1
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
2
|
Perez-Moreno E, Toledo T, Campusano P, Zuñiga S, Azócar L, Feuerhake T, Méndez GP, Labarca M, Pérez-Molina F, de la Peña A, Herrera-Cid C, Ehrenfeld P, Godoy AS, González A, Soza A. Galectin-8 counteracts folic acid-induced acute kidney injury and prevents its transition to fibrosis. Biomed Pharmacother 2024; 177:116923. [PMID: 38936192 DOI: 10.1016/j.biopha.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Acute kidney injury (AKI), characterized by a sudden decline in kidney function involving tubular damage and epithelial cell death, can lead to progressive tissue fibrosis and chronic kidney disease due to interstitial fibroblast activation and tissue repair failures that lack direct treatments. After an AKI episode, surviving renal tubular cells undergo cycles of dedifferentiation, proliferation and redifferentiation while fibroblast activity increases and then declines to avoid an exaggerated extracellular matrix deposition. Appropriate tissue recovery versus pathogenic fibrotic progression depends on fine-tuning all these processes. Identifying endogenous factors able to affect any of them may offer new therapeutic opportunities to improve AKI outcomes. Galectin-8 (Gal-8) is an endogenous carbohydrate-binding protein that is secreted through an unconventional mechanism, binds to glycosylated proteins at the cell surface and modifies various cellular activities, including cell proliferation and survival against stress conditions. Here, using a mouse model of AKI induced by folic acid, we show that pre-treatment with Gal-8 protects against cell death, promotes epithelial cell redifferentiation and improves renal function. In addition, Gal-8 decreases fibroblast activation, resulting in less expression of fibrotic genes. Gal-8 added after AKI induction is also effective in maintaining renal function against damage, improving epithelial cell survival. The ability to protect kidneys from injury during both pre- and post-treatments, coupled with its anti-fibrotic effect, highlights Gal-8 as an endogenous factor to be considered in therapeutic strategies aimed at improving renal function and mitigating chronic pathogenic progression.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Tomás Toledo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascale Campusano
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sebastián Zuñiga
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Teo Feuerhake
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Cristian Herrera-Cid
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia & Vida, Santiago, Chile.
| |
Collapse
|
3
|
Puertas-Umbert L, Alonso J, Roselló-Díez E, Santamaría-Orleans A, Martínez-González J, Rodríguez C. Rolipram impacts on redox homeostasis and cellular signaling in an experimental model of abdominal aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:108-117. [PMID: 38061958 DOI: 10.1016/j.arteri.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterases (PDEs) of the PDE4 subfamily are responsible for the hydrolysis and subcellular compartmentalization of cAMP, a second messenger that modulates vascular functionality. We had shown that PDE4B is induced in abdominal aortic aneurysms (AAA) and that PDE4 inhibition by rolipram limits experimental aneurysms. In this study we have delved into the mechanisms underlying the beneficial effect of rolipram on AAA. METHODS AAA were induced in ApoE-/- mice by angiotensin II (Ang II) infusion. Aneurysm formation was evaluated by ultrasonography. The expression of enzymes involved in rédox homeostasis was analyzed by real-time RT-PCR and the activation of signaling pathways by Western blot. RESULTS Induction of PDE4B in human AAA has been confirmed in a second cohort of patients. In Ang II-infused ApoE-/- mice, rolipram increased the percentage of animals free of aneurysms without affecting the percentage of aortic ruptures. Quantitative analyses determined that this drug significantly attenuated aortic collagen deposition. Additionally, rolipram reduced the increased Nox2 expression triggered by Ang II, exacerbated Sod1 induction, and normalized Sod3 expression. Likewise, PDE4 inhibition decreased the activation of both ERK1/2 and the canonical Wnt pathway, while AKT activity was not altered. CONCLUSIONS The inhibition of PDE4 activity modulates the expression of enzymes involved in rédox homeostasis and affects cell signaling pathways involved in the development of AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España
| | - Judith Alonso
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Elena Roselló-Díez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, España
| | - Alicia Santamaría-Orleans
- Laboratorios Ordesa S.L., Scientific Communication Department, Sant Boi del Llobregat, Barcelona, España
| | - José Martínez-González
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Cristina Rodríguez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
4
|
Roy M, Mbous Nguimbus L, Badiane PY, Goguen-Couture V, Degrandmaison J, Parent JL, Brunet MA, Roux S. Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions. Life Sci Alliance 2024; 7:e202302348. [PMID: 38395460 PMCID: PMC10895193 DOI: 10.26508/lsa.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.
Collapse
Affiliation(s)
- Michèle Roy
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Léopold Mbous Nguimbus
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Papa Yaya Badiane
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Victor Goguen-Couture
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jade Degrandmaison
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Luc Parent
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Marie A Brunet
- https://ror.org/00kybxq39 Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sophie Roux
- https://ror.org/00kybxq39 Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
5
|
Zheng Y, Si Y, Xu X, Gu H, He Z, Zhao Z, Feng Z, Su J, Mayo KH, Zhou Y, Tai G. Ginseng-derived type I rhamnogalacturonan polysaccharide binds to galectin-8 and antagonizes its function. J Ginseng Res 2024; 48:202-210. [PMID: 38465210 PMCID: PMC10920006 DOI: 10.1016/j.jgr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/12/2024] Open
Abstract
Background Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its β-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion P. ginseng RG-I pectin β-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.
Collapse
Affiliation(s)
- Yi Zheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hongming Gu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhen He
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zihan Zhao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhangkai Feng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
6
|
Zhao Z, Wang M, Miller MC, He Z, Xu X, Zhou Y, Mayo KH, Tai G. Isomerization of proline-46 in the N-terminal tail of galectin-3 enhances T cell apoptosis via the ROS-ERK pathway. Int J Biol Macromol 2024; 256:128304. [PMID: 37992938 DOI: 10.1016/j.ijbiomac.2023.128304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Galectin-3 (Gal-3) is unique in the galectin family, due to the presence of a long N-terminal tail (NT) arising from its conserved carbohydrate recognition domain (CRD). Although functional significance of the NT has remained elusive, our previous studies demonstrated the importance of NT prolines to Gal-3 function. Here, we show that during the time Gal-3 stands in solution for three or more days, Gal-3 NT undergoes a slow, intra-molecular, time-dependent conformational/dynamical change associated with proline cis-trans isomerization. From initial dissolution of Gal-3 in buffer to three days in solution, Gal-3-mediated T cell apoptosis is enhanced from 23 % to 37 %. Western blotting and flow cytometry show that the enhancement occurs via the ROS-ERK pathway, and not by the PKC-ERK pathway. To assess which proline(s) is (are) responsible for this effect, we individually mutated all 14 NT prolines within the first 68 residues to alanines, and assessed their effect on ROS production. Our study shows that isomerization of P46 alone is responsible for the upregulation of ROS and T cell apoptosis. NMR studies show that this unique effect is mediated by a change in dynamic interactions between the NT and CRD F-face, which in turn leads to this change in Gal-3 function.
Collapse
Affiliation(s)
- Zihan Zhao
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Menghui Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhen He
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, 6-155 Jackson Hall, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Province Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
7
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
8
|
Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, Sauter CT, Guruprasad P, Pajarillo R, Ruella M. Apoptosis: a Janus bifrons in T-cell immunotherapy. J Immunother Cancer 2023; 11:e005967. [PMID: 37055217 PMCID: PMC10106075 DOI: 10.1136/jitc-2022-005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.
Collapse
Affiliation(s)
- Yong Gu Lee
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Nicholas Yang
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Inkook Chun
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - Christopher Tor Sauter
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raymone Pajarillo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
10
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Galectins—Potential Therapeutic Targets for Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms231911012. [PMID: 36232314 PMCID: PMC9569834 DOI: 10.3390/ijms231911012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Advancements in medicine have increased the longevity of humans, resulting in a higher incidence of chronic diseases. Due to the rise in the elderly population, age-dependent neurodegenerative disorders are becoming increasingly prevalent. The available treatment options only provide symptomatic relief and do not cure the underlying cause of the disease. Therefore, it has become imperative to discover new markers and therapies to modulate the course of disease progression and develop better treatment options for the affected individuals. Growing evidence indicates that neuroinflammation is a common factor and one of the main inducers of neuronal damage and degeneration. Galectins (Gals) are a class of β-galactoside-binding proteins (lectins) ubiquitously expressed in almost all vital organs. Gals modulate various cellular responses and regulate significant biological functions, including immune response, proliferation, differentiation, migration, and cell growth, through their interaction with glycoproteins and glycolipids. In recent years, extensive research has been conducted on the Gal superfamily, with Gal-1, Gal-3, and Gal-9 in prime focus. Their roles have been described in modulating neuroinflammation and neurodegenerative processes. In this review, we discuss the role of Gals in the causation and progression of neurodegenerative disorders. We describe the role of Gals in microglia and astrocyte modulation, along with their pro- and anti-inflammatory functions. In addition, we discuss the potential use of Gals as a novel therapeutic target for neuroinflammation and restoring tissue damage in neurodegenerative diseases.
Collapse
|
12
|
|
13
|
Hassan M, Baussière F, Guzelj S, Sundin AP, Håkansson M, Kovačič R, Leffler H, Tomašič T, Anderluh M, Jakopin Ž, Nilsson UJ. Structure-Guided Design of d-Galactal Derivatives with High Affinity and Selectivity for the Galectin-8 N-Terminal Domain. ACS Med Chem Lett 2021; 12:1745-1752. [PMID: 34795863 PMCID: PMC8592027 DOI: 10.1021/acsmedchemlett.1c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Galectin-8 is a carbohydrate-binding protein that plays a crucial role in tumor progression and metastasis, antibacterial autophagy, modulation of the immune system, and bone remodeling. The design, synthesis, and protein affinity evaluation of a set of C-3 substituted benzimidazole and quinoline d-galactal derivatives identified a d-galactal-benzimidazole hybrid as a selective ligand for the galectin-8 N-terminal domain (galectin-8N), with a K d of 48 μM and 15-fold selectivity over galectin-3 and even better selectivity over the other mammalian galectins. X-ray structural analysis of galectin-8N in complex with one benzimidazole- and one quinoline-galactal derivative at 1.52 and 2.1 Å together with molecular dynamics simulations and quantum mechanical calculations of galectin-8N in complex with the benzimidazole derivative revealed orbital overlap between a NH LUMO of Arg45 with electron rich HOMOs of the olefin and O4 of the d-galactal. Such overlap is hypothesized to contribute to the high affinity of the d-galactal-derived ligands for galectin-8N. A (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay evaluation of the d-galactal-benzimidazole hybrid and an analogous galactoside derivative on a panel of cell lines with MTS assay showed no effect on cell viability up to 100 μM concentration. A subsequent functional assay using the MDA-MB-231 cell line demonstrated that the d-galactal-benzimidazole hybrid and the analogous galactoside derivative reduced the secretion of the proinflammatory cytokines interleukin-6 (IL-6) and IL-8 in a dose-dependent manner. Therefore, these compounds represent potential probes for galectin-8N pharmacology investigations and possibly promising leads for the design and synthesis of potent and selective galectin-8 inhibitors as potential antitumor and anti-inflammatory agents.
Collapse
Affiliation(s)
- Mujtaba Hassan
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Floriane Baussière
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Samo Guzelj
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anders P. Sundin
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Maria Håkansson
- SARomics
Biostructures AB, Medicon
Village, SE-223 63 Lund, Sweden
| | - Rebeka Kovačič
- SARomics
Biostructures AB, Medicon
Village, SE-223 63 Lund, Sweden
| | - Hakon Leffler
- Department
of Laboratory Medicine, Section MIG, Lund
University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Tihomir Tomašič
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ulf J. Nilsson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Ajarrag S, St-Pierre Y. Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers (Basel) 2021; 13:cancers13215533. [PMID: 34771696 PMCID: PMC8582867 DOI: 10.3390/cancers13215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Glioblastomas are among the most common and aggressive brain tumors. The high rate of recurrence and mortality associated with this cancer underscores the need for the development of new therapeutical targets. Galectins are among the new targets that have attracted the attention of many scientists working in the field of cancer. They form a group of small proteins found in many tissues where they accomplish various physiological roles, including regulation of immune response and resistance to cell death. In many types of cancer, however, production of abnormally high levels of galectins by cancer cells can be detrimental to patients. Elevated levels of galectins can, for example, suppress the ability of the host’s immune system to kill cancer cells. They can also provide cancer cells with resistance to drugs-induced cell death. Here, we review the recent progress that has contributed to a better understanding of the mechanisms of actions of galectins in glioblastoma. We also discuss recent development of anti-galectin drugs and the challenges associated with their use in clinical settings, with particular attention to their role in reducing the efficacy of immunotherapy, a promising treatment that exploits the capacity of the immune system to recognize and kill cancer cells. Abstract Traditional wisdom suggests that galectins play pivotal roles at different steps in cancer progression. Galectins are particularly well known for their ability to increase the invasiveness of cancer cells and their resistance to drug-induced cell death. They also contribute to the development of local and systemic immunosuppression, allowing cancer cells to escape the host’s immunological defense. This is particularly true in glioma, the most common primary intracranial tumor. Abnormally high production of extracellular galectins in glioma contributes to the establishment of a strong immunosuppressive environment that favors immune escape and tumor progression. Considering the recent development and success of immunotherapy in halting cancer progression, it is logical to foresee that galectin-specific drugs may help to improve the success rate of immunotherapy for glioma. This provides a new perspective to target galectins, whose intracellular roles in cancer progression have already been investigated thoroughly. In this review, we discuss the mechanisms of action of galectins at different steps of glioma progression and the potential of galectin-specific drugs for the treatment of glioma.
Collapse
|
15
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
16
|
Petralia MC, Ciurleo R, Bramanti A, Bramanti P, Saraceno A, Mangano K, Quattropani MC, Nicoletti F, Fagone P. Transcriptomic Data Analysis Reveals a Down-Expression of Galectin-8 in Schizophrenia Hippocampus. Brain Sci 2021; 11:brainsci11080973. [PMID: 34439592 PMCID: PMC8392448 DOI: 10.3390/brainsci11080973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder with several clinical manifestations that include cognitive dysfunction, decline in motivation, and psychosis. Current standards of care treatment with antipsychotic agents are often ineffective in controlling the disease, as only one-third of SCZ patients respond to medications. The mechanisms underlying the pathogenesis of SCZ remain elusive. It is believed that inflammatory processes may play a role as contributing factors to the etiology of SCZ. Galectins are a family of β-galactoside-binding lectins that contribute to the regulation of immune and inflammatory responses, and previous reports have shown their role in the maintenance of central nervous system (CNS) homeostasis and neuroinflammation. In the current study, we evaluated the expression levels of the galectin gene family in post-mortem samples of the hippocampus, associative striatum, and dorsolateral prefrontal cortex from SCZ patients. We found a significant downregulation of LGALS8 (Galectin-8) in the hippocampus of SCZ patients as compared to otherwise healthy donors. Interestingly, the reduction of LGALS8 was disease-specific, as no modulation was observed in the hippocampus from bipolar nor major depressive disorder (MDD) patients. Prediction analysis identified TBL1XR1, BRF2, and TAF7 as potential transcription factors controlling LGALS8 expression. In addition, MIR3681HG and MIR4296 were negatively correlated with LGALS8 expression, suggesting a role for epigenetics in the regulation of LGALS8 levels. On the other hand, no differences in the methylation levels of LGALS8 were observed between SCZ and matched control hippocampus. Finally, ontology analysis of the genes negatively correlated with LGALS8 expression identified an enrichment of the NGF-stimulated transcription pathway and of the oligodendrocyte differentiation pathway. Our study identified LGALS8 as a disease-specific gene, characterizing SCZ patients, that may in the future be exploited as a potential therapeutic target.
Collapse
Affiliation(s)
- Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.P.); (M.C.Q.)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Alessia Bramanti
- Department of Medicine, University of Salerno, 84084 Salerno, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.C.); (P.B.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Maria Catena Quattropani
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.P.); (M.C.Q.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.S.); (K.M.); (F.N.)
- Correspondence:
| |
Collapse
|
17
|
Epstein PM, Basole C, Brocke S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front Cell Dev Biol 2021; 9:636778. [PMID: 33937235 PMCID: PMC8085600 DOI: 10.3389/fcell.2021.636778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice to treat inflammatory disorders, with three PDE4 inhibitors currently in clinical use as therapeutics for psoriasis, psoriatic arthritis, atopic dermatitis and chronic obstructive pulmonary disease. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. It was shown that PDE8A plays a major role in controlling T cell and breast cancer cell motility, including adhesion to endothelial cells under physiological shear stress and chemotaxis. This is a unique function of PDE8 not shared by PDE4, another cAMP specific PDE, employed, as noted, as an anti-inflammatory therapeutic. Additionally, a regulatory role was shown for the PDE8A-rapidly accelerated fibrosarcoma (Raf)-1 kinase signaling complex in myelin antigen reactive CD4+ effector T cell adhesion and locomotion by a mechanism differing from that of PDE4. The PDE8A-Raf-1 kinase signaling complex affects T cell motility, at least in part, via regulating the LFA-1 integrin mediated adhesion to ICAM-1. The findings that PDE8A and its isoforms are expressed at higher levels in naive and myelin oligodendrocyte glycoprotein (MOG)35–55 activated effector T (Teff) cells compared to regulatory T (Treg) cells and that PDE8 inhibition specifically affects MOG35–55 activated Teff cell adhesion, indicates that PDE8A could represent a new beneficial target expressed in pathogenic Teff cells in CNS inflammation. The implications of this work for targeting PDE8 in inflammation will be discussed in this review.
Collapse
Affiliation(s)
- Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, CT, United States
| | - Chaitali Basole
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
18
|
Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen YH, Liu FT, Wang SF. The role of galectins in virus infection - A systemic literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:925-935. [PMID: 31630962 DOI: 10.1016/j.jmii.2019.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Galectins are β-Galactose binding lectins expressed in numerous cells and play multiple roles in various physiological and cellular functions. However, few information is available regarding the role of galectins in virus infections. Here, we conducted a systemic literature review to analyze the role of galectins in human virus infection. METHODS This study uses a systematic method to identify and select eligible articles according to the PRISMA guidelines. References were selected from PubMed, Web of Science and Google Scholar database covering publication dated from August 1995 to December 2018. RESULTS Results indicate that galectins play multiple roles in regulation of virus infections. Galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-8 (Gal-8), and galectin-9 (Gal-9) were found as the most predominant galectins reported to participate in virus infection. The regulatory function of galectins occurs by extracellularly binding to viral glycosylated envelope proteins, interacting with ligands or receptors on immune cells, or acting intracellularly with viral or cellular components in the cytoplasm. Several galectins express either positive or negative regulatory role, while some had dual regulatory capabilities on virus propagation based on the conditions and their localization. However, limited information about the endogenous function of galectins were found. Therefore, the endogenous effects of galectins in host-virus regulation remains valuable to investigate. CONCLUSIONS This study offers information regarding the various roles galectins shown in viral infection and suggest that galectins can potentially be used as viral therapeutic targets or antagonists.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, 80145, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
19
|
López de Los Santos Y, Bernard DN, Egesborg P, Létourneau M, Lafortune C, Cuneo MJ, Urvoas A, Chatenet D, Mahy JP, St-Pierre Y, Ricoux R, Doucet N. Binding of a Soluble meso-Tetraarylporphyrin to Human Galectin-7 Induces Oligomerization and Modulates Its Pro-Apoptotic Activity. Biochemistry 2020; 59:4591-4600. [PMID: 33231438 DOI: 10.1021/acs.biochem.0c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.
Collapse
Affiliation(s)
- Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Philippe Egesborg
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Clara Lafortune
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Agathe Urvoas
- Institut de biologie intégrative de la cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Jean-Pierre Mahy
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Yves St-Pierre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Rémy Ricoux
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada.,PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Bertelli A, Sanmarco LM, Pascuale CA, Postan M, Aoki MP, Leguizamón MS. Anti-inflammatory Role of Galectin-8 During Trypanosoma cruzi Chronic Infection. Front Cell Infect Microbiol 2020; 10:285. [PMID: 32714876 PMCID: PMC7343849 DOI: 10.3389/fcimb.2020.00285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Galectins are animal lectins with high affinity for β-galactosides that drive the immune response through several mechanisms. In particular, the role of galectin-8 (Gal-8) in inflammation remains controversial. To analyze its role in a chronic inflammatory environment, we studied a murine model of Trypanosoma cruzi infection. The parasite induces alterations that lead to the development of chronic cardiomyopathy and/or megaviscera in 30% of infected patients. The strong cardiac inflammation along with fibrosis leads to cardiomyopathy, the most relevant consequence of Chagas disease. By analyzing infected wild-type (iWT) and Gal-8-deficient (iGal-8KO) C57BL/6J mice at the chronic phase (4–5 months post-infection), we observed that the lack of Gal-8 favored a generalized increase in heart, skeletal muscle, and liver inflammation associated with extensive fibrosis, unrelated to tissue parasite loads. Remarkably, increased frequencies of neutrophils and macrophages were observed within cardiac iGal-8KO tissue by flow cytometry. It has been proposed that Gal-8, as well as other galectins, induces the surface expression of the inner molecule phosphatidylserine on activated neutrophils, which serves as an “eat-me” signal for macrophages, favoring viable neutrophil removal and tissue injury protection, a process known as preaparesis. We found that the increased neutrophil rates could be associated with the absence of Gal-8-dependent preaparesis, leading to a diminished neutrophil-clearing capability in macrophages. Thus, our results support that Gal-8 exerts an anti-inflammatory role in chronic T. cruzi infection.
Collapse
Affiliation(s)
- Adriano Bertelli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Liliana M Sanmarco
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Carla A Pascuale
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Investigación, Instituto Nacional de Parasitología "Dr. Mario Fatala Chabén, Buenos Aires, Argentina
| | - Maria P Aoki
- Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, San Martín, Argentina.,Consejo Naciona de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
21
|
Galectins in the Tumor Microenvironment: Focus on Galectin-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:17-38. [DOI: 10.1007/978-3-030-43093-1_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Galectins in the brain: advances in neuroinflammation, neuroprotection and therapeutic opportunities. Curr Opin Neurol 2020; 33:381-390. [DOI: 10.1097/wco.0000000000000812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
24
|
Smith PC, Metz C, de la Peña A, Oyanadel C, Avila P, Arancibia R, Vicuña L, Retamal C, Barake F, González A, Soza A. Galectin-8 mediates fibrogenesis induced by cyclosporine in human gingival fibroblasts. J Periodontal Res 2020; 55:724-733. [PMID: 32449990 DOI: 10.1111/jre.12761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE During cyclosporine-induced gingival overgrowth, the homeostatic balance of gingival connective tissue is disrupted leading to fibrosis. Galectins are glycan-binding proteins that can modulate a variety of cellular processes including fibrosis in several organs. Here, we study the role of galectin-8 (Gal-8) in the response of gingival connective tissue cells to cyclosporine. METHODS We used human gingival fibroblasts and mouse NIH3T3 cells treated with recombinant Gal-8 and/or cyclosporine for analyzing specific mRNA and protein levels through immunoblot, real-time polymerase chain reaction, ELISA and immunofluorescence, pull-down with Gal-8-Sepharose for Gal-8-to-cell surface glycoprotein interactions, short hairpin RNA for Gal-8 silencing and Student's t test and ANOVA for statistical analysis. RESULTS Galectin-8 stimulated type I collagen and fibronectin protein levels and potentiated CTGF protein levels in TGF-β1-stimulated human gingival fibroblasts. Gal-8 interacted with α5β1-integrin and type II TGF-β receptor. Gal-8 stimulated fibronectin protein and mRNA levels, and this response was dependent on FAK activity but not Smad2/3 signaling. Cyclosporine and tumor necrosis factor alpha (TNF-α) increased Gal-8 protein levels. Finally, silencing of galectin-8 in NIH3T3 cells abolished cyclosporine-induced fibronectin protein levels. CONCLUSION Taken together, these results reveal for the first time Gal-8 as a fibrogenic stimulus exerted through β1-integrin/FAK pathways in human gingival fibroblasts, which can be triggered by cyclosporine. Further studies should explore the involvement of Gal-8 in human gingival tissues and its role in drug-induced gingival overgrowth.
Collapse
Affiliation(s)
- Patricio C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricio Avila
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Arancibia
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lucas Vicuña
- Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Barake
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Tribulatti MV, Carabelli J, Prato CA, Campetella O. Galectin-8 in the onset of the immune response and inflammation. Glycobiology 2019; 30:134-142. [DOI: 10.1093/glycob/cwz077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Galectins (Gals), a family of mammalian lectins, have emerged as key regulators of the immune response, being implicated in several physiologic and pathologic conditions. Lately, there is increasing data regarding the participation of Galectin-8 (Gal-8) in both the adaptive and innate immune responses, as well as its high expression in inflammatory disorders. Here, we focus on the pro- and anti-inflammatory properties of Gal-8 and discuss the potential use of this lectin in order to shape the immune response, according to the context.
Collapse
Affiliation(s)
- María V Tribulatti
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Carabelli
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia A Prato
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Oscar Campetella
- Laboratorio de Inmunología Molecular, Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, Buenos Aires B1650HMP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
26
|
Hong SH, Shin JS, Chung H, Park CG. Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway. Immune Netw 2019; 19:e17. [PMID: 31281714 PMCID: PMC6597441 DOI: 10.4110/in.2019.19.e17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 02/08/2023] Open
Abstract
Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal tract of animals. Although intensive functional studies have been done for other galectin isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic changes on monocytes by altering the expression of various surface molecules, and induced functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity. Concomitant with these changes, Gal-4-treated monocytes became adherent and showed elongated morphology with higher expression of macrophage markers. Notably, we found that Gal-4 interacted with CD14 and activated the MAPK signaling cascade. Therefore, these findings suggest that Gal-4 may exert the immunoregulatory functions through the activation and differentiation of monocytes.
Collapse
Affiliation(s)
- So-Hee Hong
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
27
|
Pardo E, Barake F, Godoy JA, Oyanadel C, Espinoza S, Metz C, Retamal C, Massardo L, Tapia-Rojas C, Inestrosa NC, Soza A, González A. GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Mol Neurobiol 2019; 56:7774-7788. [PMID: 31119556 DOI: 10.1007/s12035-019-1621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Galectin-8 (Gal-8) is a glycan-binding protein that modulates a variety of cellular processes interacting with cell surface glycoproteins. Neutralizing anti-Gal-8 antibodies that block Gal-8 functions have been described in autoimmune and inflammatory disorders, likely playing pathogenic roles. In the brain, Gal-8 is highly expressed in the choroid plexus and accordingly has been detected in human cerebrospinal fluid. It protects against central nervous system autoimmune damage through its immune-suppressive potential. Whether Gal-8 plays a direct role upon neurons remains unknown. Here, we show that Gal-8 protects hippocampal neurons in primary culture against damaging conditions such as nutrient deprivation, glutamate-induced excitotoxicity, hydrogen peroxide (H2O2)-induced oxidative stress, and β-amyloid oligomers (Aβo). This protective action is manifested even after 2 h of exposure to the harmful condition. Pull-down assays demonstrate binding of Gal-8 to selected β1-integrins, including α3 and α5β1. Furthermore, Gal-8 activates β1-integrins, ERK1/2, and PI3K/AKT signaling pathways that mediate neuroprotection. Hippocampal neurons in primary culture produce and secrete Gal-8, and their survival decreases upon incubation with human function-blocking Gal-8 autoantibodies obtained from lupus patients. Despite the low levels of Gal-8 expression detected by real-time PCR in hippocampus, compared with other brain regions, the complete lack of Gal-8 in Gal-8 KO mice determines higher levels of apoptosis upon H2O2 stereotaxic injection in this region. Therefore, endogenous Gal-8 likely contributes to generate a neuroprotective environment in the brain, which might be eventually counteracted by human function-blocking autoantibodies.
Collapse
Affiliation(s)
- Evelyn Pardo
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Barake
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sofía Espinoza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Soza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Alfonso González
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
28
|
Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ 2019; 26:981-993. [PMID: 30903104 DOI: 10.1038/s41418-019-0317-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylation and glycan-binding proteins such as galectins play an important role in the control of cell death signaling. Strikingly, very little attention has been given so far to the understanding of the molecular details behind this key regulatory network. Glycans attached to the death receptors such as CD95 and TRAIL-Rs, either alone or in a complex with galectins, might promote or inhibit apoptotic signals. However, we have just started to decode the functions of galectins in the modulation of extrinsic and intrinsic apoptosis. In this work, we have discussed the current understanding of the glycosylation-galectin regulatory network in CD95- as well as TRAIL-R-induced apoptosis and therapeutic strategies based on targeting galectins in cancer.
Collapse
|
29
|
Bohari MH, Yu X, Kishor C, Patel B, Go RM, Eslampanah Seyedi HA, Vinik Y, Grice ID, Zick Y, Blanchard H. Structure-Based Design of a Monosaccharide Ligand Targeting Galectin-8. ChemMedChem 2018; 13:1664-1672. [DOI: 10.1002/cmdc.201800224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad H. Bohari
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Xing Yu
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Chandan Kishor
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Brijesh Patel
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Rob Marc Go
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | | | - Yaron Vinik
- Department of Molecular Cell Biology; Weizmann Institute of Science; Herzl Street 234 Rehovot Israel
| | - I. Darren Grice
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
- School of Medical Science; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| | - Yehiel Zick
- Department of Molecular Cell Biology; Weizmann Institute of Science; Herzl Street 234 Rehovot Israel
| | - Helen Blanchard
- Institute for Glycomics; Griffith University; Parkland's Drive, Gold Coast Campus 4222 Australia
| |
Collapse
|
30
|
The Role of Galectins as Modulators of Metabolism and Inflammation. Mediators Inflamm 2018; 2018:9186940. [PMID: 29950926 PMCID: PMC5987346 DOI: 10.1155/2018/9186940] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022] Open
Abstract
Galectins are β-galcotosid-binding lectins. The function of galectins varies with their tissue-specific and subcellular location, and their binding to carbohydrates makes them key players in several intra- and extracellular processes where they bind to glycosylated proteins and lipids. In humans, there are 12 identified galectins, some with tissue-specific distribution. Galectins are found inside cells and in the nucleus, cytosol, and organelles, as well as extracellularly. Galectin-1, -2, -3, -4, -7, -8, -9, and -12 can all induce T-cell apoptosis and modulate inflammation. In the context of metabolic control and loss of the same in, for example, diabetes, galectin-1, -2, -3, -9, and -12 are especially interesting. This review presents information on galectins relevant to the control of inflammation and metabolism and the potential to target galectins for therapeutic purposes.
Collapse
|
31
|
The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget 2018; 8:49824-49838. [PMID: 28548942 PMCID: PMC5564810 DOI: 10.18632/oncotarget.17760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
Galectin-3 is a galectin with a unique flexible N-terminal tail (NT) connected to the conserved carbohydrate recognition domain (CRD). Galectin-3 is associated with tumor immune tolerance and exhibits an ability to induce T cell apoptosis. We used Jurkat, Jurkat E6-1 and CEM T-cell lines and human peripheral blood mononuclear cells (PBMCs) to investigate the specific roles of the CRD and NT in inducing T cell apoptosis. Galectin-3 triggered sustained extracellular signal-regulated kinase (ERK) phosphorylation that induced apoptosis. ERK was situated upstream of caspase-9 and was independently activated by reactive oxygen species (ROS) and protein kinase C (PKC). The first twelve NT residues had no role in the apoptosis. Residues 13-68 were essential for activating ROS, but did not activate PKC. However, residues 69-110 were required for activation of PKC. An NT fragment and a NT-specific antibody antagonized the apoptosis triggered by full-length galectin-3 further supporting our findings. These findings indicate the CRD and NT play important roles during induction of T cell apoptosis, which suggests their potential as therapeutic targets for reversing cancer immune tolerance.
Collapse
|
32
|
Oyanadel C, Holmes C, Pardo E, Retamal C, Shaughnessy R, Smith P, Cortés P, Bravo-Zehnder M, Metz C, Feuerhake T, Romero D, Roa JC, Montecinos V, Soza A, González A. Galectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells. Mol Biol Cell 2018; 29:557-574. [PMID: 29298841 PMCID: PMC6004583 DOI: 10.1091/mbc.e16-05-0301] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.
Collapse
Affiliation(s)
- Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Fundación Ciencia y Vida, 7780272 Santiago, Chile
| | - Christopher Holmes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Evelyn Pardo
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Ronan Shaughnessy
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Patricio Smith
- Unidad de Odontología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Priscilla Cortés
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Marcela Bravo-Zehnder
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Teo Feuerhake
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Diego Romero
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Viviana Montecinos
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| |
Collapse
|
33
|
Basole CP, Nguyen RK, Lamothe K, Vang A, Clark R, Baillie GS, Epstein PM, Brocke S. PDE8 controls CD4 + T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cell Signal 2017; 40:62-72. [PMID: 28851628 DOI: 10.1016/j.cellsig.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
Abstract
The levels of cAMP are regulated by phosphodiesterase enzymes (PDEs), which are targets for the treatment of inflammatory disorders. We have previously shown that PDE8 regulates T cell motility. Here, for the first time, we report that PDE8A exerts part of its control of T cell function through the V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase signaling pathway. To examine T cell motility under physiologic conditions, we analyzed T cell interactions with endothelial cells and ligands in flow assays. The highly PDE8-selective enzymatic inhibitor PF-04957325 suppresses adhesion of in vivo myelin oligodendrocyte glycoprotein (MOG) activated inflammatory CD4+ T effector (Teff) cells to brain endothelial cells under shear stress. Recently, PDE8A was shown to associate with Raf-1 creating a compartment of low cAMP levels around Raf-1 thereby protecting it from protein kinase A (PKA) mediated inhibitory phosphorylation. To test the function of this complex in Teff cells, we used a cell permeable peptide that selectively disrupts the PDE8A-Raf-1 interaction. The disruptor peptide inhibits the Teff-endothelial cell interaction more potently than the enzymatic inhibitor. Furthermore, the LFA-1/ICAM-1 interaction was identified as a target of disruptor peptide mediated reduction of adhesion, spreading and locomotion of Teff cells under flow. Mechanistically, we observed that disruption of the PDE8A-Raf-1 complex profoundly alters Raf-1 signaling in Teff cells. Collectively, our studies demonstrate that PDE8A inhibition by enzymatic inhibitors or PDE8A-Raf-1 kinase complex disruptors decreases Teff cell adhesion and migration under flow, and represents a novel approach to target T cells in inflammation.
Collapse
Affiliation(s)
| | | | - Katie Lamothe
- Department of Immunology, UConn Health, United States
| | - Amanda Vang
- Department of Immunology, UConn Health, United States; The National Hospital of Faroe Islands, Faroe Islands
| | - Robert Clark
- Department of Immunology, UConn Health, United States
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Stefan Brocke
- Department of Immunology, UConn Health, United States.
| |
Collapse
|
34
|
ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells. Int J Mol Sci 2017; 18:ijms18071400. [PMID: 28665310 PMCID: PMC5535893 DOI: 10.3390/ijms18071400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022] Open
Abstract
The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia.
Collapse
|
35
|
Pardo E, Cárcamo C, Uribe-San Martín R, Ciampi E, Segovia-Miranda F, Curkovic-Peña C, Montecino F, Holmes C, Tichauer JE, Acuña E, Osorio-Barrios F, Castro M, Cortes P, Oyanadel C, Valenzuela DM, Pacheco R, Naves R, Soza A, González A. Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. PLoS One 2017. [PMID: 28650992 PMCID: PMC5484466 DOI: 10.1371/journal.pone.0177472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Galectin-8 (Gal-8) is a member of a glycan-binding protein family that regulates the immune system, among other functions, and is a target of antibodies in autoimmune disorders. However, its role in multiple sclerosis (MS), an autoimmune inflammatory disease of the central nervous system (CNS), remains unknown. We study the consequences of Gal-8 silencing on lymphocyte subpopulations and the development of experimental autoimmune encephalitis (EAE), to then assess the presence and clinical meaning of anti-Gal-8 antibodies in MS patients. Lgals8/Lac-Z knock-in mice lacking Gal-8 expression have higher polarization toward Th17 cells accompanied with decreased CCR6+ and higher CXCR3+ regulatory T cells (Tregs) frequency. These conditions result in exacerbated MOG35-55 peptide-induced EAE. Gal-8 eliminates activated Th17 but not Th1 cells by apoptosis and ameliorates EAE in C57BL/6 wild-type mice. β-gal histochemistry reflecting the activity of the Gal-8 promoter revealed Gal-8 expression in a wide range of CNS regions, including high expression in the choroid-plexus. Accordingly, we detected Gal-8 in human cerebrospinal fluid, suggesting a role in the CNS immune-surveillance circuit. In addition, we show that MS patients generate function-blocking anti-Gal-8 antibodies with pathogenic potential. Such antibodies block cell adhesion and Gal-8-induced Th17 apoptosis. Furthermore, circulating anti-Gal-8 antibodies associate with relapsing-remitting MS (RRMS), and not with progressive MS phenotypes, predicting clinical disability at diagnosis within the first year of follow-up. Our results reveal that Gal-8 has an immunosuppressive protective role against autoimmune CNS inflammation, modulating the balance of Th17 and Th1 polarization and their respective Tregs. Such a role can be counteracted during RRMS by anti-Gal-8 antibodies, worsening disease prognosis. Even though anti-Gal-8 antibodies are not specific for MS, our results suggest that they could be a potential early severity biomarker in RRMS.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Autoantibodies/immunology
- Brain/immunology
- Brain/metabolism
- Cell Adhesion/physiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Galectins/genetics
- Galectins/immunology
- Galectins/metabolism
- Gene Silencing
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Prognosis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Evelyn Pardo
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Geroscience Center for Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudia Cárcamo
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Uribe-San Martín
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ethel Ciampi
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Segovia-Miranda
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristobal Curkovic-Peña
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Montecino
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher Holmes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Enrique Tichauer
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eric Acuña
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Marjorie Castro
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Santiago, Chile
| | - Priscilla Cortes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | | | - Rodrigo Pacheco
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Naves
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Soza
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
- * E-mail: (AG); (AS)
| | - Alfonso González
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
- * E-mail: (AG); (AS)
| |
Collapse
|
36
|
Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends Biochem Sci 2017; 42:255-273. [DOI: 10.1016/j.tibs.2016.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
|
37
|
Kieber-Emmons T, Monzavi-Karbassi B, Hutchins LF, Pennisi A, Makhoul I. Harnessing benefit from targeting tumor associated carbohydrate antigens. Hum Vaccin Immunother 2017; 13:323-331. [PMID: 27929800 PMCID: PMC5328237 DOI: 10.1080/21645515.2017.1264789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrating additive or synergistic antitumor effects that focus on distinct elements of tumor biology are the most rational strategies for cancer treatment. Treatments for breast cancer have increased overall survival, but remain limited by lack of efficacy in a subset of breast cancer patients. The real challenge is to define what elements of tumor biology make the most sense to be integrated. An emerging strategy is to consider a systems biology approach to impact multiple interactions in networks as compare with hitting a specific protein-protein interaction target. In this review, we consider how targeting tumor associated carbohydrate antigens (TACA) that are fundamental to signal pathways might be tailored to harness benefit from combination therapy of sustained immunity with chemotherapy. An approach we are developing makes use of a carbohydrate mimetic peptide (CMP) to induce polyspecific antibodies, which by their nature have numerous on and off target effects. Linking multi-target TACA recognition with mechanisms affecting tumor growth in the context of network heterogeneity and concepts of immune surveillance to tumor cells and the type of breast cancer patients that would benefit from such an approach provides a novel integrative treatment.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Laura F. Hutchins
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela Pennisi
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
38
|
Bohari MH, Yu X, Zick Y, Blanchard H. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8. Sci Rep 2016; 6:39556. [PMID: 28000747 PMCID: PMC5175137 DOI: 10.1038/srep39556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Glycosphingolipids are ubiquitous cell surface molecules undertaking fundamental cellular processes. Lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are the representative core structures for lacto- and neolacto-series glycosphingolipids. These glycolipids are the carriers to the blood group antigen and human natural killer antigens mainly found on blood cells, and are also principal components in human milk, contributing to infant health. The β-galactoside recognising galectins mediate various cellular functions of these glycosphingolipids. We report crystallographic structures of the galectin-8 N-terminal domain (galectin-8N) in complex with LNT and LNnT. We reveal the first example in which the non-reducing end of LNT binds to the primary binding site of a galectin, and provide a structure-based rationale for the significant ten-fold difference in binding affinities of galectin-8N toward LNT compared to LNnT, such a magnitude of difference not being observed for any other galectin. In addition, the LNnT complex showed that the unique Arg59 has ability to adopt a new orientation, and comparison of glycerol- and lactose-bound galectin-8N structures reveals a minimum atomic framework for ligand recognition. Overall, these results enhance our understanding of glycosphingolipids interactions with galectin-8N, and highlight a structure-based rationale for its significantly different affinity for components of biologically relevant glycosphingolipids.
Collapse
Affiliation(s)
- Mohammad H. Bohari
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast Campus, 4222, Australia
| |
Collapse
|
39
|
Abstract
Paget’s disease of bone (PDB) is the second most common metabolic bone disorder, after osteoporosis. It is characterised by focal areas of increased and disorganised bone turnover, coupled with increased bone formation. This disease usually appears in the late stages of life, being slightly more frequent in men than in women. It has been reported worldwide, but primarily affects individuals of British descent. Majority of PDB patients are asymptomatic, but clinical manifestations include pain, bone deformity and complications, like pathological fractures and deafness. The causes of the disease are poorly understood and it is considered as a complex trait, combining genetic predisposition with environmental factors. Linkage analysis identified SQSTM1, at chromosome 5q35, as directly related to the disease. A number of mutations in this gene have been reported, pP392L being the most common variant among different populations. Most of these variants affect the ubiquitin-associated (UBA) domain of the protein, which is involved in autophagy processes. Genome-wide association studies enlarged the number of loci associated with PDB, and further fine-mapping studies, combined with functional analysis, identified OPTN and RIN3 as causal genes for Paget’s disease. A combination of risk alleles identified by genome-wide association studies led to the development of a score to predict disease severity, which could improve the management of the disease. Further studies need to be conducted to elucidate other important aspects of the trait, such as its focal nature and the epidemiological changes found in some populations. In this review, we summarize the clinical characteristics of the disease and the latest genetic advances to identify susceptibility genes. We also list current available treatments and prospective options.
Collapse
|
40
|
Vladoiu MC, Labrie M, Létourneau M, Egesborg P, Gagné D, Billard É, Grosset AA, Doucet N, Chatenet D, St-Pierre Y. Design of a peptidic inhibitor that targets the dimer interface of a prototypic galectin. Oncotarget 2016; 6:40970-80. [PMID: 26543238 PMCID: PMC4747383 DOI: 10.18632/oncotarget.5403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022] Open
Abstract
Galectins are small soluble lectins that bind β-galactosides via their carbohydrate recognition domain (CRD). Their ability to dimerize is critical for the crosslinking of glycoprotein receptors and subsequent cellular signaling. This is particularly important in their immunomodulatory role via the induction of T-cell apoptosis. Because galectins play a central role in many pathologies, including cancer, they represent valuable therapeutic targets. At present, most inhibitors have been directed towards the CRD, a challenging task in terms of specificity given the high structural homology of the CRD among galectins. Such inhibitors are not effective at targeting CRD-independent functions of galectins. Here, we report a new class of galectin inhibitors that specifically binds human galectin-7 (hGal-7), disrupts the formation of homodimers, and inhibits the pro-apoptotic activity of hGal-7 on Jurkat T cells. In addition to representing a new means to achieve specificity when targeting galectins, such inhibitors provide a promising alternative to more conventional galectin inhibitors that target the CRD with soluble glycans or other small molecular weight allosteric inhibitors.
Collapse
Affiliation(s)
| | - Marilyne Labrie
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Myriam Létourneau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Philippe Egesborg
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Étienne Billard
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Andrée-Anne Grosset
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, H7V 1B7 Canada
| |
Collapse
|
41
|
Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A, Soza A. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Biol Res 2016; 49:33. [PMID: 27459991 PMCID: PMC4962418 DOI: 10.1186/s40659-016-0091-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. Methods We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. Results Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin–glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30–40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. Conclusions Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.
Collapse
Affiliation(s)
- Claudia Metz
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Remziye Döger
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Elizabeth Riquelme
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Priscilla Cortés
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Christopher Holmes
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Ronan Shaughnessy
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Claudia Oyanadel
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Fundación Ciencia y Vida, Av. Zañartu 1482, 77803444, Santiago, Chile
| | - Catalina Grabowski
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Alfonso González
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile
| | - Andrea Soza
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile. .,Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, 8331010, Santiago, Chile.
| |
Collapse
|
42
|
Unajak S, Pholmanee N, Songtawee N, Srikulnath K, Srisapoome P, Kiataramkul A, Kondo H, Hirono I, Areechon N. Molecular characterization of Galectin-8 from Nile tilapia (Oreochromis niloticus Linn.) and its response to bacterial infection. Mol Immunol 2015; 68:585-96. [DOI: 10.1016/j.molimm.2015.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 10/22/2022]
|
43
|
Labrie M, Vladoiu MC, Grosset AA, Gaboury L, St-Pierre Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget 2015; 5:7705-21. [PMID: 25277199 PMCID: PMC4202155 DOI: 10.18632/oncotarget.2299] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is a critical need to develop effective new strategies for diagnosis and treatment of ovarian cancer. In the present work, we investigated the expression of galectin-7 (gal-7) in epithelial ovarian cancer (EOC) cells and studied its functional relevance. Immunohistochemical analysis of gal-7 expression in tissue microarrays showed that while gal-7 was not detected in normal ovarian tissues, positive cytoplasmic staining of gal-7 was detected in epithelial cells in all EOC histological subtypes but was more frequent in high grade tumors and metastatic samples. Gal-7 expression correlated with a significant difference in the overall survival of patients with ovarian serous cystadenocarcinoma. Furthermore, using human EOC cell lines, we found that gal-7 expression was induced by mutant p53. Mechanistically, Matrigel invasion assays and live cell imaging showed that gal-7 increased the invasive behavior of ovarian cancer cells by inducing MMP-9 and increasing cell motility. EOC cells can also secrete gal-7. Recombinant human gal-7 kills Jurkat T cells and human peripheral T cells, suggesting that gal-7 also has immunosuppressive properties. Taken together, our study validates the clinical significance of gal-7 overexpression in ovarian cancer and provides a rationale for targeting gal-7 to improve the outcome of patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Louis Gaboury
- Institute for Research in Immunology and Cancer, P.O. Box 6128, Downtown Station, Montréal, Québec, Canada
| | | |
Collapse
|
44
|
Abstract
Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.
Collapse
|
45
|
Abstract
Galectins are an evolutionarily ancient family of glycan-binding proteins (GBPs) and are found in all animals. Although they were discovered over 30 years ago, ideas about their biological functions continue to evolve. Current evidence indicates that galectins, which are the only known GBPs that occur free in the cytoplasm and extracellularly, are involved in a variety of intracellular and extracellular pathways contributing to homeostasis, cellular turnover, cell adhesion, and immunity. Here we review evolving insights into galectin biology from a historical perspective and explore current evidence regarding biological roles of galectins.
Collapse
|
46
|
Klinck R, Laberge G, Bisson M, McManus S, Michou L, Brown JP, Roux S. Alternative splicing in osteoclasts and Paget's disease of bone. BMC MEDICAL GENETICS 2014; 15:98. [PMID: 25115182 PMCID: PMC4143580 DOI: 10.1186/s12881-014-0098-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/07/2014] [Indexed: 01/12/2023]
Abstract
Background Mutations in the SQSTM1/p62 gene have been reported in Paget’s disease of bone (PDB), but they are not sufficient to induce the pagetic osteoclast (OC) phenotype. We hypothesized that specific RNA isoforms of OC-related genes may contribute to the overactivity of pagetic OCs, along with other genetic predisposing factors. Methods Alternative splicing (AS) events were studied using a PCR-based screening strategy in OC cultures from 29 patients with PDB and 26 healthy donors (HD), all genotyped for the p62P392L mutation. Primer pairs targeting 5223 characterized AS events were used to analyze relative isoform ratios on pooled cDNA from samples of the four groups (PDB, PDBP392L, HD, HDP392L). Of the 1056 active AS events detected in the screening analysis, 192 were re-analyzed on non-amplified cDNA from each subject of the whole cohort. Results This analysis led to the identification of six AS events significantly associated with PDB, but none with p62P392L. The corresponding genes included LGALS8, RHOT1, CASC4, USP4, TBC1D25, and PIDD. In addition, RHOT1 and LGALS8 genes were upregulated in pagetic OCs, as were CASC4 and RHOT1 genes in the presence of p62P392L. Finally, we showed that the proteins encoded by LGALS8, RHOT1, USP4, TBC1D25, and PIDD were expressed in human OCs. Conclusion This study allowed the identification of hitherto unknown players in OC biology, and our findings of a differential AS in pagetic OCs may generate new concepts in the pathogenesis of PDB.
Collapse
|
47
|
Wang W, Wang S, Zhang H, Yuan C, Yan R, Song X, Xu L, Li X. Galectin Hco-gal-m from Haemonchus contortus modulates goat monocytes and T cell function in different patterns. Parasit Vectors 2014; 7:342. [PMID: 25056558 PMCID: PMC4117971 DOI: 10.1186/1756-3305-7-342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/06/2014] [Indexed: 12/24/2022] Open
Abstract
Background Monocytes and T cells are two major subpopulations of peripheral blood mononuclear cells (PBMC) and play an essential role in the innate and adaptive immune systems. Different members of the galectin family show multiple and distinct regulatory effects on different cell types. Previous studies have demonstrated that the galectin from Haemonchus contortus (Hco-gal-m) performed immunomodulatory effects on goat PBMC, however, which subpopulation of PBMC is the primary target of Hco-gal-m and whether the immune modulations share the same mechanism remain unclear. Methods In this study, the developmental expression of Hco-gal-m was analyzed by RT-PCR and Western blot analysis. The distribution of Hco-gal-m in adult worm was detected by an immunohistochemical test. The binding activity of the recombinant Hco-gal-m (rHco-gal-m) on goat monocytes and T cells were assessed by flow cytometry. The immunomodulatory effects of Hco-gal-m on cytokine secretion, cell activation and apoptosis were observed by co-incubation of rHco-gal-m with goat monocytes and T cells. Results Hco-gal-m was expressed in L4 as well as adult worms and predominantly localized at the internal surface of the worm guts. rHco-gal-m could bind to both monocytes and T cells. The engagement of rHco-gal-m decreased the production of IL-6, IL-10 and TNF-α in T cells, however, it significantly increased the secretion of IL-10 in monocytes. After rHco-gal-m exposure, the expression of MHC-II on monocytes and that of CD25 on T cells were restricted. Consequently, T cell proliferations were potently inhibited by rHco-gal-m. In addition, rHco-gal-m induced apoptosis in T cells, but not significantly in monocytes. Conclusions Our results indicated that rHco-gal-m modulated goat monocytes and T cell function in different patterns. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-342) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
48
|
Guo XX, Liu JQ, Chen FX, Lv XT, Chen YQ, Chen JQ. Shikonin induces cytotoxicity of co-stimulated human cells to gastric cancer cell lines. Shijie Huaren Xiaohua Zazhi 2014; 22:1984-1991. [DOI: 10.11569/wcjd.v22.i14.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of shikonin on the growth of co-stimulated human cells and the cytotoxicity of co-stimulated cells to gastric cancer cell lines NCI-N87, BGC-823 and HGC-27, and to explore the underlying mechanisms.
METHODS: Peripheral blood mononuclear cells were separated form healthy volunteers and induced with various cytokines (CD3 mAb, IL-2, IFN-γ, IL-1α, CD28 mAb, IL-15 and IL-21) to result in co-stimulated human cells in vitro. After co-stimulated cells were incubated with shikonin of different concentrations for 24, 48 and 72 h and co-cultured with the three gastric cancer cell lines, CCK8 assay was used to assess the proliferation of co-stimulated cells, and MTT assay was used to measure the reduced rate of growth of gastric cancer cells. FCM was used to detect the expression of GraB, PFP, CD107a and IFN-γ on co-stimulated cells before and after shikonin treatment. LDH release assay was used to measure the influence of shikonin on cytotoxic activity of co-stimulated cells to gastric cancer cells. Western blot assay was used to measure β-catenin, P-ERK1/2, Bcl-2 and P-AKT expression in co-stimulated cells before and after shikonin induction.
RESULTS: After incubation with shikonin at concentrations ranging from 0.2 to 50 μg/L for 48 h, the proliferation rate of co-stimulated cells increased significantly (P < 0.05). The expression of GraB, PFP, CD107a, IFN-γ, β-catenin, P-ERK1/2, Bcl-2 and P-AKT on co-stimulated cells treated with shikonin at concentrations from 6 to 25 μg/L were significantly higher than that in the control group (P < 005). In addition, the cytotoxic activity of co-stimulated cells treated with shikonin against the three gastric cancer cell lines were significantly higher than that in the control group (P < 0.05).
CONCLUSION: These results suggest that shikonin can promote the growth of co-stimulated cells and increase the cytotoxic activity of co-stimulated cells against gastric cancer cells via mechanisms possibly associated with enhancing the activity of β-catenin, P-ERK1/2, Bcl-2 and P-AKT expression and increasing the expression of PFP, GraB, CD107a and IFN-γ.
Collapse
|
49
|
Reinchisi G, Parada M, Lois P, Oyanadel C, Shaughnessy R, Gonzalez A, Palma V. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation. Front Cell Neurosci 2013; 7:166. [PMID: 24133411 PMCID: PMC3783837 DOI: 10.3389/fncel.2013.00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors.
Collapse
Affiliation(s)
- Gisela Reinchisi
- Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile Santiago, Chile ; Departamento de Inmunología Clínica y Reumatología, Departamento de Biología Celular y Molecular, Facultad de Medicina, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
50
|
Krishna S, Zhong XP. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function. Front Immunol 2013; 4:178. [PMID: 23847619 PMCID: PMC3701226 DOI: 10.3389/fimmu.2013.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 01/14/2023] Open
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | | |
Collapse
|