1
|
Wu C, Tan J, Shen H, Deng C, Kleber C, Osterhoff G, Schopow N. Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci 2024; 31:4. [PMID: 38212768 PMCID: PMC10785352 DOI: 10.1186/s12929-024-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Metabolic remodeling and changes in tumor immune microenvironment (TIME) in osteosarcoma are important factors affecting prognosis and treatment. However, the relationship between metabolism and TIME needs to be further explored. METHODS RNA-Seq data and clinical information of 84 patients with osteosarcoma from the TARGET database and an independent cohort from the GEO database were included in this study. The activity of seven metabolic super-pathways and immune infiltration levels were inferred in osteosarcoma patients. Metabolism-related genes (MRGs) were identified and different metabolic clusters and MRG-related gene clusters were identified using unsupervised clustering. Then the TIME differences between the different clusters were compared. In addition, an MRGs-based risk model was constructed and the role of a key risk gene, ST3GAL4, in osteosarcoma cells was explored using molecular biological experiments. RESULTS This study revealed four key metabolic pathways in osteosarcoma, with vitamin and cofactor metabolism being the most relevant to prognosis and to TIME. Two metabolic pathway-related clusters (C1 and C2) were identified, with some differences in immune activating cell infiltration between the two clusters, and C2 was more likely to respond to two chemotherapeutic agents than C1. Three MRG-related gene clusters (GC1-3) were also identified, with significant differences in prognosis among the three clusters. GC2 and GC3 had higher immune cell infiltration than GC1. GC3 is most likely to respond to immune checkpoint blockade and to three commonly used clinical drugs. A metabolism-related risk model was developed and validated. The risk model has strong prognostic predictive power and the low-risk group has a higher level of immune infiltration than the high-risk group. Knockdown of ST3GAL4 significantly inhibited proliferation, migration, invasion and glycolysis of osteosarcoma cells and inhibited the M2 polarization of macrophages. CONCLUSION The metabolism of vitamins and cofactors is an important prognostic regulator of TIME in osteosarcoma, MRG-related gene clusters can well reflect changes in osteosarcoma TIME and predict chemotherapy and immunotherapy response. The metabolism-related risk model may serve as a useful prognostic predictor. ST3GAL4 plays a critical role in the progression, glycolysis, and TIME of osteosarcoma cells.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christian Kleber
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Nikolas Schopow
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
3
|
A Five-Gene Prognostic Nomogram Predicting Disease-Free Survival of Differentiated Thyroid Cancer. DISEASE MARKERS 2021; 2021:5510780. [PMID: 34221185 PMCID: PMC8221860 DOI: 10.1155/2021/5510780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023]
Abstract
Background Differentiated thyroid cancer (DTC) is the most common type of thyroid tumor with a high recurrence rate. Here, we developed a nomogram to effectively predict postoperative disease-free survival (DFS) in DTC patients. Methods The mRNA expressions and clinical data of DTC patients were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Seventy percent of patients were randomly selected as the training dataset, and thirty percent of patients were classified into the testing dataset. Multivariate Cox regression analysis was adopted to establish a nomogram to predict 1-year, 3-year, and 5-year DFS rate of DTC patients. Results A five-gene signature comprised of TENM1, FN1, APOD, F12, and BTNL8 genes was established to predict the DFS rate of DTC patients. Results from the concordance index (C-index), area under curve (AUC), and calibration curve showed that both the training dataset and the testing dataset exhibited good prediction ability, and they were superior to other traditional models. The risk score and distant metastasis (M) of the five-gene signature were independent risk factors that affected DTC recurrence. A nomogram that could predict 1-year, 3-year, and 5-year DFS rate of DTC patients was established with a C-index of 0.801 (95% CI: 0.736, 0.866). Conclusion Our study developed a prediction model based on the gene expression and clinical characteristics to predict the DFS rate of DTC patients, which may be applied to more accurately assess patient prognosis and individualized treatment.
Collapse
|
4
|
Studies of ApoD -/- and ApoD -/-ApoE -/- mice uncover the APOD significance for retinal metabolism, function, and status of chorioretinal blood vessels. Cell Mol Life Sci 2020; 78:963-983. [PMID: 32440710 DOI: 10.1007/s00018-020-03546-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
Apolipoprotein D (APOD) is an atypical apolipoprotein with unknown significance for retinal structure and function. Conversely, apolipoprotein E (APOE) is a typical apolipoprotein with established roles in retinal cholesterol transport. Herein, we immunolocalized APOD to the photoreceptor inner segments and conducted ophthalmic characterizations of ApoD-/- and ApoD-/-ApoE-/- mice. ApoD-/- mice had normal levels of retinal sterols but changes in the chorioretinal blood vessels and impaired retinal function. The whole-body glucose disposal was impaired in this genotype but the retinal glucose metabolism was unchanged. ApoD-/-ApoE-/- mice had altered sterol profile in the retina but apparently normal chorioretinal vasculature and function. The whole-body glucose disposal and retinal glucose utilization were enhanced in this genotype. OB-Rb, both leptin and APOD receptor, was found to be expressed in the photoreceptor inner segments and was at increased abundance in the ApoD-/- and ApoD-/-ApoE-/- retinas. Retinal levels of Glut4 and Cd36, the glucose transporter and scavenger receptor, respectively, were increased as well, thus linking APOD to retinal glucose and fatty acid metabolism and suggesting the APOD-OB-Rb-GLUT4/CD36 axis. In vivo isotopic labeling, transmission electron microscopy, and retinal proteomics provided additional insights into the mechanism underlying the retinal phenotypes of ApoD-/- and ApoD-/-ApoE-/- mice. Collectively, our data suggest that the APOD roles in the retina are context specific and could determine retinal glucose fluxes into different pathways. APOD and APOE do not play redundant, complementary or opposing roles in the retina, rather their interplay is more complex and reflects retinal responses elicited by lack of these apolipoproteins.
Collapse
|
5
|
Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019; 20:ijms20153681. [PMID: 31357595 PMCID: PMC6696488 DOI: 10.3390/ijms20153681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
The p53 canonical consensus sequence is a 10-bp repeat of PuPuPuC(A/T)(A/T)GPyPyPy, separated by a spacer with up to 13 bases. C(A/T)(A/T)G is the core sequence and purine (Pu) and pyrimidine (Py) bases comprise the flanking sequence. However, in the p53 noncanonical sequences, there are many variations, such as length of consensus sequence, variance of core sequence or flanking sequence, and variance in number of bases making up the spacer or AT gap composition. In comparison to p53, the p53 family members p63 and p73 have been found to have more tolerance to bind and activate several of these noncanonical sequences. The p53 protein forms monomers, dimers, and tetramers, and its nonspecific binding domain is well-defined; however, those for p63 or p73 are still not fully understood. Study of p63 and p73 structure to determine the monomers, dimers or tetramers to bind and regulate noncanonical sequence is a new challenge which is crucial to obtaining a complete picture of structure and function in order to understand how p63 and p73 regulate genes differently from p53. In this review, we will summarize the rules of p53 family non-canonical sequences, especially focusing on the structure of p53 family members in the regulation of specific target genes. In addition, we will compare different software programs for prediction of p53 family responsive elements containing parameters with canonical or non-canonical sequences.
Collapse
Affiliation(s)
- Bi-He Cai
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Faye Chao
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Jang-Yi Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
6
|
Analysis of regeneration- and myelination-associated proteins in human neuroma in continuity and discontinuity. Acta Neurochir (Wien) 2018; 160:1269-1281. [PMID: 29656327 DOI: 10.1007/s00701-018-3544-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Neuromas are pathologic nerve distensions caused by a nerve's response to trauma, resulting in a dysfunctional to non-functional nerve. Depending on the severance of the affected nerve, the resulting neuroma can be differentiated into continuous and stump neuroma. While neuroma formation has been investigated in animal models with enormous regenerative capacity, the search for differences in human response to nerve trauma on a molecular level ultimately seeks to identify reasons for functionally successful versus unsuccessful regeneration after peripheral nerve trauma in man. METHODS In the present study, the regenerative potential of axons and the capability of Schwann cells (SC) to remyelinate regenerating axons was quantitatively and segmentally analyzed and compared within human neuroma in-continuity and discontinuity. RESULTS For the stump neuroma and the neuroma in-continuity, there was a significant reduction of the total number of axons (86% stump neuroma and 91% neuroma in-continuity) from the proximal to the distal part of the neuroma, while the amount of fibrotic tissue increased, respectively. Labeling the myelin sheath of regenerating axons revealed a remyelination of regenerating axons by SCs in both neuroma types. The segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma. CONCLUSIONS The quantitative and segmented analysis showed no distinct alterations in the number and spatial distribution of regenerating, mature, and myelinated axons between continuous and discontinuous neuroma, while the extensive expression of Gap43 in up to 55% of the human neuroma axons underlines their regenerative capacity independent of whether the neuroma is in continuity or discontinuity. Remyelination of Gap43-positive axons suggests that the capability of SCs to remyelinate regenerating axons is preserved in neuroma tissue.
Collapse
|
7
|
Najyb O, Brissette L, Rassart E. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism. J Biol Chem 2015; 290:16077-87. [PMID: 25918162 DOI: 10.1074/jbc.m115.644302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.
Collapse
Affiliation(s)
- Ouafa Najyb
- From the Laboratoire de Biologie Moléculaire and
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada
| | - Eric Rassart
- From the Laboratoire de Biologie Moléculaire and
| |
Collapse
|
8
|
Ruiz M, Sanchez D, Correnti C, Strong RK, Ganfornina MD. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: functional implications for cell differentiation. FEBS J 2013; 280:3928-43. [PMID: 23777559 DOI: 10.1111/febs.12394] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022]
Abstract
Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand-binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration, we screened the binding of 15 potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols, however, showed a species-specific binding pattern: cholesterol did not show strong binding to human ApoD, whereas NLaz and Laz did bind ergosterol. Among the lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene, but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of lipocalin ligand binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions.
Collapse
Affiliation(s)
- Mario Ruiz
- Departamento de Bioquímica y Biología Molecular y Fisiología-Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | |
Collapse
|
9
|
Bajo-Grañeras R, Crespo-Sanjuan J, García-Centeno RM, Garrote-Adrados JA, Gutierrez G, García-Tejeiro M, Aguirre-Gervás B, Calvo-Nieves MD, Bustamante R, Ganfornina MD, Sanchez D. Expression and potential role of apolipoprotein D on the death-survival balance of human colorectal cancer cells under oxidative stress conditions. Int J Colorectal Dis 2013; 28:751-66. [PMID: 23296401 DOI: 10.1007/s00384-012-1616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Inverse correlations of apolipoprotein D (ApoD) expression with tumor growth have been shown, therefore proposing ApoD as a good prognostic marker for diverse cancer types, including colorectal cancer (CRC). Besides, ApoD expression is boosted upon oxidative stress (OS) in many pathological situations. This study aims at understanding the role of ApoD in the progression of human CRC. METHODS Samples of CRC and distant normal tissue (n = 51) were assayed for levels of lipid peroxidation, expression profile of OS-dependent genes, and protein expression. Three single-nucleotide polymorphisms in the ApoD gene were analyzed (n = 139), with no significant associations found. Finally, we assayed the effect of ApoD in proliferation and apoptosis in the CRC HT-29 cell line. RESULTS In CRC, lipid peroxides increase while ApoD messenger RNA and protein decrease through tumor progression, with a prominent decrease in stage I. In normal mucosa, ApoD protein is present in lamina propia and enteroendocrine cells. In CRC, ApoD expression is heterogeneous, with low expression in stromal cells commonly associated with high expression in the dysplastic epithelium. ApoD promoter is basally methylated in HT-29 cells but retains the ability to respond to OS. Exogenous addition of ApoD to HT-29 cells does not modify proliferation or apoptosis levels in control conditions, but it promotes apoptosis upon paraquat-induced OS. CONCLUSION Our results show ApoD as a gene responding to OS in the tumor microenvironment. Besides using ApoD as marker of initial stages of tumor progression, it can become a therapeutic tool promoting death of proliferating tumor cells suffering OS.
Collapse
Affiliation(s)
- Raquel Bajo-Grañeras
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sasaki Y, Koyama R, Maruyama R, Hirano T, Tamura M, Sugisaka J, Suzuki H, Idogawa M, Shinomura Y, Tokino T. CLCA2, a target of the p53 family, negatively regulates cancer cell migration and invasion. Cancer Biol Ther 2012; 13:1512-21. [PMID: 22990203 DOI: 10.4161/cbt.22280] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 transcriptionally regulates a number of genes that are involved in cell-cycle inhibition, apoptosis and the maintenance of genetic stability. Recent studies suggest that p53 also contributes to the regulation of cell migration and invasion. Here, we show that human chloride channel accessory-2 (CLCA2) is a target gene of the p53 family (p53, p73 and p63). CLCA2 is induced by DNA damage in a p53-dependent manner. The p53 family proteins activate the CLCA2 promoter by binding directly to the conserved consensus p53-binding site present in the CLCA2 promoter. In terms of function, ectopic expression of CLCA2 inhibited cancer cell migration. In contrast, silencing CLCA2 with siRNA stimulated cancer cell migration and invasion. We also found that inactivation of CLCA2 enhanced the expression of focal adhesion kinase (FAK), as well as its promoter activation. A small-molecule FAK inhibitor reduced the effect of CLCA2 siRNA on cell migration and invasion, suggesting that CLCA2 inhibits cancer cell migration and invasion through suppression of the FAK signaling pathway. Furthermore, there was an inverse correlation between CLCA2 and FAK expression in 251 human breast cancer tissues. These results strongly suggest that CLCA2 is involved in the p53 tumor suppressor network and has a significant effect on cell migration and invasion.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
A novel approach to cancer treatment using structural hybrids of the p53 gene family. Cancer Gene Ther 2012; 19:749-56. [DOI: 10.1038/cgt.2012.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sasaki Y, Negishi H, Idogawa M, Yokota I, Koyama R, Kusano M, Suzuki H, Fujita M, Maruyama R, Toyota M, Saito T, Tokino T. p53 negatively regulates the hepatoma growth factor HDGF. Cancer Res 2011; 71:7038-47. [PMID: 22006999 DOI: 10.1158/0008-5472.can-11-1053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatoma-derived growth factor (HDGF) is a secreted heparin-binding growth factor that has been implicated in cancer development and progression. Here, we report that HDGF is a critical target for transcriptional repression by the tumor suppressor p53. Endogenous HDGF expression was decreased in cancer cells with introduction of wild-type p53, which also downregulated HDGF expression after DNA damage. In support of the likelihood that HDGF is a critical driver of cancer cell growth, addition of neutralizing HDGF antibodies to culture media was sufficient to block cell growth, migration, and invasion. Similarly, these effects were elicited by conditioned culture medium from p53-expressing cells, and they could be reversed by the addition of recombinant human HDGF. Interestingly, we found that HDGF was overexpressed also in primary gastric, breast, and lung cancer tissues harboring mutant p53 genes. Mechanistic investigations revealed that p53 repressed HDGF transcription by altering HDAC-dependent chromatin remodeling. Taken together, our results reveal a new pathway in which loss of p53 function contributes to the aggressive pathobiological potential of human cancers by elevating HDGF expression.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chiaretti S, Tavolaro S, Marinelli M, Messina M, Del Giudice I, Mauro FR, Santangelo S, Piciocchi A, Peragine N, Truong S, Patten N, Ghia EM, Torrente I, De Propris MS, Nanni M, Lawrence J, Guarini A, Foà R. Evaluation of TP53 mutations with the AmpliChip p53 research test in chronic lymphocytic leukemia: correlation with clinical outcome and gene expression profiling. Genes Chromosomes Cancer 2011; 50:263-74. [PMID: 21319261 DOI: 10.1002/gcc.20852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/09/2010] [Indexed: 11/10/2022] Open
Abstract
Given that TP53 alterations predict prognosis and response to therapy in chronic lymphocytic leukemia (CLL), screening for TP53 mutations has an increasing role in patient management. TP53 direct sequencing is a time-consuming method, while the AmpliChip p53 Research Test is a novel non time-consuming microarray-based resequencing assay and queries Exons 2-11. We evaluated the impact of TP53 mutations on clinical outcome by analyzing 98 untreated CLL using the AmpliChip p53 Research Test and direct sequencing and performed microarrays analysis on TP53 mutated and/or deleted cases. The AmpliChip p53 Research Test detected 17 mutations in 14 patients (17.3%); a significant association between TP53 mutations and del(17p) was recorded. From a clinical standpoint, a higher percentage of mutation was found in CLL with unfavorable outcome (17.2% vs. 7.1% in progressive vs. stable cases). Detection of TP53 mutations by the AmpliChip p53 Research Test was associated with a significantly worse survival (P = 0.0002). Comparison of the array and direct sequencing tests showed that the p53 Research Test detected more mutations, although it failed to identify two microdeletions. Finally, microarrays analysis showed a more distinctive signature associated with del(17p) than with TP53 mutations, likely due to a concomitant gene dosage effect. The AmpliChip p53 Research Test is a straightforward method that bears prognostic value. This study confirms a high percentage of TP53 mutations in CLL with unfavorable outcome and a significant association between TP53 aberrations and del(17p). Finally, specific gene expression profiles are recognized for TP53 alterations.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Muffat J, Walker DW. Apolipoprotein D: an overview of its role in aging and age-related diseases. Cell Cycle 2010; 9:269-73. [PMID: 20023409 DOI: 10.4161/cc.9.2.10433] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Julien Muffat
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
15
|
Hu F, Wang C, Du J, Sun W, Yan J, Mi D, Zhang J, Qiao Y, Zhu T, Yang S. DeltaEF1 promotes breast cancer cell proliferation through down-regulating p21 expression. Biochim Biophys Acta Mol Basis Dis 2009; 1802:301-12. [PMID: 20006705 DOI: 10.1016/j.bbadis.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 01/20/2023]
Abstract
Although the zinc finger-homeodomain transcription factor deltaEF1 is implied as a regulatory factor at the crossroad between proliferation and differentiation in carcinogenesis, its potential effect in the regulation of cell cycle progression has not been well elucidated. In our present study, we provide novel finding that, in breast cancer, the ectopic expression of deltaEF1 in MDA-MB-231 cells significantly promoted cell proliferation by increasing the cell number in S phase of the cell cycle. In contrast, deltaEF1 knockdown by RNA interference exhibited an opposite effect, highlighting a potent role of deltaEF1 to promote G1-S transition of breast cancer cells. Moreover, we demonstrated that deltaEF1 down-regulated p21 and concurrently up-regulated the expressions of CDK2 and CDK4 during this process. Further, deltaEF1 inhibited p21 transcription by recruiting to the E(2) box element on the p21 promoter. Depletion of endogenous deltaEF1 in MDA-MB-231 cells was sufficient to allow an inherent release of p21 expression, thus resulting in the cell cycle arrest. In addition, the stimulatory effect of deltaEF1 on cell proliferation through p21 regulation was supported by an inverse correlation of deltaEF1 and p21 expressions observed in both breast cancer cell lines and clinical tumor specimens. Taken together, these observations suggest a dual effect of deltaEF1 in promoting breast cancer cell proliferation, by differentially regulating the cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat 2009; 122:699-710. [PMID: 19859801 DOI: 10.1007/s10549-009-0600-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 10/12/2009] [Indexed: 01/14/2023]
Abstract
Breast cancer arises through the accumulation of multiple genetic alterations and epigenetic changes such as methylation, which silences gene expression in a variety of cancers. In the present study, we applied genomic screening to identify genes upregulated by the demethylating agent 5-aza-2'-deoxycytidine (DAC) in a human breast cancer cell line (MCF7). We identified 288 genes upregulated and 29 genes downregulated more than fivefold after treatment with DAC, and gene ontology analyses revealed the genes to be involved in immune responses, apoptosis, and cell differentiation. In addition, real-time PCR analysis of ten genes silenced in MCF7 cells confirmed that they are upregulated by DAC, while bisulfite-pyrosequencing analysis confirmed that nine of those genes were silenced by methylation. We also found that treating MCF7 cells with DAC restored induction of DFNA5 by p53, as well as by two other p53 family genes, p63gamma and p73beta. Introduction of NTN4 into MCF7 cells suppressed cell growth, indicating that NTN4 has tumor suppressive activity. In primary breast cancers, we detected cancer-specific methylation of NTN4, PGP9.5, and DKK3, suggesting that methylation of these genes could be useful markers for diagnosis of breast cancer. Thus, DNA methylation appears to be a common event in breast cancer, and the genes silenced by methylation could be useful targets for both diagnosis and therapy.
Collapse
|