1
|
Soto-Varela ZE, Orozco-Sánchez CJ, Bolívar-Anillo HJ, Martínez JM, Rodríguez N, Consuegra-Padilla N, Robledo-Meza A, Amils R. Halotolerant Endophytic Bacteria Priestia flexa 7BS3110 with Hg 2+ Tolerance Isolated from Avicennia germinans in a Caribbean Mangrove from Colombia. Microorganisms 2024; 12:1857. [PMID: 39338530 PMCID: PMC11434322 DOI: 10.3390/microorganisms12091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 09/30/2024] Open
Abstract
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as the associated microbial populations that favor their growth. In the present work, the tolerance and detoxification capacity to heavy metals, especially to mercury, of a halotolerant endophytic bacterium isolated from the species Avicennia germinans located in the Balboa Swamp in the Department of Atlántico was characterized. Diverse microorganisms were isolated from superficially sterilized A. germinans leaves. Tolerance to NaCl was evaluated for each of the obtained isolates, and the most resistant was selected to assess its tolerance to Pb2+, Cu2+, Hg2+, Cr3+, Co2+, Ni2+, Zn2+, and Cd2+, many of which have been detected in high concentrations in the area of study. According to the ANI and AAI percentages, the most halotolerant strain was identified as Priestia flexa, named P. flexa 7BS3110, which was able to tolerate up to 12.5% (w/v) NaCl and presented a minimum inhibitory concentrations (MICs) of 0.25 mM for Hg, 10 mM for Pb, and 15 mM for Cr3+. The annotation of the P. flexa 7BS3110 genome revealed the presence of protein sequences associated with exopolysaccharide (EPS) production, thiol biosynthesis, specific proteins for chrome efflux, non-specific proteins for lead efflux, and processes associated with sulfur and iron homeostasis. Scanning electron microscopy (SEM) analysis showed morphological cellular changes and the transmission electron microscopy (TEM) showed an electrodense extracellular layer when exposed to 0.25 mM Hg2+. Due to the high tolerance of P. flexa 7BS3110 to Hg2+ and NaCl, its ability to grow when exposed to both stressors was tested, and it was able to thrive in the presence of 5% (w/v) NaCl and 0.25 mM of Hg2+. In addition, it was able to remove 98% of Hg2+ from the medium when exposed to a concentration of 14 mg/L of this metalloid. P. flexa 7BS3110 has the potential to bioremediate Hg2+ halophilic contaminated ecosystems.
Collapse
Affiliation(s)
- Zamira E Soto-Varela
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Christian J Orozco-Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Institute of Applied Microbiology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hernando José Bolívar-Anillo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| | - Natalia Consuegra-Padilla
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Alfredo Robledo-Meza
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
2
|
Tóth A, Sajdik K, Gyurcsik B, Nafaee ZH, Wéber E, Kele Z, Christensen NJ, Schell J, Correia JG, Sigfridsson Clauss KGV, Pittkowski RK, Thulstrup PW, Hemmingsen L, Jancsó A. As III Selectively Induces a Disorder-to-Order Transition in the Metalloid Binding Region of the AfArsR Protein. J Am Chem Soc 2024; 146:17009-17022. [PMID: 38820242 PMCID: PMC11212059 DOI: 10.1021/jacs.3c11665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Arsenic is highly toxic and a significant threat to human health, but certain bacteria have developed defense mechanisms initiated by AsIII binding to AsIII-sensing proteins of the ArsR family. The transcriptional regulator AfArsR responds to AsIII and SbIII by coordinating the metalloids with three cysteines, located in a short sequence of the same monomer chain. Here, we characterize the binding of AsIII and HgII to a model peptide encompassing this fragment of the protein via solution equilibrium and spectroscopic/spectrometric techniques (pH potentiometry, UV, CD, NMR, PAC, EXAFS, and ESI-MS) combined with DFT calculations and MD simulations. Coordination of AsIII changes the peptide structure from a random-coil to a well-defined structure of the complex. A trigonal pyramidal AsS3 binding site is formed with almost exactly the same structure as observed in the crystal structure of the native protein, implying that the peptide possesses all of the features required to mimic the AsIII recognition and response selectivity of AfArsR. Contrary to this, binding of HgII to the peptide does not lead to a well-defined structure of the peptide, and the atoms near the metal binding site are displaced and reoriented in the HgII model. Our model study suggests that structural organization of the metal site by the inducer ion is a key element in the mechanism of the metalloid-selective recognition of this protein.
Collapse
Affiliation(s)
- Annamária Tóth
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Kadosa Sajdik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Béla Gyurcsik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Zeyad H. Nafaee
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Edit Wéber
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- HUN-REN-SZTE
Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltan Kele
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Niels Johan Christensen
- Department
of Chemistry, Faculty of Science, University
of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Juliana Schell
- Institute
for Materials Science and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Joao Guilherme Correia
- Centro de
Cięncias e Tecnologias Nucleares, Departamento de Engenharia
e Cięncias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | | | - Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Peter Waaben Thulstrup
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Lars Hemmingsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Attila Jancsó
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Deng B, Luo J, Xu C, Zhang X, Li J, Yuan Q, Cao H. Biotransformation of Pb and As from sewage sludge and food waste by black soldier fly larvae: Migration mechanism of bacterial community and metalloregulatory protein scales. WATER RESEARCH 2024; 254:121405. [PMID: 38447376 DOI: 10.1016/j.watres.2024.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Junlong Luo
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Jun Li
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Shen L, Chen Y, Hu L, Zhang C, Liu L, Bao L, Ma J, Wang H, Xiao X, Wu L, Chen S. Development of a Highly Sensitive, Visual Platform for the Detection of Cadmium in Actual Wastewater Based on Evolved Whole-Cell Biosensors. ACS Sens 2024; 9:654-661. [PMID: 38329934 DOI: 10.1021/acssensors.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A whole-cell biosensor (WCB) is a convenient and cost-effective method for detecting contaminants. However, the practical application of the cadmium WCBs has been hampered by performance deficiencies, such as low sensitivity, specificity, and responsive strength. In this study, to improve the performance of cadmium WCBs, the cadmium transcription factor (CadC) and its DNA binding site (CadO), the key sensing module of the biosensor, were successively and separately subjected to a two-step directed evolution: 6-round random mutagenesis for CadC and 2-round saturation mutagenesis for CadO. For practical application, the GFP reporter gene was replaced with the lacZ gene and a facile and rapid smartphone detection platform for actual water samples was established by optimizing the reaction systems with detergents. The results showed that the evolved cadmium fluorescent biosensor CadO66 exhibited a higher specificity and a detection limit of 0.034 μg/L, representing a 19-fold reduction compared to the wild-type cadmium biosensor. The detergent sodium dodecylbenzenesulfonate effectively enhanced the visualization of WCB B0033-lacZ. Using the fluorescent WCB CadO66 and the visual WCB B0033-lacZ to analyze the cadmium contents of the actual water samples, the results were also consistent with a graphite furnace atomic absorption spectrometer. Taken together, this study indicates that the two-step directed evolution of CadC and CadO can efficiently improve the performance of cadmium WCBs, further promoting the utilization of WCB in actual sample detection and presenting a promising and feasible method for rapid sample detection.
Collapse
Affiliation(s)
- Liang Shen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiwen Chen
- Wannan Medical College, Wuhu 241002, China
| | - Liangwen Hu
- Wuhu Agricultural Products and Food Testing Center Co. Ltd., Wuhu 241000, China
| | | | | | | | - Jie Ma
- Wannan Medical College, Wuhu 241002, China
| | - Hongqiang Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shaopeng Chen
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
5
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. J Biol Chem 2023; 299:105147. [PMID: 37567478 PMCID: PMC10509353 DOI: 10.1016/j.jbc.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
7
|
Ranganathan S, Sethi D, Kasivisweswaran S, Ramya L, Priyadarshini R, Yennamalli RM. Structural and functional mapping of ars gene cluster in Deinococcus indicus DR1. Comput Struct Biotechnol J 2022; 21:519-534. [PMID: 36618989 PMCID: PMC9807832 DOI: 10.1016/j.csbj.2022.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Deinococcus indicus DR1 is a novel Gram-negative bacterium, isolated from the Dadri wetlands in Uttar Pradesh, India. In addition to being radiation-resistant, the rod-shaped, red-pigmented organism shows extraordinary resistance to arsenic. The proteins of the corresponding ars gene cluster involved in arsenic extrusion in D. indicus DR1 have not yet been characterized. Additionally, how these proteins regulate each other providing arsenic resistance is still unclear. Here, we present a computational model of the operonic structure and the corresponding characterization of the six proteins of the ars gene cluster in D. indicus DR1. Additionally, we show the expression of the genes in the presence of arsenic using qRT-PCR. The ars gene cluster consists of two transcriptional regulators (ArsR1, ArsR2), two arsenate reductases (ArsC2, ArsC3), one metallophosphatase family protein (MPase), and a transmembrane arsenite efflux pump (ArsB). The transcriptional regulators are trans-acting repressors, and the reductases reduce arsenate (As5+) ions to arsenite (As3+) ions for favourable extrusion. The proteins modelled using RoseTTAFold, and their conformationally stable coordinates obtained after MD simulation indicate their various functional roles with respect to arsenic. Excluding ArsB, all the proteins belong to the α + β class of proteins. ArsB, being a membrane protein, is fully α-helical, with 12 transmembrane helices. The results show the degree of similarity or divergence of the mechanism utilized by these proteins of ars gene cluster in D. indicus DR1 to confer high levels of arsenic tolerance. This structural characterization study of the ars genes will enable new and deeper insights of arsenic tolerance.
Collapse
Affiliation(s)
- Shrivaishnavi Ranganathan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| | - Deepa Sethi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Sandhya Kasivisweswaran
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - L. Ramya
- Computational and Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India,Corresponding authors.
| | - Ragothaman M. Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India,Corresponding authors.
| |
Collapse
|
8
|
Roy R, Samanta S, Patra S, Mahato NK, Saha RP. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics 2018; 10:1476-1500. [PMID: 30191942 DOI: 10.1039/c8mt00082d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ArsR-SmtB family of proteins displays the greatest diversity among the bacterial metal-binding transcriptional regulators with regard to the variety of metal ions that they can sense. In the presence of increased levels of toxic heavy metals, these proteins dissociate from their cognate DNA upon the direct binding of metal ions to the appropriate sites, designated motifs on the proteins, either at the interface of the dimers or at the intra-subunit locations. In addition to the metal-mediated regulation, some proteins were also found to control transcription via redox reactions. In the present work, we have identified several new sequence motifs and expanded the knowledge base of metal binding sites in the ArsR-SmtB family of transcriptional repressors, and characterized them in terms of the ligands to the metal, distribution among different phyla of bacteria and archaea, amino acid propensities, protein length distributions and evolutionary interrelationships. We built structural models of the motifs to show the importance of specific residues in an individual motif. The wide abundance of these motifs in sequences of bacteria and archaea indicates the importance of these regulators in combating metal-toxicity within and outside of the hosts. We also show that by using residue composition, one can distinguish the ArsR-SmtB proteins from other metalloregulatory families. In addition, we show the importance of horizontal gene transfer in microorganisms, residing in similar habitats, on the evolution of the structural motifs in the family. Knowledge of the diverse metalloregulatory systems in microorganisms could enable us to manipulate specific genes that may result in a toxic metal-free environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Nav Kumar Mahato
- Department of Mathematics, School of Science, Adamas University, Kolkata 700 126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| |
Collapse
|
9
|
Synthetic biology for microbial heavy metal biosensors. Anal Bioanal Chem 2017; 410:1191-1203. [DOI: 10.1007/s00216-017-0751-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
|
10
|
Pombinho R, Camejo A, Vieira A, Reis O, Carvalho F, Almeida MT, Pinheiro JC, Sousa S, Cabanes D. Listeria monocytogenes CadC Regulates Cadmium Efflux and Fine-tunes Lipoprotein Localization to Escape the Host Immune Response and Promote Infection. J Infect Dis 2017; 215:1468-1479. [PMID: 28368435 DOI: 10.1093/infdis/jix118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/06/2017] [Indexed: 11/12/2022] Open
Abstract
Listeria monocytogenes is a major intracellular human foodborne bacterial pathogen. We previously revealed L. monocytogenes cadC as highly expressed during mouse infection. Here we show that L. monocytogenes CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC but not CadA is required for L. monocytogenes infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing tumor necrosis factor α and interleukin 6 expression, thus impairing L. monocytogenes survival in macrophages. We propose that L. monocytogenes uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophagic survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses.
Collapse
Affiliation(s)
- Rita Pombinho
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ana Camejo
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Ana Vieira
- Instituto de Investigação e Inovação em Saúde and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Olga Reis
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Filipe Carvalho
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Maria Teresa Almeida
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Jorge Campos Pinheiro
- Instituto de Investigação e Inovação em Saúde and.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Sandra Sousa
- Instituto de Investigação e Inovação em Saúde and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde and.,Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
11
|
Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals 2017; 30:459-503. [PMID: 28512703 DOI: 10.1007/s10534-017-0020-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
Bacterial infections cause severe medical problems worldwide, resulting in considerable death and loss of capital. With the ever-increasing rise of antibiotic-resistant bacteria and the lack of development of new antibiotics, research on metal-based antimicrobial therapy has now gained pace. Metal ions are essential for survival, but can be highly toxic to organisms if their concentrations are not strictly controlled. Through evolution, bacteria have acquired complex metal-management systems that allow them to acquire metals that they need for survival in different challenging environments while evading metal toxicity. Metalloproteins that controls these elaborate systems in the cell, and linked to key virulence factors, are promising targets for the anti-bacterial drug development. Among several metal-sensory transcriptional regulators, the ArsR-SmtB family displays greatest diversity with several distinct metal-binding and nonmetal-binding motifs that have been characterized. These prokaryotic metolloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of metal ions by directly binding to the regulatory regions of DNA, while derepression results from direct binding of metal ions by these homodimeric proteins. Many bacteria, e.g., Mycobacterium tuberculosis, Bacillus anthracis, etc., have evolved to acquire multiple metal-sensory motifs which clearly demonstrate the importance of regulating concentrations of multiple metal ions. Here, we discussed the mechanisms of how ArsR-SmtB family regulates the intracellular bioavailability of metal ions both inside and outside of the host. Knowledge of the metal-challenges faced by bacterial pathogens and their survival strategies will enable us to develop the next generation drugs.
Collapse
Affiliation(s)
- Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Microbiology, School of Science, Adamas University, Kolkata, 700126, India
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Diganta Sarkar
- Department of Biotechnology, Techno India University, Kolkata, 700091, India
| | - Abinit Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| |
Collapse
|
12
|
Jung J, Jeong H, Kim HJ, Lee DW, Lee SJ. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes. Mar Genomics 2016; 30:73-76. [DOI: 10.1016/j.margen.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
|
13
|
Regulatory Activities of Four ArsR Proteins in Agrobacterium tumefaciens 5A. Appl Environ Microbiol 2016; 82:3471-3480. [PMID: 27037117 DOI: 10.1128/aem.00262-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED ArsR is a well-studied transcriptional repressor that regulates microbe-arsenic interactions. Most microorganisms have an arsR gene, but in cases where multiple copies exist, the respective roles or potential functional overlap have not been explored. We examined the repressors encoded by arsR1 and arsR2 (ars1 operon) and by arsR3 and arsR4 (ars2 operon) in Agrobacterium tumefaciens 5A. ArsR1 and ArsR4 are very similar in their primary sequences and diverge phylogenetically from ArsR2 and ArsR3, which are also quite similar to one another. Reporter constructs (lacZ) for arsR1, arsR2, and arsR4 were all inducible by As(III), but expression of arsR3 (monitored by reverse transcriptase PCR) was not influenced by As(III) and appeared to be linked transcriptionally to an upstream lysR-type gene. Experiments using a combination of deletion mutations and additional reporter assays illustrated that the encoded repressors (i) are not all autoregulatory as is typically known for ArsR proteins, (ii) exhibit variable control of each other's encoding genes, and (iii) exert variable control of other genes previously shown to be under the control of ArsR1. Furthermore, ArsR2, ArsR3, and ArsR4 appear to have an activator-like function for some genes otherwise repressed by ArsR1, which deviates from the well-studied repressor role of ArsR proteins. The differential regulatory activities suggest a complex regulatory network not previously observed in ArsR studies. The results indicate that fine-scale ArsR sequence deviations of the reiterated regulatory proteins apparently translate to different regulatory roles. IMPORTANCE Given the significance of the ArsR repressor in regulating various aspects of microbe-arsenic interactions, it is important to assess potential regulatory overlap and/or interference when a microorganism carries multiple copies of arsR This study explores this issue and shows that the four arsR genes in A. tumefaciens 5A, associated with two separate ars operons, encode proteins exhibiting various degrees of functional overlap with respect to autoregulation and cross-regulation, as well as control of other functional genes. In some cases, differences in regulatory activity are associated with only limited differences in protein primary structure. The experiments summarized herein also present evidence that ArsR proteins appear to have activator functions, representing novel regulatory activities for ArsR, previously known only to be a repressor.
Collapse
|
14
|
Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, Lee SJ. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 2016; 79:701-8. [DOI: 10.1016/j.bios.2015.12.101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
15
|
Chakravorty DK, Merz KM. Studying allosteric regulation in metal sensor proteins using computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:181-218. [PMID: 25443958 DOI: 10.1016/bs.apcsb.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we describe advances made in understanding the mechanism of allosteric regulation of DNA operator binding in the ArsR/SmtB family of metal-sensing proteins using computational methods. The paradigm, zinc-sensing transcriptional repressor Staphylococcus aureus CzrA represents an excellent model system to understand how metal sensor proteins maintain cellular metal homeostasis. Here, we discuss studies that helped to characterize a metal ion-mediated hydrogen-bonding pathway (HBP) that plays a dominant role in the allosteric mechanism of DNA operator binding in these proteins. The chapter discusses computational methods used to provide a molecular basis for the large conformational motions and allosteric coupling free energy (~6kcal/mol) associated with Zn(II) binding in CzrA. We present an accurate and convenient means by which to include metal ions in the nuclear magnetic resonance (NMR) structure determination process using molecular dynamics (MD) constrained by NMR-derived data. The method provides a realistic and physically viable description of the metal-binding site(s) and has potentially broad applicability in the structure determination of metal ion-bound proteins, protein folding, and metal template protein-design studies. Finally, our simulations provide strong support for a proposed HBP that physically connects the metal-binding residue, His97, to the DNA-binding interface through the αR helix that is present only in the Zn(II)-bound state. We find the interprotomer hydrogen bond interaction to be significantly stronger (~8kcal/mol) at functional allosteric metal-binding sites compared to the apo proteins. This interaction works to overcome the considerable disorder at these hydrogen-bonding sites in apo protein and functions as a "switch" to lock in a weak DNA-binding conformation once metal is bound. This interaction is found to be considerably weaker in nonresponsive metal-binding sites. These findings suggest a conserved functional role of metal-mediated second-shell coordination hydrogen bonds at allosterically responsive sites in zinc-sensing transcription regulators.
Collapse
Affiliation(s)
- Dhruva K Chakravorty
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA.
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proc Natl Acad Sci U S A 2014; 111:6509-14. [PMID: 24733893 DOI: 10.1073/pnas.1402243111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.
Collapse
|
17
|
Tang L, Qiu R, Tang Y, Wang S. Cadmium–zinc exchange and their binary relationship in the structure of Zn-related proteins: a mini review. Metallomics 2014; 6:1313-23. [DOI: 10.1039/c4mt00080c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we give an overview of ongoing work on discovering the structural mechanisms of Cd–Zn exchange and the potentially diverse roles of Cd at Zn functional sites in proteins.
Collapse
Affiliation(s)
- Lu Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Yetao Tang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering
- Sun Yat-Sen University
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
- Guangzhou 510275, China
| |
Collapse
|
18
|
Chakravorty DK, Parker TM, Guerra AJ, Sherrill CD, Giedroc DP, Merz KM. Energetics of zinc-mediated interactions in the allosteric pathways of metal sensor proteins. J Am Chem Soc 2012; 135:30-3. [PMID: 23214972 DOI: 10.1021/ja309170g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A metal-mediated interprotomer hydrogen bond has been implicated in the allosteric mechanism of DNA operator binding in several metal-sensing proteins. Using computational methods, we investigate the energetics of such zinc-mediated interactions in members of the ArsR/SmtB family of proteins (CzrA, SmtB, CadC, and NmtR) and the MarR family zinc-uptake repressor AdcR, which feature similar interactions, but in sites that differ widely in their allosteric responsiveness. We provide novel structural insight into previously uncharacterized allosteric forms of these proteins using computational methodologies. We find this metal-mediated interaction to be significantly stronger (∼8 kcal/mol) at functional allosteric metal binding sites compared to a nonresponsive site (CadC) and the apo-proteins. Simulations of the apo-proteins further reveal that the high interaction energy works to overcome the considerable disorder at these hydrogen-bonding sites and functions as a "switch" to lock in a weak DNA-binding conformation once metal is bound. These findings suggest a conserved functional role of metal-mediated second coordination shell hydrogen bonds at allosterically responsive sites in zinc-sensing transcription regulators.
Collapse
Affiliation(s)
- Dhruva K Chakravorty
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, United States
| | | | | | | | | | | |
Collapse
|
19
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
20
|
Wang Y, Kendall J, Cavet JS, Giedroc DP. Elucidation of the functional metal binding profile of a Cd(II)/Pb(II) sensor CmtR(Sc) from Streptomyces coelicolor. Biochemistry 2010; 49:6617-26. [PMID: 20586430 DOI: 10.1021/bi100490u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal homeostasis and resistance in bacteria is maintained by a panel of metal-sensing transcriptional regulators that collectively control transition metal availability and mediate resistance to heavy metal xenobiotics, including As(III), Cd(II), Pb(II), and Hg(II). The ArsR family constitutes a superfamily of metal sensors that appear to conform to the same winged helical, homodimeric fold, that collectively "sense" a wide array of beneficial metal ions and heavy metal pollutants. The genomes of many actinomycetes, including the soil dwelling bacterium Streptomyces coelicolor and the human pathogen Mycobacterium tuberculosis, encode over ten ArsR family regulators, most of unknown function. Here, we present the characterization of a homologue of M. tuberculosis CmtR (CmtR(Mtb)) from S. coelicolor, denoted CmtR(Sc). We show that CmtR(Sc), in contrast to CmtR(Mtb), binds two monomer mol equivalents of Pb(II) or Cd(II) to form two pairs of sulfur-rich coordination complexes per dimer. Metal site 1 conforms exactly to the alpha4C site previously characterized in CmtR(Mtb) while metal site 2 is coordinated by a C-terminal vicinal thiolate pair, Cys110 and Cys111. Biological assays reveal that only Cd(II) and, to a lesser extent, Pb(II) mediate transcriptional derepression in the heterologous host Mycobacterium smegmatis in a way that requires metal site 1. In contrast, mutagenesis of metal site 2 ligands Cys110 or Cys111 significantly reduces Cd(II) responsiveness, with no detectable effect on Pb(II) sensing. The implications of these findings on the ability to predict metal specificity and function from metal-site signatures in the primary structure of ArsR family proteins are discussed.
Collapse
Affiliation(s)
- Yun Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
21
|
Kawakami Y, Siddiki MSR, Inoue K, Otabayashi H, Yoshida K, Ueda S, Miyasaka H, Maeda I. Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein-DNA interactions. Biosens Bioelectron 2010; 26:1466-73. [PMID: 20724137 DOI: 10.1016/j.bios.2010.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 11/30/2022]
Abstract
Environmental toxic metals cause serious global public health problems. On-site monitoring protects people from exposure to such harmful elements. In this study, the bacterial transcriptional switches were applied to monitoring of toxic metals. ArsR and CadC, trans factors of Escherichia coli and Staphylococcus aureus, were fused to GFP. The fusion proteins, ArsR-GFP and CadC-GFP, associated with cis elements, P(ars)-O(ars) and P(cad)-O(cad), respectively and dissociated from those upon recognition of As(III) or Pb/Cd. Cell lysates containing ArsR-GFP were pre-incubated with As(III) standard solutions for 15 min and loaded into P(ars)-O(ars)-immobilized microplate wells. Cell lysates containing CadC-GFP were pre-incubated with Pb or Cd solutions and loaded into P(cad)-O(cad)-immobilized wells. The cell lysates were incubated for 15 min and removed from the wells. Fluorescence intensity in the wells dose-dependently decreased in response to As(III) up to 200 μg/l or Pb/Cd up to 100 μg/l. Detection limits were 10 μg/l for As(III) 10 μg/l for Cd, and 20 μg/l for Pb with a microplate fluororeader, whereas 5.0 μg/l for As(III), 1.0 μg/l for Cd, and 10 μg/l for Pb with a handheld fluorometer. This method was available to detect Pb/Cd or As(III) in water containing soil extracts. This is the first demonstration of a simple and rapid fluorometry to detect analytes based on in vitro interaction between a cis element and a trans factor.
Collapse
Affiliation(s)
- Yasunari Kawakami
- Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|