1
|
Li Y, Zhang Y, Shi H, Liu X, Li Z, Zhang J, Wang X, Wang W, Tong X. CRTC2 activates the epithelial-mesenchymal transition of diabetic kidney disease through the CREB-Smad2/3 pathway. Mol Med 2023; 29:146. [PMID: 37884902 PMCID: PMC10604535 DOI: 10.1186/s10020-023-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules.
Collapse
Affiliation(s)
- Yujie Li
- Changchun University of Traditional Chinese Medicine, Changchun, 130012, China.
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Yufeng Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xuemei Liu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Jiayi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiuge Wang
- The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130012, China
| | - Wenbo Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
De La Cruz-Herrera CF, Tatham MH, Siddiqi UZ, Shire K, Marcon E, Greenblatt JF, Hay RT, Frappier L. Changes in SUMO-modified proteins in Epstein-Barr virus infection identifies reciprocal regulation of TRIM24/28/33 complexes and the lytic switch BZLF1. PLoS Pathog 2023; 19:e1011477. [PMID: 37410772 DOI: 10.1371/journal.ppat.1011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.
Collapse
Affiliation(s)
| | - Michael H Tatham
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Umama Z Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Ronald T Hay
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Yanagi Y, Watanabe T, Hara Y, Sato Y, Kimura H, Murata T. EBV Exploits RNA m6A Modification to Promote Cell Survival and Progeny Virus Production During Lytic Cycle. Front Microbiol 2022; 13:870816. [PMID: 35783391 PMCID: PMC9240777 DOI: 10.3389/fmicb.2022.870816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) mediates various biological processes by affecting RNA stability, splicing, and translational efficiency. The roles of m6A modification in Epstein-Barr virus (EBV) infection in the lytic phase are unclear. Here, knockout of the m6A methyltransferase, N6-methyladenosine methyltransferase-like 3 (METTL3), or inhibition of methylation by DAA or UZH1a decreased the expression of viral lytic proteins and reduced progeny virion production. Interestingly, cell growth and viability were decreased by induction of the lytic cycle in METTL3-knockout or inhibitor-treated cells. Apoptosis was induced in those conditions possibly because of a decreased level of the anti-apoptotic viral protein, BHRF1. Therefore, m6A shows potential as a target of lytic induction therapy for EBV-associated cancers, including Burkitt lymphoma.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
- *Correspondence: Takayuki Murata
| |
Collapse
|
4
|
Dochi H, Kondo S, Murata T, Fukuyo M, Nanbo A, Wakae K, Jiang WP, Hamabe-Horiike T, Tanaka M, Nishiuchi T, Mizokami H, Moriyama-Kita M, Kobayashi E, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Juang SH, Muramatsu M, Kaneda A, Yoshizaki T. Estrogen induces the expression of EBV lytic protein ZEBRA, a marker of poor prognosis in nasopharyngeal carcinoma. Cancer Sci 2022; 113:2862-2877. [PMID: 35633182 PMCID: PMC9357606 DOI: 10.1111/cas.15440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Several epidemiological studies have suggested that Epstein-Barr virus (EBV) lytic infection is essential for the development of nasopharyngeal carcinoma (NPC), as elevation of antibody titers against EBV lytic proteins is a common feature of NPC. Although ZEBRA protein is a key trigger for the initiation of lytic infection, whether its expression affects the prognosis and pathogenesis of NPC remains unclear. In this study, 64 NPC biopsy specimens were analyzed using immunohistochemistry. We found that ZEBRA was significantly associated with a worsening of progression-free survival in NPC (adjusted hazard ratio, 3.58; 95% confidence interval, 1.08-11.87; P = 0.037). Moreover, ZEBRA expression positively correlated with key endocrinological proteins, estrogen receptor α, and aromatase. The transcriptional level of ZEBRA is activated by estrogen in an estrogen receptor α-dependent manner, resulting in an increase in structural gene expression levels and extracellular virus DNA copy number in NPC cell lines, reminiscent of lytic infection. Interestingly, it did not suppress cellular proliferation or increase apoptosis, in contrast to cells treated with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, indicating that viral production induced by estrogen is not a cell lytic phenomenon. Our results suggest that intratumoral estrogen overproduced by aromatase could induce ZEBRA expression and EBV reactivation, contributing to the progression of NPC.
Collapse
Affiliation(s)
- Hirotomo Dochi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Asuka Nanbo
- Department of Molecular and Cellular Virology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Toshihide Hamabe-Horiike
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mariko Tanaka
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miyako Hatano
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naohiro Wakisaka
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
5
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
6
|
Yanagi Y, Hara Y, Mabuchi S, Watanabe T, Sato Y, Kimura H, Murata T. PD-L1 upregulation by lytic induction of Epstein-Barr Virus. Virology 2022; 568:31-40. [DOI: 10.1016/j.virol.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
7
|
Abstract
Antigen recognition by the B cell receptor (BCR) is a physiological trigger for reactivation of Epstein-Barr virus (EBV) and can be recapitulated in vitro by cross-linking of surface immunoglobulins. Previously, we identified a subset of EBV microRNAs (miRNAs) that attenuate BCR signal transduction and subsequently dampen lytic reactivation in B cells. The roles of host miRNAs in the EBV lytic cycle are not completely understood. Here, we profiled the small RNAs in reactivated Burkitt lymphoma cells and identified several miRNAs, such as miR-141, that are induced upon BCR cross-linking. Notably, EBV encodes a viral miRNA, miR-BART9, with sequence homology to miR-141. To better understand the functions of these two miRNAs, we examined their molecular targets and experimentally validated multiple candidates commonly regulated by both miRNAs. Targets included B cell transcription factors and known regulators of EBV immediate-early genes, leading us to hypothesize that these miRNAs modulate kinetics of the lytic cascade in B cells. Through functional assays, we identified roles for miR-141 and EBV miR-BART9 and one specific target, FOXO3, in progression of the lytic cycle. Our data support a model whereby EBV exploits BCR-responsive miR-141 and further mimics activity of this miRNA family via a viral miRNA to promote productive lytic replication. IMPORTANCE EBV is a human pathogen associated with several malignancies. A key aspect of lifelong virus persistence is the ability to switch between latent and lytic replication modes. The mechanisms governing latency, reactivation, and progression of the lytic cycle are only partly understood. This study reveals that specific miRNAs can act to support the EBV lytic phase following BCR-mediated reactivation triggers. Furthermore, this study identifies a role for FOXO3, commonly suppressed by both host and viral miRNAs, in modulating progression of the EBV lytic cycle.
Collapse
|
8
|
Kim JH, Kim WS, Park C. Sildenafil prevents HDACi-induced Epstein-Barr virus reactivation through the PKG pathway in NK/T cell lymphoma; potential implications for HDACi-mediated fatal complications. Antiviral Res 2021; 189:105063. [PMID: 33741394 DOI: 10.1016/j.antiviral.2021.105063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Romidepsin, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of relapsed and refractory peripheral T-cell lymphoma. However the use of romidepsin reportedly causes potent EBV (Epstein-Barr virus) reactivation leading to severe adverse events in patients with natural killer (NK)/T-cell lymphoma (NKTL). As inhibition of EBV lytic cycle reactivation may help prevent romidepsin-induced adverse events in NKTL, we herein set out to identify a safe and effective drug for inhibiting EBV reactivation and examine its mechanism of inhibition. EBV reactivation was evaluated by qRT-PCR of BZLF1 and BRLF1 mRNA expression, qPCR of EBV DNA, and immunoblotting of viral EA-D protein. High-throughput screening of FDA-approved drugs was performed to identify safe and effective molecules and test their effect on romidepsin-induced EBV reactivation in the EBV-positive NKTL cell lines, SNK6 and NK92MI. We found that phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra; Pfizer), appeared to be nontoxic and effective inhibitors of romidepsin-induced EBV reactivation. Clinical relevance was investigated by qPCR of EBV in two primary effusion samples of NKTL patients. We also investigated the molecular consequences downstream of sildenafil-induced PDE5 inhibition in NKTL cells. A negative correlation was established between the cGMP/PKG pathway and EBV reactivation in NKTL cells. On a molecular level, PDE5 inhibition downregulates BZLF1 and BRLF1 through cGMP/PKG signaling-induced ZNF overexpression. Co-treatment with romidepsin and sildenafil (inhibiting HDAC and PDE5, respectively) showed a synergistic inhibitory effect on NKTL cells, highlighting PDE5 as an attractive target for future therapy in NKTL.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| |
Collapse
|
9
|
Ma L, Chen S, Wang Z, Guo S, Zhao J, Yi D, Li Q, Liu Z, Guo F, Li X, Jia P, Ding J, Liang C, Cen S. The CREB Regulated Transcription Coactivator 2 Suppresses HIV-1 Transcription by Preventing RNA Pol II from Binding to HIV-1 LTR. Virol Sin 2021; 36:796-809. [PMID: 33723808 DOI: 10.1007/s12250-021-00363-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 10/21/2022] Open
Abstract
The CREB-regulated transcriptional co-activators (CRTCs), including CRTC1, CRTC2 and CRTC3, enhance transcription of CREB-targeted genes. In addition to regulating host gene expression in response to cAMP, CRTCs also increase the infection of several viruses. While human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter harbors a cAMP response element and activation of the cAMP pathway promotes HIV-1 transcription, it remains unknown whether CRTCs have any effect on HIV-1 transcription and HIV-1 infection. Here, we reported that CRTC2 expression was induced by HIV-1 infection, but CRTC2 suppressed HIV-1 infection and diminished viral RNA expression. Mechanistic studies revealed that CRTC2 inhibited transcription from HIV-1 LTR and diminished RNA Pol II occupancy at the LTR independent of its association with CREB. Importantly, CRTC2 inhibits the activation of latent HIV-1. Together, these data suggest that in response to HIV-1 infection, cells increase the expression of CRTC2 which inhibits HIV-1 gene expression and may play a role in driving HIV-1 into latency.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Shumin Chen
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100176, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China
| | - Pingping Jia
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, 100050, China. .,CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100050, China. .,Beijing Friendship Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
10
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
11
|
Identifying the Cellular Interactome of Epstein-Barr Virus Lytic Regulator Zta Reveals Cellular Targets Contributing to Viral Replication. J Virol 2020; 94:JVI.00927-19. [PMID: 31694936 DOI: 10.1128/jvi.00927-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The human gammaherpesvirus Epstein-Barr virus (EBV) (human herpesvirus 4 [HHV4]) infects most adults and is an important contributor to the development of many types of lymphoid and epithelial cancers. Essential contributions of viral genes to viral replication are known, but the potential contributions of cell genes are less well delineated. A key player is the viral protein Zta (BZLF1, ZEBRA, or Z). This sequence-specific DNA-binding protein can disrupt EBV latency by driving the transcription of target genes and by interacting with the EBV lytic origin of replication. Here, we used an unbiased proteomics approach to identify the Zta-interactome in cells derived from Burkitt's lymphoma. Isolating Zta and associated proteins from Burkitt's lymphoma cells undergoing EBV replication, followed by tandem mass tag (TMT) mass spectrometry, resulted in the identification of 39 viral and cellular proteins within the Zta interactome. An association of Zta with the cellular protein NFATc2 was validated in independent experiments. Furthermore, the ability of Zta to attenuate the activity of an NFAT-dependent promoter was shown, which suggests a functional consequence for the association. The expression of Zta is itself regulated through NFAT activity, suggesting that Zta may contribute to a feedback loop that would limit its own expression, thus aiding viral replication by preventing the known toxic effects of Zta overexpression.IMPORTANCE Epstein-Barr virus infects most people across the world and causes several kinds of cancer. Zta is an important viral protein that makes the virus replicate by binding to its DNA and turning on the expression of some genes. We used a sensitive, unbiased approach to isolate and identify viral and cellular proteins that physically interact with Zta. This revealed 39 viral and cellular proteins. We found that one protein, termed NFATc2, was already known to be important for a very early step in viral replication. We identify that once this step has occurred, Zta reduces the effectiveness of NFATc2, and we suggest that this is important to prevent cells from dying before viral replication is complete and the mature virus is released from the cells.
Collapse
|
12
|
Identification of ARKL1 as a Negative Regulator of Epstein-Barr Virus Reactivation. J Virol 2019; 93:JVI.00989-19. [PMID: 31341047 DOI: 10.1128/jvi.00989-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication. Lytic reactivation starts with derepression of the Zp promoter controlling BZLF1 gene expression, which binds and is activated by the c-Jun transcriptional activator. Here, we identified the cellular Arkadia-like 1 (ARKL1) protein as a negative regulator of Zp and EBV reactivation. Silencing of ARKL1 in the context of EBV-positive gastric carcinoma (AGS) cells, nasopharyngeal carcinoma (NPC43) cells, and B (M81) cells led to increased lytic protein expression, whereas overexpression inhibited BZLF1 expression. Similar effects of ARKL1 modulation were seen on BZLF1 transcripts as well as on Zp activity in Zp reporter assays, showing that ARKL1 repressed Zp. Proteomic profiling of ARKL1-host interactions identified c-Jun as an ARKL1 interactor, and reporter assays for Jun transcriptional activity showed that ARKL1 inhibited Jun activity. The ARKL1-Jun interaction required ARKL1 sequences that we previously showed mediated binding to the CK2 kinase regulatory subunit CK2β, suggesting that CK2β might mediate the ARKL1-Jun interaction. This model was supported by the findings that silencing of CK2β, but not the CK2α catalytic subunit, abrogated the ARKL1-Jun interaction and phenocopied ARKL1 silencing in promoting EBV reactivation. Additionally, ARKL1 was associated with Zp in reporter assays and this was increased by additional CK2β. Together, the data indicate that ARKL1 is a negative regulator of Zp and EBV reactivation that acts by inhibiting Jun activity through a CK2β-mediated interaction.IMPORTANCE Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication and is associated with several types of cancer. We have identified a cellular protein (ARKL1) that acts to repress the reactivation of EBV from the latent to the lytic cycle. We show that ARKL1 acts to repress transcription of the EBV lytic switch protein by inhibiting the activity of the cellular transcription factor c-Jun. This not only provides a new mechanism of regulating EBV reactivation but also identifies a novel cellular function of ARKL1 as an inhibitor of Jun-mediated transcription.
Collapse
|
13
|
Regulation of Epstein-Barr Virus Life Cycle and Cell Proliferation by Histone H3K27 Methyltransferase EZH2 in Akata Cells. mSphere 2018; 3:3/6/e00478-18. [PMID: 30487153 PMCID: PMC6262262 DOI: 10.1128/msphere.00478-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications play a pivotal role in the expression of the genes of Epstein-Barr virus (EBV). We found that de novo EBV infection of primary B cells caused moderate induction of enhancer of zeste homolog 2 (EZH2), the major histone H3 lysine 27 (K27) methyltransferase. To investigate the role of EZH2, we knocked out the EZH2 gene in EBV-negative Akata cells by the CRISPR/Cas9 system and infected the cells with EBV, followed by selection of EBV-positive cells. During the latent state, growth of EZH2-knockout (KO) cells was significantly slower after infection compared to wild-type controls, despite similar levels of viral gene expression between cell lines. After induction of the lytic cycle by anti-IgG, KO of EZH2 caused notable induction of expression of both latent and lytic viral genes, as well as increases in both viral DNA replication and progeny production. These results demonstrate that EZH2 is crucial for the intricate epigenetic regulation of not only lytic but also latent gene expression in Akata cells.IMPORTANCE The life cycle of EBV is regulated by epigenetic modifications, such as CpG methylation and histone modifications. Here, we found that the expression of EZH2, which encodes a histone H3K27 methyltransferase, was induced by EBV infection; therefore, we generated EZH2-KO cells to investigate the role of EZH2 in EBV-infected Akata B cells. Disruption of EZH2 resulted in increased expression of EBV genes during the lytic phase and, therefore, efficient viral replication and progeny production. Our results shed light on the mechanisms underlying reactivation from an epigenetic point of view and further suggest a role for EZH2 as a form of innate immunity that restricts viral replication in infected cells.
Collapse
|
14
|
BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection. mSphere 2018; 3:3/2/e00138-18. [PMID: 29695622 PMCID: PMC5917423 DOI: 10.1128/msphere.00138-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human gammaherpesvirus that causes infectious mononucleosis and several malignancies, such as endemic Burkitt lymphoma and nasopharyngeal carcinoma. Herpesviruses carry genes that can modify cell functions, including transcription and ubiquitination, thereby facilitating viral growth and survival in infected cells. Using a reporter screening system, we revealed the involvement of several EBV gene products in such processes. Of these, BGLF2 activated the AP-1 signaling pathway through phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Knockout of the BGLF2 gene did not affect viral gene expression and viral genome DNA replication, but resulted in marked reduction of progeny titer. We also found that the BGLF2 disruption resulted in significant loss of infectivity upon de novo infection. Interestingly, expression of a binding partner, BKRF4, repressed the activation of AP-1 by BGLF2. These results shed light on the physiological role of the tegument protein BGLF2.IMPORTANCE Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, carries ~80 genes. While several genes have been investigated extensively, most lytic genes remain largely unexplored. Therefore, we cloned 71 EBV lytic genes into an expression vector and used reporter assays to screen for factors that activate signal transduction pathways, viral and cellular promoters. BGLF2 activated the AP-1 signaling pathway, likely by interacting with p38 and c-Jun N-terminal kinase (JNK), and increased infectivity of the virus. We also revealed that BKRF4 can negatively regulate AP-1 activity. Therefore, it is suggested that EBV exploits and modifies the AP-1 signaling pathway for its replication and survival.
Collapse
|
15
|
Li Y, Song Y, Zhao M, Guo Y, Yu C, Chen W, Shao S, Xu C, Zhou X, Zhao L, Zhang Z, Bo T, Xia Y, Proud CG, Wang X, Wang L, Zhao J, Gao L. A novel role for CRTC2 in hepatic cholesterol synthesis through SREBP-2. Hepatology 2017; 66:481-497. [PMID: 28395113 PMCID: PMC5575482 DOI: 10.1002/hep.29206] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Cholesterol synthesis is regulated by the transcription factor sterol regulatory element binding protein 2 (SREBP-2) and its target gene 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is the rate-limiting enzyme in cholesterol synthesis. Cyclic adenosine monophosphate-responsive element (CRE) binding protein-regulated transcription coactivator (CRTC) 2 is the master regulator of glucose metabolism. However, the effect of CRTC2 on cholesterol and its potential molecular mechanism remain unclear. Here, we demonstrated that CRTC2 expression and liver cholesterol content were increased in patients with high serum cholesterol levels who underwent resection of liver hemangiomas, as well as in mice fed a 4% cholesterol diet. Mice with adenovirus-mediated CRTC2 overexpression also showed elevated lipid levels in both serum and liver tissues. Intriguingly, hepatic de novo cholesterol synthesis was markedly increased under these conditions. In contrast, CRTC2 ablation in mice fed a 4% cholesterol diet (18 weeks) showed decreased lipid levels in serum and liver tissues compared with those in littermate wild-type mice. The expression of lipogenic genes (SREBP-2 and HMGCR) was consistent with hepatic CRTC2 levels. In vivo imaging showed enhanced adenovirus-mediated HMGCR-luciferase activity in adenovirus-mediated CRTC2 mouse livers; however, the activity was attenuated after mutation of CRE or sterol regulatory element sequences in the HMGCR reporter construct. The effect of CRTC2 on HMGCR in mouse livers was alleviated upon SREBP-2 knockdown. CRTC2 modulated SREBP-2 transcription by CRE binding protein, which recognizes the half-site CRE sequence in the SREBP-2 promoter. CRTC2 reduced the nuclear protein expression of forkhead box O1 and subsequently increased SREBP-2 transcription by binding insulin response element 1, rather than insulin response element 2, in the SREBP-2 promoter. CONCLUSION CRTC2 regulates the transcription of SREBP-2 by interfering with the recognition of insulin response element 1 in the SREBP-2 promoter by forkhead box O1, thus inducing SREBP-2/HMGCR signaling and subsequently facilitating hepatic cholesterol synthesis. (Hepatology 2017;66:481-497).
Collapse
|
16
|
The Epstein-Barr Virus BRRF1 Gene Is Dispensable for Viral Replication in HEK293 cells and Transformation. Sci Rep 2017; 7:6044. [PMID: 28729695 PMCID: PMC5519699 DOI: 10.1038/s41598-017-06413-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with several malignancies. It establishes a latent infection in B lymphocytes and is occasionally reactivated to enter the lytic cycle. Here we examined the role of the EBV gene BRRF1, which is expressed in the lytic state. We first confirmed, using a DNA polymerase inhibitor, that the BRRF1 gene is expressed with early kinetics. A BRRF1-deficient recombinant virus was constructed using a bacterial artificial chromosome system. No obvious differences were observed between the wild-type, BRRF1-deficient mutant and the revertant virus in HEK293 cells in terms of viral lytic protein expression, viral DNA synthesis, progeny production, pre-latent abortive lytic gene expression and transformation of primary B cells. However, reporter assays indicated that BRRF1 may activate transcription in promoter- and cell type-dependent manners. Taken together, BRRF1 is dispensable for viral replication in HEK293 cells and transformation of B cells, but it may have effects on transcription.
Collapse
|
17
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
18
|
Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. J Virol 2016; 90:3873-3889. [PMID: 26819314 DOI: 10.1128/jvi.03227-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1.
Collapse
|
19
|
Screening of the Human Kinome Identifies MSK1/2-CREB1 as an Essential Pathway Mediating Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication during Primary Infection. J Virol 2015; 89:9262-80. [PMID: 26109721 DOI: 10.1128/jvi.01098-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Viruses often hijack cellular pathways to facilitate infection and replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus etiologically associated with Kaposi's sarcoma, a vascular tumor of endothelial cells. Despite intensive studies, cellular pathways mediating KSHV infection and replication are still not well defined. Using an antibody array approach, we examined cellular proteins phosphorylated during primary KSHV infection of primary human umbilical vein endothelial cells. Enrichment analysis identified integrin/mitogen-activated protein kinase (integrin/MAPK), insulin/epidermal growth factor receptor (insulin/EGFR), and JAK/STAT as the activated networks during primary KSHV infection. The transcriptional factor CREB1 (cyclic AMP [cAMP]-responsive element-binding protein 1) had the strongest increase in phosphorylation. While knockdown of CREB1 had no effect on KSHV entry and trafficking, it drastically reduced the expression of lytic transcripts and proteins and the production of infectious virions. Chemical activation of CREB1 significantly enhanced viral lytic replication. In contrast, CREB1 neither influenced the expression of the latent gene LANA nor affected KSHV infectivity. Mechanistically, CREB1 was not activated through the classic cAMP/protein kinase A (cAMP/PKA) pathway or via the AKT, MK2, and RSK pathways. Rather, CREB1 was activated by the mitogen- and stress-activated protein kinases 1 and 2 (MSK1/2). Consequently, chemical inhibition or knockdown of MSKs significantly inhibited the KSHV lytic replication program; however, it had a minimal effect on LANA expression and KSHV infectivity. Together, these results identify the MSK1/2-CREB1 proteins as novel essential effectors of KSHV lytic replication during primary infection. The differential effect of the MSK1/2-CREB1 pathway on the expression of viral latent and lytic genes might control the robustness of viral lytic replication, and therefore the KSHV replication program, during primary infection. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus associated with several cancers. Through genome-wide kinase screening, we found that KSHV activates the MSK1/2-CREB1 pathway during primary infection and that it depends on this pathway for viral lytic replication. Inhibition of this pathway blocks KSHV lytic replication. These results illustrate a mechanism by which KSHV hijacks a cellular pathway for its replication, and they identify a potential therapeutic target.
Collapse
|
20
|
Watanabe T, Tsuruoka M, Narita Y, Katsuya R, Goshima F, Kimura H, Murata T. The Epstein-Barr virus BRRF2 gene product is involved in viral progeny production. Virology 2015; 484:33-40. [PMID: 26057150 DOI: 10.1016/j.virol.2015.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV) predominantly establishes a latent infection in B lymphocytes, and occasionally switches from the latent state to the lytic cycle. In this report, we identified and examined the role of a lytic gene, BRRF2. We first prepared an antibody against BRRF2 and identified the gene product as a viral lytic protein expressed in B95-8 cells with late kinetics. Immunofluorescence revealed that BRRF2 localized in the cytoplasm of cells during the lytic phase. We also found that BRRF2 protein was phosphorylated in lytic cells, but the only viral protein kinase, BGLF4, was not involved in the phosphorylation. Knockout EBV and a repaired strain were then prepared, and we found that BRRF2 disruption did not affect viral gene expression and DNA replication, but decreased virus production. These results demonstrated that BRRF2 is involved in production of infectious progeny, although it is not essential for lytic replication.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Miyuki Tsuruoka
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Narita
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Ryotaro Katsuya
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
21
|
Watanabe T, Fuse K, Takano T, Narita Y, Goshima F, Kimura H, Murata T. Roles of Epstein-Barr virus BGLF3.5 gene and two upstream open reading frames in lytic viral replication in HEK293 cells. Virology 2015; 483:44-53. [PMID: 25965794 DOI: 10.1016/j.virol.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV) predominantly establishes a latent infection in B lymphocytes, but a small percentage of infected cells switch from the latent state to the lytic cycle, leading to potent viral DNA replication and progeny viruses production. We here focused on a lytic gene BGLF3.5, and first established BGLF3.5 mutants by marker cassette insertion. Unexpectedly, this insertion mutant failed to produce BGLF4 protein and thus progeny production was severely inhibited. Then we carefully made two point mutant viruses (stop codon insertion or frame-shift mutation) and found that BGLF3.5 is not essential for EBV lytic replication processes, such as viral gene expression, DNA replication, or progeny production in the HEK293 cells although its homolog in murine gammaherpesvirus 68 (MHV-68) was reported to be essential. In addition, we examined the roles of two short, upstream open reading frames within the 5'UTR of BGLF3.5 gene in translation of BGLF4.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenshiro Fuse
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Takano
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Narita
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumi Goshima
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol 2015; 58:307-17. [PMID: 24786491 DOI: 10.1111/1348-0421.12155] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022]
Abstract
The Epstein-Barr virus (EBV) is a human gamma-herpesvirus that is implicated in various types of proliferative diseases. Upon infection, it predominantly establishes latency in B cells and cannot ever be eradicated; it persists for the host's lifetime. Reactivation of the virus from latency depends on expression of the viral immediate-early gene, BamHI Z fragment leftward open reading frame 1 (BZLF1). The BZLF1 promoter normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate, calcium ionophore, histone deacetylase inhibitor, or anti-Ig. Transcription from the BZLF1 promoter is activated by myocyte enhancer factor 2, specificity protein 1, b-Zip type transcription factors and mediating epigenetic modifications of the promoter, such as histone acetylation and H3K4me3. In contrast, repression of the promoter is mediated by transcriptional suppressors, such as ZEB, ZIIR-BP, and jun dimerization protein 2, causing suppressive histone modifications like histone H3K27me3, H3K9me2/3 and H4K20me3. Interestingly, there is little CpG DNA methylation of the promoter, indicating that DNA methylation is not crucial for suppression of BZLF1. This review will focus on the molecular mechanisms by which the EBV lytic switch is controlled and discuss the physiological significance of this switching for its survival and oncogenesis.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Division of Virology, Aichi Cancer Center Research Institute, 1-Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| |
Collapse
|
23
|
Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol 2013; 24:142-53. [DOI: 10.1002/rmv.1780] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Murata
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
- Department of Virology; Nagoya University School of Medicine; Nagoya Japan
| | - Tatsuya Tsurumi
- Division of Virology; Aichi Cancer Center Research Institute; Nagoya Japan
| |
Collapse
|
24
|
Johnsen IB, Bergstroem B, Stiberg KA, Thommesen L, Anthonsen MW. Inducible cAMP early repressor (ICER) is a novel regulator of RIG-I mediated IFN-β production. Cell Signal 2013; 25:1804-12. [PMID: 23707530 DOI: 10.1016/j.cellsig.2013.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 01/04/2023]
Abstract
Antiviral responses can be triggered by the cytoplasmic RNA helicase RIG-I that binds to viral RNA. RIG-I-mediated signaling stimulates the transcription factors IRF3 and NF-κB and their activation mechanisms have been intensively studied. Here we examined Sendai virus (SV)-mediated activation of the transcription factor CREB and the role of its feedback repressor ICER in production of endogenous antiviral proteins. We show that SV infection and the mitochondrial adapter protein MAVS promote CREB phosphorylation that is dependent upon p38 MAPK and MK2. ICER is induced by CREB and acts as a feedback repressor of CRE-dependent transcription. We found that SV infection stimulated induction of ICER mRNA and protein expression. Surprisingly, ectopic expression and siRNA-mediated knockdown of ICER revealed that ICER is a positive regulator of the production of antiviral IFN-β and IP10 during SV infection. In contrast, ICER did not affect SV-elicited phosphorylation of IRF3, NF-κB or ATF2/c-Jun, transcription factors governing IFN-β and IP10 synthesis. However, expression of ICER increased total IRF3 protein levels during SV infection. These results point to a novel role of ICER in antiviral immune signaling acting to increase levels of antiviral effectors.
Collapse
Affiliation(s)
- Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
25
|
Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. J Virol 2013; 87:10148-62. [PMID: 23843637 DOI: 10.1128/jvi.01002-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency.
Collapse
|
26
|
Murata T, Tsurumi T. Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Front Genet 2013; 4:53. [PMID: 23577022 PMCID: PMC3620531 DOI: 10.3389/fgene.2013.00053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
The Epstein-Barr virus (EBV) is an oncogenic human gamma-herpesvirus that predominantly establishes latent infection in B lymphocytes. Viral genomes exist as extrachromosomal episomes with a nucleosomal structure. Maintenance of virus latency or execution of reactivation is controlled by the expression of BZLF1, a viral immediate-early gene product, tightly controlled at the transcriptional level. In this article, we review how BZLF1 transcription is controlled, in other words how virus reactivation is regulated, especially in terms of epigenetics. We recently found that histone H3 lysine 27 trimethylation (H3K27me3) and H4K20me3 markers are crucial for suppression of BZLF1 in latent Raji cells. In addition, H3K9me2/3, heterochromatin protein 1, and H2A ubiquitination are associated with latency, whereas positive markers, such as higher histone acetylation and H3K4me3, are concomitant with reactivation. Since lytic replication eventually causes cell cycle arrest and cell death, development of oncolytic therapy for EBV-positive cancers is conceivable using epigenetic disruptors. In addition, we note the difficulties in analyzing roles of epigenetics in EBV, including issues like cell type dependence and virus copy numbers.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute Nagoya, Japan
| | | |
Collapse
|
27
|
Lin F, Huang H, Ke W, Hou L, Li F, Yang F. Characterization of white spot syndrome virus immediate-early gene promoters. J Gen Virol 2013; 94:387-392. [DOI: 10.1099/vir.0.047274-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twenty-one immediate-early (IE) genes of white spot syndrome virus (WSSV) have been identified so far. However, the transcriptional regulation of WSSV IE genes remains largely unknown. In this report, the 5′ flanking regions of 18 WSSV IE genes were cloned and eight functional promoter regions were identified. WSSV IE gene promoters normally contained a TATA box approximately 30 bp upstream of the transcriptional initiation site. Also, the cyclic AMP response element (CRE; TGACGTCA) was frequently found within the WSSV IE promoter regions. Mutations of the CREs of WSSV IE promoters P403 and P465 reduced their activity significantly, suggesting that these elements have a role in WSSV IE gene transcription. Our findings provide a more global view of WSSV IE gene promoters and will facilitate the in-depth investigation of viral gene transcriptional regulation.
Collapse
Affiliation(s)
- Fanyu Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - He Huang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Wei Ke
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Luhong Hou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Fang Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| |
Collapse
|
28
|
Hagemeier SR, Barlow EA, Meng Q, Kenney SC. The cellular ataxia telangiectasia-mutated kinase promotes epstein-barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J Virol 2012; 86:13360-70. [PMID: 23015717 PMCID: PMC3503132 DOI: 10.1128/jvi.01850-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor β (TGF-β) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect.
Collapse
Affiliation(s)
| | | | - Qiao Meng
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, Department of Oncology
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol 2012; 86:4752-61. [PMID: 22357272 DOI: 10.1128/jvi.06768-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) predominantly establishes latent infection in B cells, and the reactivation of the virus from latency is dependent on the expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), calcium ionophores, or histone deacetylase (HDAC) inhibitors. In some cell lines latently infected with EBV, an HDAC inhibitor alone can induce BZLF1 transcription, while the treatment does not enhance expression in other cell lines, such as B95-8 or Raji cells, suggesting unknown suppressive mechanisms besides histone deacetylation in those cells. Here, we found the epigenetic modification of the BZLF1 promoter in latent Raji cells by histone H3 lysine 27 trimethylation (H3K27me3), H3K9me2/me3, and H4K20me3. Levels of active markers such as histone acetylation and H3K4me3 were low in latent cells but increased upon reactivation. Treatment with 3-deazaneplanocin A (DZNep), an inhibitor of H3K27me3 and H4K20me3, significantly enhanced the BZLF1 transcription in Raji cells when in combination with an HDAC inhibitor, trichostatin A (TSA). The knockdown of Ezh2 or Suv420h1, histone methyltransferases for H3K27me3 or H4K20me3, respectively, further proved the suppression of Zp by the methylations. Taken together, the results indicate that H3K27 methylation and H4K20 methylation are involved, at least partly, in the maintenance of latency, and histone acetylation and H3K4 methylation correlate with the reactivation of the virus in Raji cells.
Collapse
|
30
|
Robinson AR, Kwek SS, Kenney SC. The B-cell specific transcription factor, Oct-2, promotes Epstein-Barr virus latency by inhibiting the viral immediate-early protein, BZLF1. PLoS Pathog 2012; 8:e1002516. [PMID: 22346751 PMCID: PMC3276558 DOI: 10.1371/journal.ppat.1002516] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/16/2011] [Indexed: 01/16/2023] Open
Abstract
The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells. Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell malignancies. EBV infection of cells can result in either lytic replication or latency. Memory B cells are the primary site of EBV latency within the human host, while oropharyngeal epithelial cells support the lytic form of infection. However, the cellular mechanism(s) that enable EBV to establish viral latency in a B-cell specific manner are not currently understood. In this report, we show that the B-cell specific cellular transcription factor, Oct-2, promotes viral latency by inhibiting the lytic form of infection. We find that Oct-2 interacts directly with the EBV immediate-early protein, BZLF1, and abrogates its ability to activate lytic viral gene transcription through protein-protein interactions off the DNA. Furthermore, knockdown of endogenous Oct-2 expression in several latently-infected Burkitt lymphoma B-cell lines increases EBV lytic protein expression. In addition, we show that certain stimuli which can prompt lytic EBV reactivation in B cells also decrease expression of endogenous Oct-2. Our results suggest that the cellular transcription factor, Oct-2, promotes EBV latency in a B-cell dependent manner.
Collapse
Affiliation(s)
- Amanda R. Robinson
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Swee Sen Kwek
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research , University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Noda C, Murata T, Kanda T, Yoshiyama H, Sugimoto A, Kawashima D, Saito S, Isomura H, Tsurumi T. Identification and characterization of CCAAT enhancer-binding protein (C/EBP) as a transcriptional activator for Epstein-Barr virus oncogene latent membrane protein 1. J Biol Chem 2011; 286:42524-42533. [PMID: 22013073 DOI: 10.1074/jbc.m111.271734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr virus LMP1, a major oncoprotein expressed in latent infection, is critical for primary B cell transformation, functioning as a TNFR family member by aggregation in the plasma membrane resulting in constitutive activation of cellular signals, such as NF-κB, MAPK, JAK/STAT, and AKT. Although transcription of LMP1 in latent type III cells is generally under the control of the viral coactivator EBNA2, little is known about EBNA2-independent LMP1 expression in type II latency. We thus screened a cDNA library for factors that can activate the LMP1 promoter in an EBNA2-independent manner, using a reporter assay system. So far, we have screened >20,000 clones, and here identified C/EBPε as a new transcriptional activator. Exogenous expression of C/EBPα, -β, or -ε efficiently augmented LMP1 mRNA and protein levels in EBV-positive cell lines, whereas other members of the C/EBP family exhibited modest or little activity. It has been demonstrated that LMP1 gene transcription depends on two promoter regions: proximal (ED-L1) and distal (TR-L1). Interestingly, although we first used the proximal promoter for screening, we found that C/EBP increased transcription from both promoters in latent EBV-positive cells. Mutagenesis in reporter assays and EMSA identified only one functional C/EBP binding site, through which activation of both proximal and distal promoters is mediated. Introduction of point mutations into the identified C/EBP site in EBV-BAC caused reduced LMP1 transcription from both LMP1 promoters in epithelial cells. In conclusion, C/EBP is a newly identified transcriptional activator of the LMP1 gene, independent of the EBNA2 coactivator.
Collapse
Affiliation(s)
- Chieko Noda
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681; Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603
| | - Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Teru Kanda
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Hironori Yoshiyama
- Research Center for Infection-associated Cancer, Institute for Genetic Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-0815, Japan
| | - Atsuko Sugimoto
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Daisuke Kawashima
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Shinichi Saito
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Hiroki Isomura
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681; Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603.
| |
Collapse
|
32
|
Murata T, Noda C, Saito S, Kawashima D, Sugimoto A, Isomura H, Kanda T, Yokoyama KK, Tsurumi T. Involvement of Jun dimerization protein 2 (JDP2) in the maintenance of Epstein-Barr virus latency. J Biol Chem 2011; 286:22007-16. [PMID: 21525011 DOI: 10.1074/jbc.m110.199836] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reactivation of the Epstein-Barr virus from latency is dependent on expression of the BZLF1 viral immediate-early protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found that Jun dimerization protein 2 (JDP2) plays a significant role in suppressing Zp activity. Reporter, EMSA, and ChIP assays of a Zp mutant virus revealed JDP2 association with Zp at the ZII cis-element, a binding site for CREB/ATF/AP-1. Suppression of Zp activity by JDP2 correlated with HDAC3 association and reduced levels of histone acetylation. Although introduction of point mutations into the ZII element of the viral genome did not increase the level of BZLF1 production, silencing of endogenous JDP2 gene expression by RNA interference increased the levels of viral early gene products and viral DNA replication. These results indicate that JDP2 plays a role as a repressor of Zp and that its replacement by CREB/ATF/AP-1 at ZII is crucial to triggering reactivation from latency to lytic replication.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tetrameric ring formation of Epstein-Barr virus polymerase processivity factor is crucial for viral replication. J Virol 2010; 84:12589-98. [PMID: 20926567 DOI: 10.1128/jvi.01394-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus BMRF1 DNA polymerase processivity factor, which is essential for viral genome replication, exists mainly as a C-shaped head-to-head homodimer but partly forms a ring-shaped tetramer through tail-to-tail association. Based on its molecular structure, several BMRF1 mutant viruses were constructed to examine their influence on viral replication. The R256E virus, which has a severely impaired capacity for DNA binding and polymerase processivity, failed to form replication compartments, resulting in interference of viral replication, while the C95E mutation, which impairs head-to-head contact in vitro, unexpectedly hardly affected the viral replication. Also, surprisingly, replication of the C206E virus, which is expected to have impairment of tail-to-tail contact, was severely restricted, although the mutant protein possesses the same in vitro biochemical activities as the wild type. Since the tail-to-tail contact surface is smaller than that of the head-to-head contact area, its contribution to ring formation might be essential for viral replication.
Collapse
|
34
|
Murata T, Hotta N, Toyama S, Nakayama S, Chiba S, Isomura H, Ohshima T, Kanda T, Tsurumi T. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 2010; 285:23925-35. [PMID: 20516063 DOI: 10.1074/jbc.m109.095356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murata T, Isomura H, Yamashita Y, Toyama S, Sato Y, Nakayama S, Kudoh A, Iwahori S, Kanda T, Tsurumi T. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase. Virology 2009; 389:75-81. [PMID: 19427010 DOI: 10.1016/j.virol.2009.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|