1
|
ALCAM shedding at the invasive front of the tumor is a marker of myometrial infiltration and promotes invasion in endometrioid endometrial cancer. Oncotarget 2018; 9:16648-16664. [PMID: 29682175 PMCID: PMC5908276 DOI: 10.18632/oncotarget.24625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Endometrial cancer (EC) is the sixth deadliest cancer in women. The depth of myometrial invasion is one of the most important prognostic factors, being directly associated with tumor recurrence and mortality. In this study, ALCAM, a previously described marker of EC recurrence, was studied by immunohistochemistry at the superficial and the invasive tumor areas from 116 EC patients with different degree of myometrial invasion and related to a set of relevant epithelial and mesenchymal markers. ALCAM expression presented a heterogeneous functionality depending on its localization, it correlated with epithelial markers (E-cadherin/β-catenin) at the superficial area, and with mesenchymal markers at the invasive front (COX-2, SNAIL, ETV5, and MMP-9). At the invasive front, ALCAM-negativity was an independent marker of myometrial invasion. This negativity, together with an increase of soluble ALCAM in uterine aspirates from patients with an invasive EC, and its positive correlation with MMP-9 levels, suggested that ALCAM shedding by MMP-9 occurs at the invasive front. In vivo and in vitro models of invasive EC were generated by ETV5-overexpression. In those, we demonstrated that ALCAM shedding was related to a more invasive pattern and that full-ALCAM recovery reverted most of the ETV5-cells mesenchymal abilities, partially through a p-ERK dependent-manner.
Collapse
|
2
|
Fernández MM, Ferragut F, Cárdenas Delgado VM, Bracalente C, Bravo AI, Cagnoni AJ, Nuñez M, Morosi LG, Quinta HR, Espelt MV, Troncoso MF, Wolfenstein-Todel C, Mariño KV, Malchiodi EL, Rabinovich GA, Elola MT. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells. Biochim Biophys Acta Gen Subj 2016; 1860:2255-68. [PMID: 27130882 DOI: 10.1016/j.bbagen.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 04/23/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell-cell interactions. Gal-8 is a "tandem-repeat"-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon. METHODS We performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization. RESULTS We showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells. CONCLUSIONS Our data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms. GENERAL SIGNIFICANCE A novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells.
Collapse
Affiliation(s)
- Marisa M Fernández
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fátima Ferragut
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Víctor M Cárdenas Delgado
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Candelaria Bracalente
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Alicia I Bravo
- Molecular Pathology Department, "Eva Perón" HIGA Hospital, Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Myriam Nuñez
- Department of Mathematics and Statistics, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Luciano G Morosi
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina
| | - Héctor R Quinta
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María V Espelt
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - María F Troncoso
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratory of Functional and Molecular Glycomics, Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Institute of Studies in Humoral Immunology, University of Buenos Aires (UBA) and National Council Research (CONICET), Microbiology, Immunology and Biotechnology Department, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, IBYME, CONICET, Buenos Aires, Argentina; Faculty of Exact and Natural Sciences, UBA, Buenos Aires, Argentina
| | - María T Elola
- Institute of Biochemistry and Biophysics (IQUIFIB), UBA-CONICET, Biological Chemistry Department, School of Pharmacy and Biochemistry, UBA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
4
|
Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras MC, Takagi J, Lukacs GL, Pause A. Interplay of Endosomal pH and Ligand Occupancy in Integrin α5β1 Ubiquitination, Endocytic Sorting, and Cell Migration. Cell Rep 2015; 13:599-609. [PMID: 26456826 DOI: 10.1016/j.celrep.2015.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
Membrane trafficking of integrins plays a pivotal role in cell proliferation and migration. How endocytosed integrins are targeted either for recycling or lysosomal delivery is not fully understood. Here, we show that fibronectin (FN) binding to α5β1 integrin triggers ubiquitination and internalization of the receptor complex. Acidification facilitates FN dissociation from integrin α5β1 in vitro and in early endosomes, promoting receptor complex deubiquitination by the USP9x and recycling to the cell surface. Depending on residual ligand occupancy of receptors, some α5β1 integrins remain ubiquitinated and are captured by ESCRT-0/I, containing histidine domain-containing protein tyrosine phosphatase (HD-PTP) and ubiquitin-associated protein 1 (UBAP1), and are directed for lysosomal proteolysis, limiting receptor downstream signaling and cell migration. Thus, HD-PTP or UBAP1 depletion confers a pro-invasive phenotype. Thus, pH-dependent FN-integrin dissociation and deubiquitination of the activated integrin α5β1 are required for receptor resensitization and cell migration, representing potential targets to modulate tumor invasiveness.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Pirjo M Apaja
- Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6
| | - Sanaz Manteghi
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Kei Suzuki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Elena Malitskaya
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Ariel Roldan
- Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6
| | - Marie-Claude Gingras
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Gergely L Lukacs
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6; Department of Physiology and Research Group Focused on Protein Structure, McGill University, Montreal, Canada, H3G 1Y6.
| | - Arnim Pause
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada, H3G 1Y6.
| |
Collapse
|
5
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
6
|
Wakayama N, Katow T, Katow H. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. Front Endocrinol (Lausanne) 2013; 4:112. [PMID: 24009602 PMCID: PMC3757445 DOI: 10.3389/fendo.2013.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 01/25/2023] Open
Abstract
The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT). Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary mesenchyme cells (PMC) and secondary mesenchyme cells (SMC) that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA), a protein tyrosine kinase (PTK) inhibitor, and suramin, a growth factor receptor (GFR) inhibitor, suggesting the involvement of the GFR/PTK (GP) signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.
Collapse
Affiliation(s)
- Norio Wakayama
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| | - Tomoko Katow
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| | - Hideki Katow
- Research Center for Marine Biology, Tohoku University, Aomori, Aomori, Japan
| |
Collapse
|
7
|
Aikawa Y. Ubiquitination within the membrane-proximal ezrin-radixin-moesin (ERM)-binding region of the L1 cell adhesion molecule. Commun Integr Biol 2013; 6:e24750. [PMID: 23986810 PMCID: PMC3737756 DOI: 10.4161/cib.24750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 12/14/2022] Open
Abstract
The dynamic turnover of the L1 cell adhesion molecule to and from the plasma membrane that is mediated through exo-and endocytic trafficking is central to axon outgrowth. Although the ubiquitination of L1 in response to incubation with an L1 antibody that mimics L1-L1 homophilic binding has been previously shown, the endocytic trafficking pathway of the ubiquitinated L1 destined for degradation is yet unclear. I have recently shown that the ubiquitinated L1 is endocytosed by Rabex-5, which is an ubiquitin-binding protein and guanine nucleotide exchange factor for Rab5, into early endosomes from the plasma membrane. Here, I speculate on the putative ubiquitination site within the membrane-proximal ezrin-binding motif in the cytoplasmic domain of L1 and discuss the regulatory role of this motif in the competition between ubiquitination and the binding of ezrin prior to L1 internalization.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Laboratory of Neural Membrane Biology; Graduate School of Brain Science; Doshisha University; Kyoto, Japan
| |
Collapse
|
8
|
Campello L, Esteve-Rudd J, Cuenca N, Martín-Nieto J. The ubiquitin-proteasome system in retinal health and disease. Mol Neurobiol 2013; 47:790-810. [PMID: 23339020 DOI: 10.1007/s12035-012-8391-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
10
|
Aikawa Y. Rabex-5 protein regulates the endocytic trafficking pathway of ubiquitinated neural cell adhesion molecule L1. J Biol Chem 2012; 287:32312-23. [PMID: 22846990 DOI: 10.1074/jbc.m112.374322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of cell surface proteins in eukaryotic cells. Ubiquitin (Ub)-binding proteins (UBPs) regulate the stability, function, and localization of ubiquitinated cell surface proteins in the endocytic pathway. Here, I report that the immunoglobulin superfamily cell adhesion molecule L1 undergoes ubiquitination and dephosphorylation on the plasma membrane upon L1 antibody-induced clustering, which mimics L1-L1 homophilic binding, and that these modifications are critical for obtaining the maximal rate of internalization and trafficking to the lysosome, but not to the proteasome. Notably, L1 antibody-induced clustering leads to the association of ubiquitinated L1 with Rabex-5, a UBP and guanine nucleotide exchange factor for Rab5, via interaction with the motif interacting with Ub (MIU) domain, but not the A20-type zinc finger domain. This interaction specifically depends on the presence of an Ub moiety on lysine residues in L1. Rabex-5 expression accelerates the internalization rates of L1(WT) and L1(Y1176A), a tyrosine-based motif mutant, but not L1(K11R), an ubiquitination-deficient mutant, leading to the accumulation of ubiquitinated L1 on endosomes. In contrast, RNA interference-mediated knockdown of Rabex-5 impairs the internalizations of L1(WT) and L1(Y1176A), but not L1(K11R) from the plasma membrane. Overall, these results provide a novel mechanistic insight into how Rabex-5 regulates internalization and postendocytic trafficking of ubiquitinated L1 destined for lysosomal degradation.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
11
|
Thelen K, Maier B, Faber M, Albrecht C, Fischer P, Pollerberg GE. Translation of the cell adhesion molecule ALCAM in axonal growth cones – regulation and functional importance. J Cell Sci 2012; 125:1003-14. [DOI: 10.1242/jcs.096149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ALCAM is a cell adhesion molecule that is present on extending axons and has been shown to be crucial for elongation and navigation of retinal ganglion cell (RGC) axons. In the present study, we show that ALCAM mRNA is present in axonal growth cones of RGCs in vivo and in vitro, and that translation of ALCAM occurs in RGC growth cones separated from their soma. This growth cone translation is regulated by the 3′-untranslated region (3′-UTR) of ALCAM and depends on the activity of the kinases ERK and TOR (target of rapamycin). We also investigated the impact of the growth cone translation of ALCAM on axonal functions. Growth cone translation of ALCAM is crucial for the enhanced elongation of axons extending in contact with ALCAM protein. The local translation of ALCAM in the growth cone is able to rapidly counterbalance experimentally induced ALCAM internalization, thereby contributing to the maintenance of constant ALCAM levels in the plasma membrane. Assays where RGC axons have the choice to grow on laminin or both ALCAM and laminin – as is the case in the developing retina – reveal that the axonal preference for ALCAM-containing lanes depends on translation of ALCAM in growth cones. Taken together, these results show for the first time that translation of a cell adhesion molecule in growth cones, as well as the impact of this local translation on the behavior of axon and growth cone.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Bettina Maier
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Marc Faber
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Christian Albrecht
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Paulina Fischer
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| |
Collapse
|
12
|
Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2011; 49:387-93. [PMID: 21884797 DOI: 10.1016/j.mcn.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023] Open
Abstract
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, and synaptic development and function. Endocytic membrane trafficking of receptors ensures that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism controlling receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
13
|
Affiliation(s)
- Amanda G Hansen
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| | - Guido W Swart
- FNWI-WiNSt (Faculty of Science, Mathematics & Informatics), Radboud University Nijmegen, 6500 GL, NL
| | - Andries Zijlstra
- Pathology and Cancer Biology, Vanderbilt University, TN 37232, US
| |
Collapse
|
14
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
15
|
Schäfer MK, Schmitz B, Diestel S. L1CAM ubiquitination facilitates its lysosomal degradation. FEBS Lett 2010; 584:4475-80. [DOI: 10.1016/j.febslet.2010.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/15/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023]
|
16
|
Franco M, Seyfried NT, Brand AH, Peng J, Mayor U. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 2010; 10:M110.002188. [PMID: 20861518 PMCID: PMC3098581 DOI: 10.1074/mcp.m110.002188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.
Collapse
Affiliation(s)
- Maribel Franco
- CIC Biogune, Bizkaia Teknologi Parkea, 48160 Derio, Spain
| | | | | | | | | |
Collapse
|
17
|
Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons. NANO LETTERS 2009; 9:4115-4121. [PMID: 19694460 DOI: 10.1021/nl9023325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The density/spacing of plasma membrane proteins is thought to be crucial for their function; clear-cut experimental evidence, however, is still rare. We examined nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP with respect to their impact on neuron attachment and neurite growth. Data analysis/modeling revealed that these cellular responses improve with increasing DM-GRASP density, with the exception of one spacing which does not allow for the anchorage of a cytoskeletal protein (spectrin) to three DM-GRASP molecules.
Collapse
Affiliation(s)
- Steffen Jaehrling
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|