Genome-Evolution-and-Ecology-Group-GEEG/DiSCo.
Collapse
Affiliation(s)
- Sinje Neukirchen
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
27
|
Dos Santos ES, de Azevedo Santos Ferreira J, Dos Santos JN, Chinalia FA, Matos JL, Coqueiro G, Ramos-de-Souza E, de Almeida PF. Screening and testing potential inhibitors of sulphide gas production by sulphate-reducing bacteria. J Mol Model 2021; 27:189. [PMID: 34046767 DOI: 10.1007/s00894-021-04801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Sulphate-reducing bacteria are commonly associated with biological causes of oil well souring. Biosulphetogenesis can directly affect oil quality and storage due to the accumulation of sulphides. In addition, these microorganisms can create bio-incrustation that can clog pipes. Sulphite reductase (SIR) is the enzyme responsible for converting ion sulphite into sulphide and several substances may interfere or control such activity. This interference can hinder growth of the sulphate-reducing bacteria and, consequently, it reduces sulphide accumulation in situ. This work focuses on molecular modelling techniques along with in vitro experiments in order to investigate the potential of two essential oils and one vegetable oil as main inhibitors of sulphite reductase activity. Docking simulation identified several substances present in Rosmarinus officinalis, Tea tree and Neem extractable oils as potential inhibitors of SIR. Substances present in Neem vegetable oil are the most potent inhibitors, followed by Rosmarinus officinalis and Tea tree essential oils. The Neem oil mixture showed a superior effectiveness in intracellular SIR inhibitory effects.
Collapse
Affiliation(s)
- Elias Silva Dos Santos
- Instituto de Física, Universidade Federal da Bahia, Rua Barão de Geremoabo s/n - Ondina, Salvador, BA, 40.300-000, Brazil.
| | - Joalene de Azevedo Santos Ferreira
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Jacson Nunes Dos Santos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Fábio Alexandre Chinalia
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Josilene Lima Matos
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Gustavo Coqueiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| | - Elias Ramos-de-Souza
- Instituto Federal de Educação, Ciência e Tecnologia da Bahia, Rua Emídio dos Santos, s/n, Barbalho, Salvador, BA, 40.301-015, Brazil
| | - Paulo Fernando de Almeida
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Av. Reitor Miguel Calmon, s/n - Vale do Canela, Salvador, BA, 40.231-300, Brazil
| |
Collapse
|
28
|
Li GX, Bao P. Transcriptomics analysis of the metabolic mechanisms of iron reduction induced by sulfate reduction mediated by sulfate-reducing bacteria. FEMS Microbiol Ecol 2021; 97:6095723. [PMID: 33439980 DOI: 10.1093/femsec/fiab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/11/2021] [Indexed: 11/12/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) play an important role in sulfur, iron and carbon cycling. The majority of studies have illustrated the role of SRB in biogeochemical cycling in pure cultures. In this study, we established three SRB enrichment cultures (designated HL, NB and WC) from different paddy soils and conducted a transcriptomic analysis of their metabolic characteristics under sulfate and sulfate-free conditions. In the HL cultures, there was no sulfate consumption but ferrihydrite was reduced. This indicated that bacteria in the HL samples can reduce ferrihydrite and preferentially utilize ferrihydrite as the electron acceptor in the absence of both ferrihydrite and sulfate. Sulfate consumption was equal in the NB and the WC cultures, although more ferrihydrite was reduced in the NB cultures. Transcriptomics analysis showed that (i) upregulation of O-acetylserine sulfhydrylase gene expression indicating sulfate assimilation in the WC samples; (ii) the energy conservation trithionate pathway is commonly employed by SRB and (iii) sulfate not only enhanced iron reduction by its conversion to sulfide but also promoted enzymatic electron transfer via c-type cytochromes.
Collapse
Affiliation(s)
- Guo-Xiang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, P. R. China.,Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Zhongke Road 88, Ningbo 315800, P. R. China.,Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Hölderlinstr. 12, Tuebingen 72076, Germany
| | - Peng Bao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, P. R. China.,Ningbo Urban Environment Observation and Station, Chinese Academy of Sciences, Zhongke Road 88, Ningbo 315800, P. R. China
| |
Collapse
|
29
|
Abstract
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Collapse
Affiliation(s)
- Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology; and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| |
Collapse
|
30
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
31
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
33
|
da Silva TU, Pougy KDC, Albuquerque MG, da Silva Lima CH, Machado SDP. Development of parameters compatible with the CHARMM36 force field for [Fe 4S 4] 2+ clusters and molecular dynamics simulations of adenosine-5'-phosphosulfate reductase in GROMACS 2019. J Biomol Struct Dyn 2020; 40:3481-3491. [PMID: 33183173 DOI: 10.1080/07391102.2020.1847687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DFT calculations were used to obtain parameters compatible with the CHARMM36 force field for iron-sulfur clusters (Fe-S) of the type [Fe4S4]2+ that are coordinated to dissimilatory adenosine-5'-phosphosulfate reductase (APSrAB). Classical molecular dynamics (MD) simulations were performed on two APSrAB systems to validate the parameters and verify the stability of the studied systems. The time analysis of the parameters inserted into the force field was in reasonable agreement with the experimental X-ray diffraction data. The analysis of the time evolution of the studied systems indicated that these systems and, in particular, the clusters in their respective cavities had a good stability and were in agreement with what was observed in previous works. The parameters obtained provide the basis for the study of APSrAB as well as other systems that contain [Fe4S4]2+ through the CHARMM36 force field.
Collapse
|
34
|
Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. WATER RESEARCH 2020; 185:116270. [PMID: 32784035 DOI: 10.1016/j.watres.2020.116270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The flowback water (FW) from shale gas exploitation can be effectively treated by bioelectrochemical technology, but sulfide overproduction remains to be addressed. Herein, sulfate-reducing bacteria (SRB) meditated microbial fuel cells (MFCs) with anodic potential control were used. COD removal gradually increased to 67.4 ± 5.1% in electrode-potential-control (EPC) MFCs and 78.9 ± 2.4% in the MFC with open circuit (OC-MFC). However, in EPC MFCs sulfate removal stabilized at much lower levels (no more than 19.9 ± 1.9%) along with much lower sulfide concentrations, but in OC-MFC it increased and finally stabilized at 59.9 ± 0.1%. Partial sulfur reuse in EPC MFCs was indicated by the current production. Notably, thiosulfate was specially detected under low potentials and effectively oxidized in EPC MFCs, especially under -0.1 V vs. SHE, which probably related to the sulfur reuse. Metagenomics analysis showed that the anode with -0.1 and -0.2 V likely shunted electrons from cytochromes that used for reducing DsrC-S0 trisulfide and thus contributed to producing thiosulfate and decreasing sulfide production. Meanwhile, the anode with -0.1 V specially accumulated sulfur-oxidizing system (Sox) genes regarding thiosulfate and sulfite oxidation to sulfate, which concurred to the effective thiosulfate oxidation and also indicated the possible direct sulfite oxidation to sulfate during the sulfur cycling. But the anode of -0.2 V highly accumulated genes for thiosulfate and sulfite reduction. Both anodes also distinctly accumulated genes regarding thiosulfate oxidation to tetrathionate and sulfide oxidation to sulfur or polysulfide. Further, sulfur-oxidizing bacteria were specially enriched in EPC MFCs and likely contributed to thiosulfate and sulfite oxidation. Thus, we suggested that the higher electrode potential (e.g. -0.1 V) can shape a cryptic sulfur cycling, in which sulfate was first reduced to sulfite, and then reoxidized to sulfate by forming thiosulfate as an important intermediate or by direct sulfite oxidation. The results provide new sights on the bioelectrochemical treatment of wastewater containing complex organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Shanshan Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Kushkevych I, Abdulina D, Kováč J, Dordević D, Vítězová M, Iutynska G, Rittmann SKMR. Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules 2020; 10:E921. [PMID: 32560561 PMCID: PMC7357011 DOI: 10.3390/biom10060921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
A comparative study of the kinetic characteristics (specific activity, initial and maximum rate, and affinity for substrates) of key enzymes of assimilatory sulfate reduction (APS reductase and dissimilatory sulfite reductase) in cell-free extracts of sulphate-reducing bacteria (SRB) from various biotopes was performed. The material for the study represented different strains of SRB from various ecotopes. Microbiological (isolation and cultivation), biochemical (free cell extract preparation) and chemical (enzyme activity determination) methods served in defining kinetic characteristics of SRB enzymes. The determined affinity data for substrates (i.e., sulfite) were 10 times higher for SRB strains isolated from environmental (soil) ecotopes than for strains from the human intestine. The maximum rate of APS reductase reached 0.282-0.862 µmol/min×mg-1 of protein that is only 10 to 28% higher than similar initial values. The maximum rate of sulfite reductase for corrosive relevant collection strains and SRB strains isolated from heating systems were increased by 3 to 10 times. A completely different picture was found for the intestinal SRB Vmax in the strains Desulfovibrio piger Vib-7 (0.67 µmol/min × mg-1 protein) and Desulfomicrobium orale Rod-9 (0.45 µmol/min × mg-1 protein). The determinant in the cluster distribution of SRB strains is the activity of the terminal enzyme of dissimilatory sulfate reduction-sulfite reductase, but not APS reductase. The data obtained from the activity of sulfate reduction enzymes indicated the adaptive plasticity of SRB strains that is manifested in the change in enzymatic activity.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic
| | - Daryna Abdulina
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Jozef Kováč
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Galyna Iutynska
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
36
|
Ghosh S, Bagchi A. Protein dynamics and molecular motions study in relation to molecular interaction between proteins from sulfur oxidizing proteobacteria Allochromatium vinosum. J Biomol Struct Dyn 2020; 39:2771-2787. [DOI: 10.1080/07391102.2020.1754914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
37
|
Kushkevych I, Cejnar J, Treml J, Dordević D, Kollar P, Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells 2020; 9:E698. [PMID: 32178484 PMCID: PMC7140700 DOI: 10.3390/cells9030698] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jiří Cejnar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| |
Collapse
|
38
|
Fang W, Gu M, Liang D, Chen GH, Wang S. Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121197. [PMID: 31541951 DOI: 10.1016/j.jhazmat.2019.121197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Dissimilatory sulfate reduction mediated by sulfate-reducing microorganisms (SRMs) has a pivotal role in the sulfur cycle, from which the generation of zero valent sulfur (ZVS) represents a novel pathway. Nonetheless, information on ZVS production from the dissimilatory sulfate reduction remains scarce. This study successfully showed the ZVS production from the dissimilatory sulfate reduction both in a bioreactor and batch experiments under the methanogenic condition. The ZVS was produced in the form of polysulfide and largely located at extracellular sites. In the bioreactor, interestingly, ZVS could be generated first from partial sulfide oxidation mediated by sulfide-oxidizing bacteria (e.g., Thiobacillus) and later from the dissimilatory sulfate reduction in SRMs when changing the reactor operation from anoxic to obligate anaerobic and black condition. In batch experiments, increasing sulfate concentration was shown to enhance ZVS production. Based on these results, together with thermodynamic calculations, a scenario was proposed for the ZVS production from dissimilatory sulfate reduction, in which SRMs might utilize sulfate-to-ZVS as an alternative pathway to sulfate-to-sulfide to increase the thermodynamic favorability and alleviate the inhibitive effects of sulfide. This study expands our understanding of the SRMs-mediated dissimilatory sulfate reduction and may have important implications in environmental bioremediation.
Collapse
Affiliation(s)
- Wenwen Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Manfei Gu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dongqing Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Löffler M, Feldhues J, Venceslau SS, Kammler L, Grein F, Pereira IAC, Dahl C. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ Microbiol 2019; 22:783-795. [PMID: 31854015 DOI: 10.1111/1462-2920.14899] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022]
Abstract
Dissimilatory sulphite reductase DsrAB occurs in sulphate/sulphite-reducing prokaryotes, in sulphur disproportionators and also in sulphur oxidizers, where it functions in reverse. Predictions of physiological traits in metagenomic studies relying on the presence of dsrAB, other dsr genes or combinations thereof suffer from the lack of information on crucial Dsr proteins. The iron-sulphur flavoprotein DsrL is an example of this group. It has a documented essential function during sulphur oxidation and was recently also found in some metagenomes of probable sulphate and sulphite reducers. Here, we show that DsrL and reverse acting rDsrAB can form a complex and are copurified from the phototrophic sulphur oxidizer Allochromatium vinosum. Recombinant DsrL exhibits NAD(P)H:acceptor oxidoreductase activity with a strong preference for NADH over NADPH. In vitro, the rDsrABL complex effectively catalyses NADH-dependent sulphite reduction, which is strongly enhanced by the sulphur-binding protein DsrC. Our work reveals NAD+ as suitable in vivo electron acceptor for sulphur oxidation in organisms operating the rDsr pathway and points to reduced nicotinamide adenine dinucleotides as electron donors for sulphite reduction in sulphate/sulphite-reducing prokaryotes that contain DsrL. In addition, dsrL cannot be used as a marker distinguishing sulphate/sulphite reducers and sulphur oxidizers in metagenomic studies without further analysis.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Julia Feldhues
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lydia Kammler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Fabian Grein
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
40
|
Importance of the iron-sulfur component and of the siroheme modification in the resting state of sulfite reductase. J Inorg Biochem 2019; 203:110928. [PMID: 31756559 DOI: 10.1016/j.jinorgbio.2019.110928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
The active site of sulfite reductase (SiR) consists of an unusual siroheme-Fe4S4 assembly coupled via a cysteinate sulfur, and serves for multi-electron reduction reactions. Clear explanations have not been demonstrated for the reasons behind the choice of siroheme (vs. other types of heme) or for the single-atom coupling to an Fe4S4 center (as opposed to simple adjacency or to coupling via chains consisting of more than one atom). Possible explanations for these choices have previously been invoked, relating to the control of the spin state of the substrate-binding (siro)heme iron, modulation of the trans effect of the (Fe4S4-bound) cysteinate, or modulation of the redox potential. Reported here is a density functional theory (DFT) investigation of the structural interplay (in terms of geometry, molecular orbitals and magnetic interactions) between the siroheme and the Fe4S4 center as well as the importance of the covalent modifications within siroheme compared to the more common heme b, aiming to verify the role of the siroheme modification and of the Fe4S4 cluster at the SiR active site, with focus on previously-formulated hypotheses (geometrical/sterics, spin state, redox and electron-transfer control). A calibration of various DFT methods/variants for the correct description of ground state spin multiplicity is performed using a set of problematic cases of bioinorganic Fe centers; out of 11 functionals tested, M06-L and B3LYP offer the best results - though none of them correctly predict the spin state for all test cases. Upon examination of the relative energies of spin states, reduction potentials, energy decomposition (electrostatic, exchange-repulsion, orbital relaxation, correlation and dispersion interactions) and Mayer bond indices in SiR models, the following main roles of the siroheme and cubane are identified: (1) the cubane cofactor decreases the reduction potential of the siroheme and stabilizes the siroheme-cysteine bond interaction, and (2) the siroheme removes the quasi-degeneracy between the intermediate and high-spin states found in ferrous systems by preserving the latter as ground state; the higher-spin preference and the increased accessibility of multiple spin states are likely to be important in selective binding of the substrate and of the subsequent reaction intermediates, and in efficient changes in redox states throughout the catalytic cycle.
Collapse
|
41
|
Brânzanic AMV, Ryde U, Silaghi-Dumitrescu R. Why does sulfite reductase employ siroheme? Chem Commun (Camb) 2019; 55:14047-14049. [PMID: 31690895 DOI: 10.1039/c9cc05271b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sulfite reductase (SiR) contains in the active site a unique assembly of siroheme and a [4Fe4S] cluster, linked by a cysteine residue. Siroheme is a doubly reduced variant of heme that is not used for a catalytic function in any other enzyme. We have used non-equilibrium Green's function methods coupled with density functional theory computations to explain why SiR employs siroheme rather than heme. The results show that direct, through vacuum, charge-transfer routes are inhibited when heme is replaced by siroheme. This ensures more efficient channelling of the electrons to the catalytic iron during the six-electron reduction of sulfite to sulfide, limiting potential side-reactions that could occur if the incoming electrons were delocalized onto the macrocyclic ring.
Collapse
Affiliation(s)
- Adrian M V Brânzanic
- Department of Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania. and Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Lund, Sweden
| | | |
Collapse
|
42
|
Reactivity of Small Oxoacids of Sulfur. Molecules 2019; 24:molecules24152768. [PMID: 31366103 PMCID: PMC6696132 DOI: 10.3390/molecules24152768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Oxidation of sulfide to sulfate is known to consist of several steps. Key intermediates in this process are the so-called small oxoacids of sulfur (SOS)—sulfenic HSOH (hydrogen thioperoxide, oxadisulfane, or sulfur hydride hydroxide) and sulfoxylic S(OH)2 acids. Sulfur monoxide can be considered as a dehydrated form of sulfoxylic acid. Although all of these species play an important role in atmospheric chemistry and in organic synthesis, and are also invoked in biochemical processes, they are quite unstable compounds so much so that their physical and chemical properties are still subject to intense studies. It is well-established that sulfoxylic acid has very strong reducing properties, while sulfenic acid is capable of both oxidizing and reducing various substrates. Here, in this review, the mechanisms of sulfide oxidation as well as data on the structure and reactivity of small sulfur-containing oxoacids, sulfur monoxide, and its precursors are discussed.
Collapse
|
43
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
44
|
Ghosh S, Bagchi A. Structural study to analyze the DNA-binding properties of DsrC protein from the dsr operon of sulfur-oxidizing bacterium Allochromatium vinosum. J Mol Model 2019; 25:74. [PMID: 30798412 DOI: 10.1007/s00894-019-3945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/29/2019] [Indexed: 01/11/2023]
Abstract
Our environment is densely populated with various beneficial sulfur-oxidizing prokaryotes (SOPs). These organisms are responsible for the proper maintenance of biogeochemical sulfur cycles to regulate the turnover of biological sulfur substrates in the environment. Allochromatium vinosum strain DSM 180T is a gamma-proteobacterium and is a member of SOP. The organism codes for the sulfur-oxidizing dsr operon, which is comprised of dsrABEFHCMKLJOPNRS genes. The Dsr proteins formed from dsr operon are responsible for formation of sulfur globules. However, the molecular mechanism of the regulation of the dsr operon is not yet fully established. Among the proteins encoded by dsr genes, DsrC is known to have some regulatory functions. DsrC possesses a helix-turn-helix (HTH) DNA-binding motif. Interestingly, the structural details of this interaction have not yet been fully established. Therefore, we tried to analyze the binding interactions of the DsrC protein with the promoter DNA structure of the dsr operon as well as a random DNA as the control. We also performed molecular dynamics simulations of the DsrC-DNA complexes. This structure-function relationship investigation revealed the most probable binding interactions of the DsrC protein with the promoter region present upstream of the dsrA gene in the dsr operon. As expected, the random DNA structure could not properly interact with DsrC. Our analysis will therefore help researchers to predict a plausible biochemical mechanism for the sulfur oxidation process. Graphical Abstract Interaction of Allochromatium vinosum DsrC protein with the promoter region present upstream of the dsrA gene.
Collapse
Affiliation(s)
- Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.,Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.
| |
Collapse
|
45
|
Sulfur-dependent microbial lifestyles: deceptively flexible roles for biochemically versatile enzymes. Curr Opin Chem Biol 2019; 49:139-145. [PMID: 30739067 DOI: 10.1016/j.cbpa.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
A wide group of microbes are able to "make a living" on Earth by basing their energetic metabolism on inorganic sulfur compounds. Because of their range of stable redox states, sulfur and inorganic sulfur compounds can be utilized as either oxidants or reductants in a diverse array of energy-conserving reactions. In this review the major enzymes and basic chemistry of sulfur-based respiration and chemolithotrophy are outlined. The reversibility and versatility of these enzymes, however, means that they can often be used in multiple ways, and several cases are discussed in which enzymes which are considered to be hallmarks of a particular respiratory or lithotrophic process have been found to be used in other, often opposing, metabolic processes. These results emphasize the importance of taking into account the geochemistry, biochemistry and microbiology of an organism and/or environment when trying to interpret the function of a particular sulfur-dependent redox enzyme.
Collapse
|
46
|
Tavolieri AM, Murray DT, Askenasy I, Pennington JM, McGarry L, Stanley CB, Stroupe ME. NADPH-dependent sulfite reductase flavoprotein adopts an extended conformation unique to this diflavin reductase. J Struct Biol 2019; 205:170-179. [DOI: 10.1016/j.jsb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
|
47
|
Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:12-21. [DOI: 10.1016/j.bbabio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022]
|
48
|
Li X, Lan SM, Zhu ZP, Zhang C, Zeng GM, Liu YG, Cao WC, Song B, Yang H, Wang SF, Wu SH. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:162-170. [PMID: 29684746 DOI: 10.1016/j.ecoenv.2018.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial. Fully understanding the metabolism of SRB paves the way for allowing the microorganisms to provide more beneficial services in bioremediation. Here we review progress in bioenergetics mechanisms and application of SRB including: (1) electron acceptors and donors for SRB; (2) pathway for sulfate reduction; (3) electron transfer in sulfate reduction; (4) application of SRB for economical and concomitant treatment of heavy metal, organic contaminants and sulfates. Moreover, current knowledge gaps and further research needs are identified.
Collapse
Affiliation(s)
- Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shi-Ming Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhong-Ping Zhu
- School of Minerals processing and Bioengineering, Central South University, No. 932 South Lushan road, Changsha, Hunan 410083, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei-Cheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hong Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Sheng-Fan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shao-Hua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
49
|
Askenasy I, Murray DT, Andrews RM, Uversky VN, He H, Stroupe ME. Structure-Function Relationships in the Oligomeric NADPH-Dependent Assimilatory Sulfite Reductase. Biochemistry 2018; 57:3764-3772. [PMID: 29787249 DOI: 10.1021/acs.biochem.8b00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central step in the assimilation of sulfur is a six-electron reduction of sulfite to sulfide, catalyzed by the oxidoreductase NADPH-dependent assimilatory sulfite reductase (SiR). SiR is composed of two subunits. One is a multidomain flavin binding reductase (SiRFP) and the other an iron-containing oxidase (SiRHP). Both enzymes are primarily globular, as expected from their functions as redox enzymes. Consequently, we know a fair amount about their structures but not how they assemble. Curiously, both structures have conspicuous regions that are structurally undefined, leaving questions about their functions and raising the possibility that they are critical in forming the larger complex. Here, we used ultraviolet-visible and circular dichroism spectroscopy, isothermal titration calorimetry, proteolytic sensitivity tests, electrospray ionization mass spectrometry, and activity assays to explore the effect of altering specific amino acids in SiRFP on their function in the holoenzyme complex. Additionally, we used computational analysis to predict the propensity for intrinsic disorder within both subunits and found that SiRHP's N-terminus is predicted to have properties associated with intrinsic disorder. Both proteins also contained internal regions with properties indicative of intrinsic disorder. We showed that SiRHP's N-terminal disordered region is critical for complex formation. Together with our analysis of SiRFP amino acid variants, we show how molecular interactions outside the core of each SiR globular enzyme drive complex assembly of this prototypical oxidoreductase.
Collapse
Affiliation(s)
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya strasse, 7 , Pushchino , Moscow Region 142290 , Russia
| | - Huan He
- Translational Science Laboratory, College of Medicine , Florida State University , Tallahassee , Florida 32306 , United States
| | | |
Collapse
|
50
|
Cepeda MR, McGarry L, Pennington JM, Krzystek J, Stroupe ME. The role of extended Fe 4S 4 cluster ligands in mediating sulfite reductase hemoprotein activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:933-940. [PMID: 29852252 DOI: 10.1016/j.bbapap.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO32- to S2-. Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe4S4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe4S4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site.
Collapse
Affiliation(s)
- Marisa R Cepeda
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Sciences, Georgia Institute of Technology, 310 Ferst Dr. NW, Atlanta, CA 30332, USA
| | - Lauren McGarry
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Joseph M Pennington
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - M Elizabeth Stroupe
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|