1
|
Leriche M, Bonnet C, Jana J, Chhetri G, Mennour S, Martineau S, Pennaneach V, Busso D, Veaute X, Bertrand P, Lambert S, Somyajit K, Uguen P, Vagner S. 53BP1 interacts with the RNA primer from Okazaki fragments to support their processing during unperturbed DNA replication. Cell Rep 2023; 42:113412. [PMID: 37963016 DOI: 10.1016/j.celrep.2023.113412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
RNA-binding proteins (RBPs) are found at replication forks, but their direct interaction with DNA-embedded RNA species remains unexplored. Here, we report that p53-binding protein 1 (53BP1), involved in the DNA damage and replication stress response, is an RBP that directly interacts with Okazaki fragments in the absence of external stress. The recruitment of 53BP1 to nascent DNA shows susceptibility to in situ ribonuclease A treatment and is dependent on PRIM1, which synthesizes the RNA primer of Okazaki fragments. Conversely, depletion of FEN1, resulting in the accumulation of uncleaved RNA primers, increases 53BP1 levels at replication forks, suggesting that RNA primers contribute to the recruitment of 53BP1 at the lagging DNA strand. 53BP1 depletion induces an accumulation of S-phase poly(ADP-ribose), which constitutes a sensor of unligated Okazaki fragments. Collectively, our data indicate that 53BP1 is anchored at nascent DNA through its RNA-binding activity, highlighting the role of an RNA-protein interaction at replication forks.
Collapse
Affiliation(s)
- Melissa Leriche
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Clara Bonnet
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Jagannath Jana
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Gita Chhetri
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sabrina Mennour
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Sylvain Martineau
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Didier Busso
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France; Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France
| | - Xavier Veaute
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France; Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France; Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, 92260 Fontenay-aux-Roses, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Kumar Somyajit
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia Uguen
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France; Equipe labellisée Ligue contre le Cancer, Orsay, France.
| |
Collapse
|
2
|
Njeri C, Pepenella S, Battapadi T, Bambara RA, Balakrishnan L. DNA Polymerase Delta Exhibits Altered Catalytic Properties on Lysine Acetylation. Genes (Basel) 2023; 14:genes14040774. [PMID: 37107532 PMCID: PMC10137900 DOI: 10.3390/genes14040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
DNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form. The current data show that the acetylated form of human pol δ displays a higher polymerization activity compared to the unmodified form of the enzyme. Additionally, acetylation enhances the ability of the polymerase to resolve complex structures such as G-quadruplexes and other secondary structures that might be present on the template strand. More importantly, the ability of pol δ to displace a downstream DNA fragment is enhanced upon acetylation. Our current results suggest that acetylation has a profound effect on the activity of pol δ and supports the hypothesis that acetylation may promote higher-fidelity DNA replication.
Collapse
Affiliation(s)
- Catherine Njeri
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Sharon Pepenella
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tripthi Battapadi
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
5
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
6
|
Poulos RC, Wong YT, Ryan R, Pang H, Wong JWH. Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations. PLoS Genet 2018; 14:e1007779. [PMID: 30412573 PMCID: PMC6249022 DOI: 10.1371/journal.pgen.1007779] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/21/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
Driver mutations are the genetic variants responsible for oncogenesis, but how specific somatic mutational events arise in cells remains poorly understood. Mutational signatures derive from the frequency of mutated trinucleotides in a given cancer sample, and they provide an avenue for investigating the underlying mutational processes that operate in cancer. Here we analyse somatic mutations from 7,815 cancer exomes from The Cancer Genome Atlas (TCGA) across 26 cancer types. We curate a list of 50 known cancer driver mutations by analysing recurrence in our cohort and annotations of known cancer-associated genes from the Cancer Gene Census, IntOGen database and Cancer Genome Interpreter. We then use these datasets to perform binary univariate logistic regression and establish the statistical relationship between individual driver mutations and known mutational signatures across different cancer types. Our analysis led to the identification of 39 significant associations between driver mutations and mutational signatures (P < 0.004, with a false discovery rate of < 5%). We first validate our methodology by establishing statistical links for known and novel associations between driver mutations and the mutational signature arising from Polymerase Epsilon proofreading deficiency. We then examine associations between driver mutations and mutational signatures for AID/APOBEC enzyme activity and deficient mismatch repair. We also identify negative associations (odds ratio < 1) between mutational signatures and driver mutations, and here we examine the role of aging and cigarette smoke mutagenesis in the generation of driver mutations in IDH1 and KRAS in brain cancers and lung adenocarcinomas respectively. Our study provides statistical foundations for hypothesised links between otherwise independent biological processes and we uncover previously unexplored relationships between driver mutations and mutagenic processes during cancer development. These associations give insights into how cancers acquire advantageous mutations and can provide direction to guide further mechanistic studies into cancer pathogenesis. Cancer develops when cells acquire somatic driver mutations that confer a growth advantage. The origins underlying the development of many of these mutations remain largely unknown. Mutational signatures represent the frequency of different somatic mutations across a genome and can be used to characterise the mutational processes that have operated over time within an individual cancer. In this study, we use mutational signatures as a tool to identify associations between mutational processes and cancer-causing mutations known as drivers. We hypothesised that in some cases a driver mutation would be the underlying cause of an associated signature. In other cases, the altered trinucleotide preferences arising from a signature would have increased the likelihood of the associated driver mutation arising. We determine which scenario is most likely to be the case by examining the trinucleotide context of each driver mutation. Here we identify 39 significant associations using a cohort of 7,815 cancer exomes. We examine known and novel associations between driver mutations and mutational signatures arising from processes such as defective proofreading during DNA replication, AID/APOBEC enzyme-associated mutagenesis and deficient mismatch repair. Our study explores important relationships that can inform our understanding of the complex pathogenic history associated with cancer development.
Collapse
Affiliation(s)
- Rebecca C. Poulos
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW, Australia
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Yuen T. Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Regina Ryan
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Herbert Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jason W. H. Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW, Australia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
7
|
Stodola JL, Burgers PM. Mechanism of Lagging-Strand DNA Replication in Eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:117-133. [PMID: 29357056 DOI: 10.1007/978-981-10-6955-0_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter focuses on the enzymes and mechanisms involved in lagging-strand DNA replication in eukaryotic cells. Recent structural and biochemical progress with DNA polymerase α-primase (Pol α) provides insights how each of the millions of Okazaki fragments in a mammalian cell is primed by the primase subunit and further extended by its polymerase subunit. Rapid kinetic studies of Okazaki fragment elongation by Pol δ illuminate events when the polymerase encounters the double-stranded RNA-DNA block of the preceding Okazaki fragment. This block acts as a progressive molecular break that provides both time and opportunity for the flap endonuclease 1 (FEN1) to access the nascent flap and cut it. The iterative action of Pol δ and FEN1 is coordinated by the replication clamp PCNA and produces a regulated degradation of the RNA primer, thereby preventing the formation of long-strand displacement flaps. Occasional long flaps are further processed by backup nucleases including Dna2.
Collapse
Affiliation(s)
- Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017; 117:7857-7877. [PMID: 28497687 PMCID: PMC5662946 DOI: 10.1021/acs.chemrev.7b00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
9
|
Abstract
This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.
Collapse
Affiliation(s)
- Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
10
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
11
|
The Werner Syndrome Helicase Coordinates Sequential Strand Displacement and FEN1-Mediated Flap Cleavage during Polymerase δ Elongation. Mol Cell Biol 2017; 37:MCB.00560-16. [PMID: 27849570 DOI: 10.1128/mcb.00560-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023] Open
Abstract
The Werner syndrome protein (WRN) suppresses the loss of telomeres replicated by lagging-strand synthesis by a yet to be defined mechanism. Here, we show that whereas either WRN or the Bloom syndrome helicase (BLM) stimulates DNA polymerase δ progression across telomeric G-rich repeats, only WRN promotes sequential strand displacement synthesis and FEN1 cleavage, a critical step in Okazaki fragment maturation, at these sequences. Helicase activity, as well as the conserved winged-helix (WH) motif and the helicase and RNase D C-terminal (HRDC) domain play important but distinct roles in this process. Remarkably, WRN also influences the formation of FEN1 cleavage products during strand displacement on a nontelomeric substrate, suggesting that WRN recruitment and cooperative interaction with FEN1 during lagging-strand synthesis may serve to regulate sequential strand displacement and flap cleavage at other genomic sites. These findings define a biochemical context for the physiological role of WRN in maintaining genetic stability.
Collapse
|
12
|
Deshmukh AL, Kumar C, Singh DK, Maurya P, Banerjee D. Dynamics of replication proteins during lagging strand synthesis: A crossroads for genomic instability and cancer. DNA Repair (Amst) 2016; 42:72-81. [DOI: 10.1016/j.dnarep.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/18/2023]
|
13
|
Piekna-Przybylska D, Bambara RA, Balakrishnan L. Acetylation regulates DNA repair mechanisms in human cells. Cell Cycle 2016; 15:1506-17. [PMID: 27104361 DOI: 10.1080/15384101.2016.1176815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Lata Balakrishnan
- b Department of Biology , Indiana University-Purdue University Indianapolis , Indianapolis , IN , USA
| |
Collapse
|
14
|
Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat Struct Mol Biol 2016; 23:402-8. [PMID: 27065195 PMCID: PMC4857878 DOI: 10.1038/nsmb.3207] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 11/08/2022]
Abstract
DNA polymerase delta (Pol δ) is responsible for elongation and maturation of Okazaki fragments. Pol δ and the flap endonuclease FEN1, coordinated by the PCNA clamp, remove RNA primers and produce ligatable nicks. We studied this process in the Saccharomyces cerevisiae machinery at millisecond resolution. During elongation, PCNA increased the Pol δ catalytic rate by >30-fold. When Pol δ invaded double-stranded RNA-DNA representing unmatured Okazaki fragments, the incorporation rate of each nucleotide decreased successively to 10-20% that of the preceding nucleotide. Thus, the nascent flap acts as a progressive molecular brake on the polymerase, and consequently FEN1 cuts predominantly single-nucleotide flaps. Kinetic and enzyme-trapping experiments support a model in which a stable PCNA-DNA-Pol δ-FEN1 complex moves processively through iterative steps of nick translation, ultimately completely removing primer RNA. Finally, whereas elongation rates are under dynamic dNTP control, maturation rates are buffered against changes in dNTP concentrations.
Collapse
|
15
|
Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. Cell Rep 2016; 14:1273-1282. [PMID: 26832400 DOI: 10.1016/j.celrep.2016.01.021] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
APOBEC family cytidine deaminases have recently been implicated as powerful mutators of cancer genomes. How APOBECs, which are ssDNA-specific enzymes, gain access to chromosomal DNA is unclear. To ascertain the chromosomal ssDNA substrates of the APOBECs, we expressed APOBEC3A and APOBEC3B, the two most probable APOBECs mediating cancer mutagenesis, in a yeast model system. We demonstrate, using mutation reporters and whole genome sequencing, that APOBEC3A- and APOBEC3B-induced mutagenesis primarily results from the deamination of the lagging strand template during DNA replication. Moreover, our results indicate that both genetic deficiencies in replication fork-stabilizing proteins and chemical induction of replication stress greatly augment the mutagenesis of APOBEC3A and APOBEC3B. Taken together, these results strongly indicate that ssDNA formed during DNA lagging strand synthesis is a major substrate for APOBECs and may be the principal substrate in human cancers experiencing replication stress.
Collapse
Affiliation(s)
- James I Hoopes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Luis M Cortez
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tony M Mertz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ewa P Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
16
|
Kadyrova LY, Dahal BK, Kadyrov FA. Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps. J Biol Chem 2015. [PMID: 26224637 DOI: 10.1074/jbc.m115.660357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Basanta K Dahal
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Farid A Kadyrov
- From the Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
17
|
Skoneczna A, Kaniak A, Skoneczny M. Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiol Rev 2015; 39:917-67. [PMID: 26109598 PMCID: PMC4608483 DOI: 10.1093/femsre/fuv028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. The stability of budding and fission yeast genomes is influenced by two contradictory factors: (1) the need to be fully functional, which is ensured through the replication fidelity pathways of nuclear and mitochondrial genomes through sensing and repairing DNA damage, through precise chromosome segregation during cell division; and (2) the need to acquire changes for adaptation to environmental challenges.
Collapse
Affiliation(s)
- Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Aneta Kaniak
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat Commun 2015; 6:7303. [PMID: 26095671 PMCID: PMC4557304 DOI: 10.1038/ncomms8303] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial DNA (mtDNA) polymerase γ (POLγ) harbours a 3′–5′ exonuclease proofreading activity. Here we demonstrate that this activity is required for the creation of ligatable ends during mtDNA replication. Exonuclease-deficient POLγ fails to pause on reaching a downstream 5′-end. Instead, the enzyme continues to polymerize into double-stranded DNA, creating an unligatable 5′-flap. Disease-associated mutations can both increase and decrease exonuclease activity and consequently impair DNA ligation. In mice, inactivation of the exonuclease activity causes an increase in mtDNA mutations and premature ageing phenotypes. These mutator mice also contain high levels of truncated, linear fragments of mtDNA. We demonstrate that the formation of these fragments is due to impaired ligation, causing nicks near the origin of heavy-strand DNA replication. In the subsequent round of replication, the nicks lead to double-strand breaks and linear fragment formation. Mitochondrial DNA (mtDNA) polymerase γ has a 3′–5′ exonuclease proofreading activity. Here, the authors show it is required for creating ligatable ends during mtDNA replication, and inactivation of the activity in mice causes strand-specific nicks in DNA and the formation of linear mtDNA fragments.
Collapse
|
19
|
Kaniak-Golik A, Skoneczna A. Mitochondria-nucleus network for genome stability. Free Radic Biol Med 2015; 82:73-104. [PMID: 25640729 DOI: 10.1016/j.freeradbiomed.2015.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
The proper functioning of the cell depends on preserving the cellular genome. In yeast cells, a limited number of genes are located on mitochondrial DNA. Although the mechanisms underlying nuclear genome maintenance are well understood, much less is known about the mechanisms that ensure mitochondrial genome stability. Mitochondria influence the stability of the nuclear genome and vice versa. Little is known about the two-way communication and mutual influence of the nuclear and mitochondrial genomes. Although the mitochondrial genome replicates independent of the nuclear genome and is organized by a distinct set of mitochondrial nucleoid proteins, nearly all genome stability mechanisms responsible for maintaining the nuclear genome, such as mismatch repair, base excision repair, and double-strand break repair via homologous recombination or the nonhomologous end-joining pathway, also act to protect mitochondrial DNA. In addition to mitochondria-specific DNA polymerase γ, the polymerases α, η, ζ, and Rev1 have been found in this organelle. A nuclear genome instability phenotype results from a failure of various mitochondrial functions, such as an electron transport chain activity breakdown leading to a decrease in ATP production, a reduction in the mitochondrial membrane potential (ΔΨ), and a block in nucleotide and amino acid biosynthesis. The loss of ΔΨ inhibits the production of iron-sulfur prosthetic groups, which impairs the assembly of Fe-S proteins, including those that mediate DNA transactions; disturbs iron homeostasis; leads to oxidative stress; and perturbs wobble tRNA modification and ribosome assembly, thereby affecting translation and leading to proteotoxic stress. In this review, we present the current knowledge of the mechanisms that govern mitochondrial genome maintenance and demonstrate ways in which the impairment of mitochondrial function can affect nuclear genome stability.
Collapse
Affiliation(s)
- Aneta Kaniak-Golik
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106 Warsaw, Poland.
| |
Collapse
|
20
|
Abstract
Replicative polymerases (pols) cannot accommodate damaged template bases, and these pols stall when such offenses are encountered during S phase. Rather than repairing the damaged base, replication past it may proceed via one of two DNA damage tolerance (DDT) pathways, allowing replicative DNA synthesis to resume. In translesion DNA synthesis (TLS), a specialized TLS pol is recruited to catalyze stable, yet often erroneous, nucleotide incorporation opposite damaged template bases. In template switching, the newly synthesized sister strand is used as a damage-free template to synthesize past the lesion. In eukaryotes, both pathways are regulated by the conjugation of ubiquitin to the PCNA sliding clamp by distinct E2/E3 pairs. Whereas monoubiquitination by Rad6/Rad18 mediates TLS, extension of this ubiquitin to a polyubiquitin chain by Ubc13-Mms2/Rad5 routes DDT to the template switching pathway. In this review, we focus on the monoubiquitination of PCNA by Rad6/Rad18 and summarize the current knowledge of how this process is regulated.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | | |
Collapse
|
21
|
Abstract
In this issue, Soudet et al. show that the actual mechanistic details of the chromosomal end-replication problem, the principle linking telomere biology with human cellular senescence and cancer, match previous predictions almost to the nucleotide.
Collapse
|
22
|
Mesner LD, Valsakumar V, Cieślik M, Pickin R, Hamlin JL, Bekiranov S. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 2013; 23:1774-88. [PMID: 23861383 PMCID: PMC3814878 DOI: 10.1101/gr.155218.113] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
Abstract
We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin "density" falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands.
Collapse
Affiliation(s)
| | | | - Marcin Cieślik
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Rebecca Pickin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Joyce L. Hamlin
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
23
|
Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proc Natl Acad Sci U S A 2013; 110:16802-7. [PMID: 24082122 DOI: 10.1073/pnas.1309119110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotides are frequently incorporated into DNA during replication, they are normally removed, and failure to remove them results in replication stress. This stress correlates with DNA polymerase (Pol) stalling during bypass of ribonucleotides in DNA templates. Here we demonstrate that stalling by yeast replicative Pols δ and ε increases as the number of consecutive template ribonucleotides increases from one to four. The homologous bacteriophage RB69 Pol also stalls during ribonucleotide bypass, with a pattern most similar to that of Pol ε. Crystal structures of an exonuclease-deficient variant of RB69 Pol corresponding to multiple steps in single ribonucleotide bypass reveal that increased stalling is associated with displacement of Tyr391 and an unpreferred C2'-endo conformation for the ribose. Even less efficient bypass of two consecutive ribonucleotides in DNA correlates with similar movements of Tyr391 and displacement of one of the ribonucleotides along with the primer-strand DNA backbone. These structure-function studies have implications for cellular signaling by ribonucleotides, and they may be relevant to replication stress in cells defective in ribonucleotide excision repair, including humans suffering from autoimmune disease associated with RNase H2 defects.
Collapse
|
24
|
Zhang S, Zhao H, Darzynkiewicz Z, Zhou P, Zhang Z, Lee EYC, Lee MYWT. A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase δ in response to DNA damage and during the S phase. J Biol Chem 2013; 288:29550-61. [PMID: 23913683 DOI: 10.1074/jbc.m113.490466] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participate in gap filling during DNA repair. We demonstrate that CRL4(Cdt2), a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4(Cdt2) included demonstration that p12 possesses a proliferating cell nuclear antigen-interacting protein-degron (PIP-degron) and that knockdown of the components of the CRL4(Cdt2) complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of overexpressed wild type p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented by mutation of p12. Thus, CRL4(Cdt2) also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4(Cdt2), i.e. the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.
Collapse
Affiliation(s)
- Sufang Zhang
- From the Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595
| | | | | | | | | | | | | |
Collapse
|
25
|
Sun F, Huang L. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 2013; 41:8182-95. [PMID: 23821667 PMCID: PMC3783171 DOI: 10.1093/nar/gkt588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Fei Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
26
|
Archambault J, Melendy T. Targeting human papillomavirus genome replication for antiviral drug discovery. Antivir Ther 2013; 18:271-83. [PMID: 23615820 DOI: 10.3851/imp2612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 12/24/2022]
Abstract
Human papillomavirus (HPV) infections are a major human health problem; they are the cause of recurrent benign warts and of several cancers of the anogenital tract and head and neck region. Although there are two prophylactic HPV vaccines that could, if used universally, prevent as many as two-thirds of HPV-induced cancers, as well as several cytotoxic and immunomodulatory agents for localized treatment of infections, there are currently no HPV antiviral drugs in our arsenal of therapeutic agents. This review examines the status of past and ongoing research into the development of HPV antivirals, focused primarily upon approaches targeting the replication of the viral genome. The only HPV enzyme, E1, is a DNA helicase that interfaces with the cellular DNA replication machinery to replicate the HPV genome. To date, searches for small molecule inhibitors of E1 for use as antivirals have met with limited success. The lack of other viral enzymes has meant that the search for antivirals has shifted to a large degree to the modulation of protein-protein interactions. There has been some success in identifying small molecule inhibitors targeting interactions between HPV proteins but with activity against a small subset of viral types only. As noted in this review, it is thought that targeting E1 interactions with cellular replication proteins may provide inhibitors with broader activity against multiple HPV types. Herein, we outline the steps in HPV DNA replication and discuss those that appear to provide the most advantageous targets for the development of anti-HPV therapeutics.
Collapse
|
27
|
Abstract
First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off. FEN1 binds to the flap base and then threads the 5' end of the flap through its helical arch and active site to create a configuration for cleavage. The threading requirement prevents this active nuclease from cutting the single-stranded template between Okazaki fragments. FEN1 efficiency and specificity are critical to the maintenance of genome fidelity. Overall, recent advances in our knowledge of FEN1 suggest that it was an ancient protein that has been fine-tuned over eons to coordinate many essential DNA transactions.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
28
|
Abstract
Cellular DNA replication requires efficient copying of the double-stranded chromosomal DNA. The leading strand is elongated continuously in the direction of fork opening, whereas the lagging strand is made discontinuously in the opposite direction. The lagging strand needs to be processed to form a functional DNA segment. Genetic analyses and reconstitution experiments identified proteins and multiple pathways responsible for maturation of the lagging strand. In both prokaryotes and eukaryotes the lagging-strand fragments are initiated by RNA primers, which are removed by a joining mechanism involving strand displacement of the primer into a flap, flap removal, and then ligation. Although the prokaryotic fragments are ~1200 nucleotides long, the eukaryotic fragments are much shorter, with lengths determined by nucleosome periodicity. The prokaryotic joining mechanism is simple and efficient. The eukaryotic maturation mechanism involves many enzymes, possibly three pathways, and regulation that can shift from high efficiency to high fidelity.
Collapse
|
29
|
Liberti SE, Larrea AA, Kunkel TA. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α. DNA Repair (Amst) 2012; 12:92-6. [PMID: 23245696 DOI: 10.1016/j.dnarep.2012.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 11/15/2022]
Abstract
The Saccharomyces cerevisiae EXO1 gene encodes a 5' exonuclease that participates in mismatch repair (MMR) of DNA replication errors. Deleting EXO1 was previously shown to increase mutation rates to a greater extent when combined with a mutator variant (pol3-L612M) of the lagging strand replicase, DNA polymerase δ (Pol δ), than when combined with a mutator variant (pol2-M644G) of the leading strand replicase, DNA polymerase ɛ (Pol ɛ). Here we confirm that result, and extend the approach to examine the effect of deleting EXO1 in a mutator variant (pol1-L868M) of Pol α, the proofreading-deficient and least accurate of the three nuclear replicases that is responsible for initiating Okazaki fragment synthesis. We find that deleting EXO1 increases the mutation rate in the Pol α mutator strain to a significantly greater extent than in the Pol δ or Pol ɛ mutator strains, thereby preferentially reducing the efficiency of MMR of replication errors generated by Pol α. Because these mismatches are closer to the 5' ends of Okazaki fragments than are mismatches made by Pol δ or Pol ɛ, the results not only support the previous suggestion that Exo1 preferentially excises lagging strand replication errors during mismatch repair, they further imply that the 5' ends serve as entry points for 5' excision of replication errors made by Pol α, and possibly as strand discrimination signals for MMR. Nonetheless, mutation rates in the Pol α mutator strain are 5- to 25-fold lower in an exo1Δ strain as compared to an msh2Δ strain completely lacking MMR, indicating that in the absence of Exo1, most replication errors made by Pol α can still be removed in an Msh2-dependent manner by other nucleases and/or by strand displacement.
Collapse
Affiliation(s)
- Sascha E Liberti
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC 27709, United States
| | | | | |
Collapse
|
30
|
Wang Y, Cheng Z, Huang J, Shi Q, Hong Y, Copenhaver GP, Gong Z, Ma H. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana. PLoS Genet 2012; 8:e1003039. [PMID: 23144629 PMCID: PMC3493451 DOI: 10.1371/journal.pgen.1003039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways. Meiotic recombination is important for pairing and sustained association of homologous chromosomes (homologs), thereby ensuring proper homolog segregation and normal fertility. DNA synthesis is thought to be required for meiotic recombination, but few genes coding for DNA synthesis factors have been studied for possible meiotic functions because their essential roles in the mitotic cell cycle make it difficult to study their meiotic functions due to the lethality of corresponding null mutations. Current models for meiotic recombination only include leading strand DNA synthesis. We found that the Arabidopsis gene encoding the DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis promotes meiotic recombination via a specific pathway for crossovers (COs) that involves the formation of double Holliday Junction (dHJ) intermediates. Therefore, lagging strand DNA synthesis is likely important for meiotic recombination. Because DNA synthesis is a highly conserved process and meiotic recombination is highly similar among budding yeast, mammals, and flowering plants, the proposed function of lagging strand synthesis for meiotic recombination might be a general feature of meiosis.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian Shi
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Arana ME, Kerns RT, Wharey L, Gerrish KE, Bushel PR, Kunkel TA. Transcriptional responses to loss of RNase H2 in Saccharomyces cerevisiae. DNA Repair (Amst) 2012; 11:933-41. [PMID: 23079308 DOI: 10.1016/j.dnarep.2012.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 01/27/2023]
Abstract
We report here the transcriptional responses in Saccharomyces cerevisiae to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2. Deleting RNH201 alters RNA expression of 349 genes by ≥1.5-fold (q-value <0.01), of which 123 are upregulated and 226 are downregulated. Differentially expressed genes (DEGs) include those involved in stress responses and genome maintenance, consistent with a role for RNase H2 in removing ribonucleotides incorporated into DNA during replication. Upregulated genes include several that encode subunits of RNA polymerases I and III, and genes involved in ribosomal RNA processing, ribosomal biogenesis and tRNA modification and processing, supporting a role for RNase H2 in resolving R-loops formed during transcription of rRNA and tRNA genes. A role in R-loop resolution is further suggested by a higher average GC-content proximal to the transcription start site of downregulated as compared to upregulated genes. Several DEGs are involved in telomere maintenance, supporting a role for RNase H2 in resolving RNA-DNA hybrids formed at telomeres. A large number of DEGs encode nucleases, helicases and genes involved in response to dsRNA viruses, observations that could be relevant to the nucleic acid species that elicit an innate immune response in RNase H2-defective humans.
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
32
|
Peng Z, Liao Z, Dziegielewska B, Matsumoto Y, Thomas S, Wan Y, Yang A, Tomkinson AE. Phosphorylation of serine 51 regulates the interaction of human DNA ligase I with replication factor C and its participation in DNA replication and repair. J Biol Chem 2012; 287:36711-9. [PMID: 22952233 DOI: 10.1074/jbc.m112.383570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DNA ligase I (hLigI) joins Okazaki fragments during DNA replication and completes excision repair via interactions with proliferating cell nuclear antigen and replication factor C (RFC). Unlike proliferating cell nuclear antigen, the interaction with RFC is regulated by hLigI phosphorylation. To identity of the site(s) involved in this regulation, we analyzed phosphorylated hLigI purified from insect cells by mass spectrometry. These results suggested that serine 51 phosphorylation negatively regulates the interaction with RFC. Therefore, we constructed versions of hLigI in which serine 51 was replaced with either alanine (hLigI51A) to prevent phosphorylation or aspartic acid (hLigI51D) to mimic phosphorylation. hLigI51D but not hLigI51A was defective in binding to purified RFC and in associating with RFC in cell extracts. Although DNA synthesis and proliferation of hLigI-deficient cells expressing either hLig51A or hLig51 was reduced compared with cells expressing wild-type hLigI, cellular senescence was only observed in the cells expressing hLigI51D. Notably, these cells had increased levels of spontaneous DNA damage and phosphorylated CHK2. In addition, although expression of hLigI51A complemented the sensitivity of hLigI-deficient cells to a poly (ADP-ribose polymerase (PARP) inhibitor, expression of hLig151D did not, presumably because these cells are more dependent upon PARP-dependent repair pathways to repair the damage resulting from the abnormal DNA replication. Finally, neither expression of hLigI51D nor hLigI51A fully complemented the sensitivity of hLigI-deficient cells to DNA alkylation. Thus, phosphorylation of serine 51 on hLigI plays a critical role in regulating the interaction between hLigI and RFC, which is required for efficient DNA replication and repair.
Collapse
Affiliation(s)
- Zhimin Peng
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rodriguez GP, Song JB, Crouse GF. Transformation with oligonucleotides creating clustered changes in the yeast genome. PLoS One 2012; 7:e42905. [PMID: 22916177 PMCID: PMC3422593 DOI: 10.1371/journal.pone.0042905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
We have studied single-strand oligonucleotide (oligo) transformation of yeast by using 40-nt long oligos that create multiple base changes to the yeast genome spread throughout the length of the oligos, making it possible to measure the portions of an oligo that are incorporated during transformation. Although the transformation process is greatly inhibited by DNA mismatch repair (MMR), the pattern of incorporation is essentially the same in the presence or absence of MMR, whether the oligo anneals to the leading or lagging strand of DNA replication, or whether phosphorothioate linkages are used at either end. A central core of approximately 15 nt is incorporated with a frequency of >90%; the ends are incorporated with a lower frequency, and loss of the two ends appears to be by different mechanisms. Bases that are 5–10 nt from the 5′ end are generally lost with a frequency of >95%, likely through a process involving flap excision. On the 3′ end, bases 5–10 nt from the 3′ end are lost about 1/3 of the time. These results indicate that oligos can be used to create multiple simultaneous changes to the yeast genome, even in the presence of MMR.
Collapse
Affiliation(s)
- Gina P. Rodriguez
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph B. Song
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kantartzis A, Williams GM, Balakrishnan L, Roberts RL, Surtees JA, Bambara RA. Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions. Cell Rep 2012; 2:216-22. [PMID: 22938864 DOI: 10.1016/j.celrep.2012.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/31/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions. We demonstrate that Msh2-Msh3 promotes CTG and CAG repeat expansions in vivo in Saccharomyces cerevisiae. Furthermore, we provide biochemical evidence that Msh2-Msh3 directly interferes with normal Okazaki fragment processing by flap endonuclease1 (Rad27) and DNA ligase I (Cdc9) in the presence of TNR sequences, thereby producing small, incremental expansion events. We believe that this is the first mechanistic evidence showing the interplay of replication and repair proteins in the expansion of sequences during lagging-strand DNA replication.
Collapse
Affiliation(s)
- Athena Kantartzis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shin YK, Amangyeld T, Nguyen TA, Munashingha PR, Seo YS. Human MUS81 complexes stimulate flap endonuclease 1. FEBS J 2012; 279:2412-30. [PMID: 22551069 DOI: 10.1111/j.1742-4658.2012.08620.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast heterodimeric Mus81-Mms4 complex possesses a structure-specific endonuclease activity that is critical for the restart of stalled replication forks and removal of toxic recombination intermediates. Previously, we reported that Mus81-Mms4 and Rad27 (yeast FEN1, another structure-specific endonuclease) showed mutual stimulation of nuclease activity. In this study, we investigated the interactions between human FEN1 and MUS81-EME1 or MUS81-EME2, the human homologs of the yeast Mus81-Mms4 complex. We found that both MUS81-EME1 and MUS81-EME2 increased the activity of FEN1, but FEN1 did not stimulate the activity of MUS81-EME1/EME2. The MUS81 subunit alone and its N-terminal half were able to bind to FEN1 and stimulate its endonuclease activity. A truncated FEN1 fragment lacking the C-terminal region that retained catalytic activity was not stimulated by MUS81. Michaelis-Menten kinetic analysis revealed that MUS81 increased the interaction between FEN1 and its substrates, resulting in increased turnover. We also showed that, after DNA damage in human cells, FEN1 co-localizes with MUS81. These findings indicate that the human proteins and yeast homologs act similarly, except that the human FEN1 does not stimulate the nuclease activities of MUS81-EME1 or MUS81-EME2. Thus, the mammalian MUS81 complexes and FEN1 collaborate to remove the various flap structures that arise during many DNA transactions, including Okazaki fragment processing.
Collapse
Affiliation(s)
- Yong-Keol Shin
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | |
Collapse
|
36
|
Pokharel S, Campbell JL. Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain. Nucleic Acids Res 2012; 40:7821-30. [PMID: 22684504 PMCID: PMC3439918 DOI: 10.1093/nar/gks534] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dna2 nuclease/helicase is a multitasking protein involved in DNA replication and recombinational repair, and it is important for preservation of genomic stability. Yeast Dna2 protein contains a conserved putative Fe-S (iron-sulfur) cluster signature motif spanning the nuclease active site. We show that this motif is indeed an Fe-S cluster domain. Mutation of cysteines involved in metal coordination greatly reduces not just the nuclease activity but also the ATPase activity of Dna2, suggesting that the nuclease and helicase activities are coupled. The affinity for DNA is not significantly reduced, but binding mode in the C to A mutants is altered. Remarkably, a point mutation (P504S), proximal to the Fe-S cluster domain, which renders cells temperature sensitive, closely mimics the global defects of the Fe-S cluster mutation itself. This points to an important role of this conserved proline residue in stabilizing the Fe-S cluster. The C to A mutants are deficient in DNA replication and repair in vivo, and, strikingly, the degree to which they are defective correlates directly with degree of loss of enzymatic activity. Taken together with previous results showing that mutations in the ATP domain affect nuclease function, our results provide a new mechanistic paradigm for coupling between nuclease and helicase modules fused in the same polypeptide.
Collapse
Affiliation(s)
- Subhash Pokharel
- Braun Laboratories, 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
37
|
Chow TT, Zhao Y, Mak SS, Shay JW, Wright WE. Early and late steps in telomere overhang processing in normal human cells: the position of the final RNA primer drives telomere shortening. Genes Dev 2012; 26:1167-78. [PMID: 22661228 PMCID: PMC3371406 DOI: 10.1101/gad.187211.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/24/2022]
Abstract
Telomere overhangs are essential for telomere end protection and telomerase extension, but how telomere overhangs are generated is unknown. Leading daughter strands synthesized by conventional semiconservation DNA replication are initially blunt, while lagging daughter strands are shorter by at least the size of the final RNA primer, which is thought to be located at extreme chromosome ends. We developed a variety of new approaches to define the steps in the processing of these overhangs. We show that the final lagging RNA primer is not terminal but is randomly positioned ~70-100 nucleotides from the ends and is not removed for more than an hour. This identifies an important intrinsic step in replicative aging. Telomeric termini are processed in two distinct phases. During the early phase, which occupies 1-2 h following replication of the duplex telomeric DNA, several steps occur on both leading and lagging daughters. Leading telomere processing remains incomplete until late S/G2, when the C-terminal nucleotide is specified-referred to as the late phase. These observations suggest the presence of previously unsuspected complexes and signaling events required for the replication of the ends of human chromosomes.
Collapse
Affiliation(s)
- Tracy T. Chow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yong Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sabrina S. Mak
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Woodring E. Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
38
|
Zhang Z, Zhang S, Lin SHS, Wang X, Wu L, Lee EYC, Lee MYWT. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle 2012; 11:2128-36. [PMID: 22592530 DOI: 10.4161/cc.20595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ubiquitination of proliferating cell nuclear antigen (PCNA) to ub-PCNA is essential for DNA replication across bulky template lesions caused by UV radiation and alkylating agents, as ub-PCNA orchestrates the recruitment and switching of translesion synthesis (TLS) polymerases with replication polymerases. This allows replication to proceed, leaving the DNA to be repaired subsequently. Defects in a TLS polymerase, Pol η, lead to a form of Xeroderma pigmentosum, a disease characterized by severe skin sensitivity to sunlight damage and an increased incidence of skin cancer. Structurally, however, information on how ub-PCNA orchestrates the switching of these two classes of polymerases is lacking. We have solved the structure of ub-PCNA and demonstrate that the ubiquitin molecules in ub-PCNA are radially extended away from the PCNA without structural contact aside from the isopeptide bond linkage. This unique orientation provides an open platform for the recruitment of TLS polymerases through ubiquitin-interacting domains. However, the ubiquitin moieties, to the side of the equatorial PCNA plane, can place spatial constraints on the conformational flexibility of proteins bound to ub-PCNA. We show that ub-PCNA is impaired in its ability to support the coordinated actions of Fen1 and Pol δ in assays mimicking Okazaki fragment processing. This provides evidence for the novel concept that ub-PCNA may modulate additional DNA transactions other than TLS polymerase recruitment and switching.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT. Phosphorylation of the p68 Subunit of Pol δ Acts as a Molecular Switch To Regulate Its Interaction with PCNA. Biochemistry 2011; 51:416-24. [DOI: 10.1021/bi201638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amal A. Rahmeh
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Yajing Zhou
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Bin Xie
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Hao Li
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Ernest Y. C. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Marietta Y. W. T. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| |
Collapse
|