1
|
Shehzada S, Noto T, Saksouk J, Mochizuki K. A SUMO E3 ligase promotes long non-coding RNA transcription to regulate small RNA-directed DNA elimination. eLife 2024; 13:e95337. [PMID: 38197489 PMCID: PMC10830130 DOI: 10.7554/elife.95337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Small RNAs target their complementary chromatin regions for gene silencing through nascent long non-coding RNAs (lncRNAs). In the ciliated protozoan Tetrahymena, the interaction between Piwi-associated small RNAs (scnRNAs) and the nascent lncRNA transcripts from the somatic genome has been proposed to induce target-directed small RNA degradation (TDSD), and scnRNAs not targeted for TDSD later target the germline-limited sequences for programmed DNA elimination. In this study, we show that the SUMO E3 ligase Ema2 is required for the accumulation of lncRNAs from the somatic genome and thus for TDSD and completing DNA elimination to make viable sexual progeny. Ema2 interacts with the SUMO E2 conjugating enzyme Ubc9 and enhances SUMOylation of the transcription regulator Spt6. We further show that Ema2 promotes the association of Spt6 and RNA polymerase II with chromatin. These results suggest that Ema2-directed SUMOylation actively promotes lncRNA transcription, which is a prerequisite for communication between the genome and small RNAs.
Collapse
Affiliation(s)
- Salman Shehzada
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of MontpellierMontpellierFrance
| |
Collapse
|
2
|
Yousefi B, Sadoughi F, Asemi Z, Mansournia MA, Hallajzadeh J. Novel Perspectives for the Diagnosis and Treatment of Gynecological Cancers using Dysregulation of PIWI Protein and PiRNAs as Biomarkers. Curr Med Chem 2024; 31:453-463. [PMID: 36786140 DOI: 10.2174/0929867330666230214101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023]
Abstract
The term "gynecological cancer" is used for a group of cancers occurring in the female reproductive system. Some of these cancers are ranked as the leading causes of death in developed and developing countries. The lack of proper diagnostic strategies is one of the most important reasons that make them lethal. PIWI-interacting RNAs or piRNAs are a class of small non-coding RNAs, which contain 24-32 nucleotides. These RNAs take part in some cellular mechanisms, and their role in diverse kinds of cancer is confirmed by accumulative evidence. In this review, we gather some information on the roles of these RNAs and members of the PIWI protein family to provide new insight into accurate diagnostic biomarkers and more effective anti-cancer drugs with fewer side effects.
Collapse
Affiliation(s)
- Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
3
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
4
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
5
|
Sadoughi F, Mirhashemi SM, Asemi Z. Epigenetic roles of PIWI proteins and piRNAs in colorectal cancer. Cancer Cell Int 2021; 21:328. [PMID: 34193172 PMCID: PMC8243752 DOI: 10.1186/s12935-021-02034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small non‐coding RNAs (sncRNAs) are a subgroup of non‐coding RNAs, with less than 200 nucleotides length and no potential for coding proteins. PiRNAs, a member of sncRNAs, were first discovered more than a decade ago and have attracted researcher’s attention because of their gene regulatory function both in the nucleus and in the cytoplasm. Recent investigations have found that the abnormal expression of these sncRNAs is involved in many human diseases, including cancers. Colorectal cancer (CRC), as a common gastrointestinal malignancy, is one of the important causes of cancer‐related deaths through the entire world and appears to be a consequence of mutation in the genome and epigenetic alterations. The aim of this review is to realize whether there is a relationship between CRC and piRNAs or not.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
6
|
Murashko MM, Stasevich EM, Schwartz AM, Kuprash DV, Uvarova AN, Demin DE. The Role of RNA in DNA Breaks, Repair and Chromosomal Rearrangements. Biomolecules 2021; 11:biom11040550. [PMID: 33918762 PMCID: PMC8069526 DOI: 10.3390/biom11040550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Incorrect reparation of DNA double-strand breaks (DSB) leading to chromosomal rearrangements is one of oncogenesis's primary causes. Recently published data elucidate the key role of various types of RNA in DSB formation, recognition and repair. With growing interest in RNA biology, increasing RNAs are classified as crucial at the different stages of the main pathways of DSB repair in eukaryotic cells: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Gene mutations or variation in expression levels of such RNAs can lead to local DNA repair defects, increasing the chromosome aberration frequency. Moreover, it was demonstrated that some RNAs could stimulate long-range chromosomal rearrangements. In this review, we discuss recent evidence demonstrating the role of various RNAs in DSB formation and repair. We also consider how RNA may mediate certain chromosomal rearrangements in a sequence-specific manner.
Collapse
Affiliation(s)
- Matvey Mikhailovich Murashko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Ekaterina Mikhailovna Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Anton Markovich Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Moscow Institute of Physics and Technology, Department of Molecular and Biological Physics, 141701 Moscow, Russia
| | - Dmitriy Vladimirovich Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Aksinya Nicolaevna Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
| | - Denis Eriksonovich Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.M.M.); (E.M.S.); (A.M.S.); (D.V.K.); (A.N.U.)
- Correspondence:
| |
Collapse
|
7
|
Small RNAs Are Implicated in Regulation of Gene and Transposable Element Expression in the Protist Trichomonas vaginalis. mSphere 2021; 6:6/1/e01061-20. [PMID: 33408230 PMCID: PMC7845603 DOI: 10.1128/msphere.01061-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral sexually transmitted infection worldwide. Repetitive elements, including transposable elements (TEs) and virally derived repeats, comprise more than half of the ∼160-Mb T. vaginalis genome. An intriguing question is how the parasite controls its potentially lethal complement of mobile elements, which can disrupt transcription of protein-coding genes and genome functions. In this study, we generated high-throughput RNA sequencing (RNA-Seq) and small RNA-Seq data sets in triplicate for the T. vaginalis G3 reference strain and characterized the mRNA and small RNA populations and their mapping patterns along all six chromosomes. Mapping the RNA-Seq transcripts to the genome revealed that the majority of genes predicted within repetitive elements are not expressed. Interestingly, we identified a novel species of small RNA that maps bidirectionally along the chromosomes and is correlated with reduced protein-coding gene expression and reduced RNA-Seq coverage in repetitive elements. This novel small RNA family may play a regulatory role in gene and repetitive element expression. Our results identify a possible small RNA pathway mechanism by which the parasite regulates expression of genes and TEs and raise intriguing questions as to the role repeats may play in shaping T. vaginalis genome evolution and the diversity of small RNA pathways in general. IMPORTANCE Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Given its evident success in this niche, it is paradoxical that T. vaginalis harbors in its genome thousands of transposable elements that have the potential to be extremely detrimental to normal genomic function. In many organisms, transposon expression is regulated by the activity of endogenously expressed short (∼21 to 35 nucleotides [nt]) small RNA molecules that effect gene silencing by targeting mRNAs for degradation or by recruiting epigenetic silencing machinery to locations in the genome. Our research has identified small RNA molecules correlated with reduced expression of T. vaginalis genes and transposons. This suggests that a small RNA pathway is a major contributor to gene expression patterns in the parasite and opens up new avenues for investigation into small RNA biogenesis, function, and diversity.
Collapse
|
8
|
Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai IJ, Leu JY. Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 2020; 18:180. [PMID: 33250052 PMCID: PMC7702705 DOI: 10.1186/s12915-020-00912-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. Results We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. Conclusions We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00912-2.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chien-Fu Jeff Liu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Masahiro Fujishima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Isheng Jason Tsai
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan. .,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
9
|
Tian M, Mochizuki K, Loidl J. Non-coding RNA Transcription in Tetrahymena Meiotic Nuclei Requires Dedicated Mediator Complex-Associated Proteins. Curr Biol 2019; 29:2359-2370.e5. [PMID: 31280995 DOI: 10.1016/j.cub.2019.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
To preserve genome integrity, eukaryotic cells use small RNA-directed mechanisms to repress transposable elements (TEs). Paradoxically, in order to silence TEs, precursors of the small RNAs must be transcribed from TEs. However, it is still poorly understood how these precursors are transcribed from TEs under silenced conditions. In the otherwise transcriptionally silent germline micronucleus (MIC) of Tetrahymena, a burst of non-coding RNA (ncRNA) transcription occurs during meiosis. The transcripts are processed into small RNAs that serve to identify TE-related sequences for elimination. The Mediator complex (Med) has an evolutionarily conserved role for transcription by bridging gene-specific transcription factors and RNA polymerase II. Here, we report that three Med-associated factors, Emit1, Emit2, and Rib1, are required for the biogenesis of small ncRNAs. Med localizes to the MIC only during meiosis, and both Med localization and MIC ncRNA transcription require Emit1 and Emit2. In the MIC, Med occupies TE-rich pericentromeric and telomeric regions in a Rib1-dependent manner. Rib1 is dispensable for ncRNA transcription but is required for the accumulation of double-stranded ncRNAs. Nuclear and sub-nuclear localization of the three Med-associated proteins is interdependent. Hence, Emit1 and Emit2 act coordinately to import Med into the MIC, and Rib1 recruits Med to specific chromosomal locations to quantitatively or qualitatively promote the biogenesis of functional ncRNA. Our results underscore that the transcription machinery can be regulated by a set of specialized Med-associated proteins to temporally transcribe TE-related sequences from a silent genome for small RNA biogenesis and genome defense.
Collapse
Affiliation(s)
- Miao Tian
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, 34090 Montpellier, France
| | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
10
|
Zamora-Lagos MA, Eckstein S, Langer A, Gazanis A, Pfeiffer F, Habermann B, Heermann R. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. BMC Genomics 2018; 19:854. [PMID: 30497380 PMCID: PMC6267812 DOI: 10.1186/s12864-018-5121-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR. RESULTS Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology. The two TT01 genomes differed at only 30 positions. In contrast, the genome of strain DJC varied extensively from TT01, showing 13,000 point mutations, 330 frameshifts, and 220 strain-specific regions with a total length of more than 300 kb in each of the compared genomes. CONCLUSIONS According to the major phenotypic and genotypic differences, the rifampicin resistant P. luminescens strain, now named strain DJC, has to be considered as an independent isolate rather than a derivative of strain TT01. Strains TT01 and DJC both belong to P. luminescens subsp. laumondii.
Collapse
Affiliation(s)
- Maria-Antonia Zamora-Lagos
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Simone Eckstein
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Angela Langer
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Athanasios Gazanis
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bianca Habermann
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,CNRS UMR 7288, Computational Biology Group, Developmental Biology Institute of Marseille (IBDM), Aix Marseille Université, 13009, Marseille, France.
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany.
| |
Collapse
|
11
|
Saettone A, Garg J, Lambert JP, Nabeel-Shah S, Ponce M, Burtch A, Thuppu Mudalige C, Gingras AC, Pearlman RE, Fillingham J. The bromodomain-containing protein Ibd1 links multiple chromatin-related protein complexes to highly expressed genes in Tetrahymena thermophila. Epigenetics Chromatin 2018. [PMID: 29523178 PMCID: PMC5844071 DOI: 10.1186/s13072-018-0180-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The chromatin remodelers of the SWI/SNF family are critical transcriptional regulators. Recognition of lysine acetylation through a bromodomain (BRD) component is key to SWI/SNF function; in most eukaryotes, this function is attributed to SNF2/Brg1. Results Using affinity purification coupled to mass spectrometry (AP–MS) we identified members of a SWI/SNF complex (SWI/SNFTt) in Tetrahymena thermophila. SWI/SNFTt is composed of 11 proteins, Snf5Tt, Swi1Tt, Swi3Tt, Snf12Tt, Brg1Tt, two proteins with potential chromatin-interacting domains and four proteins without orthologs to SWI/SNF proteins in yeast or mammals. SWI/SNFTt subunits localize exclusively to the transcriptionally active macronucleus during growth and development, consistent with a role in transcription. While Tetrahymena Brg1 does not contain a BRD, our AP–MS results identified a BRD-containing SWI/SNFTt component, Ibd1 that associates with SWI/SNFTt during growth but not development. AP–MS analysis of epitope-tagged Ibd1 revealed it to be a subunit of several additional protein complexes, including putative SWRTt, and SAGATt complexes as well as a putative H3K4-specific histone methyl transferase complex. Recombinant Ibd1 recognizes acetyl-lysine marks on histones correlated with active transcription. Consistent with our AP–MS and histone array data suggesting a role in regulation of gene expression, ChIP-Seq analysis of Ibd1 indicated that it primarily binds near promoters and within gene bodies of highly expressed genes during growth. Conclusions Our results suggest that through recognizing specific histones marks, Ibd1 targets active chromatin regions of highly expressed genes in Tetrahymena where it subsequently might coordinate the recruitment of several chromatin-remodeling complexes to regulate the transcriptional landscape of vegetatively growing Tetrahymena cells. Electronic supplementary material The online version of this article (10.1186/s13072-018-0180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Medicine, Université Laval, Quebec, Canada.,Centre Hospitalier Universitaire de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Ave, Suite 1140, Toronto, M5G 1M1, Canada
| | - Alyson Burtch
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Cristina Thuppu Mudalige
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3, Canada.
| |
Collapse
|
12
|
Pilling OA, Rogers AJ, Gulla-Devaney B, Katz LA. Insights into transgenerational epigenetics from studies of ciliates. Eur J Protistol 2017; 61:366-375. [PMID: 28689743 DOI: 10.1016/j.ejop.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics, a term with many meanings, can be broadly defined as the study of dynamic states of the genome. Ciliates, a clade of unicellular eukaryotes, can teach us about the intersection of epigenetics and evolution due to the advantages of working with cultivable ciliate lineages, plus their tendency to express extreme phenotypes such as heritable doublet morphology. Moreover, ciliates provide a powerful model for studying epigenetics given the presence of dimorphic nuclei - a somatic macronucleus and germline micronucleus - within each cell. Here, we exemplify the power of studying ciliates to learn about epigenetic phenomena. We highlight "classical" examples from morphology and physiology including cortical inheritance, mating type determination, and serotype expression. In addition, we detail molecular studies of epigenetic phenomena, including: DNA elimination; alternative processing and unscrambling; and copy number determination. Based on the implications of these studies, we discuss epigenetics as a possible functional mechanism for rapid speciation in ciliates.
Collapse
Affiliation(s)
- Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Anna J Rogers
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
14
|
Chen X, Gao S, Liu Y, Wang Y, Wang Y, Song W. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. SCIENCE CHINA-LIFE SCIENCES 2016; 59:909-19. [DOI: 10.1007/s11427-016-5102-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/12/2016] [Indexed: 02/01/2023]
|
15
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
16
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
17
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
18
|
SUMOylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 14:170-81. [PMID: 25527524 DOI: 10.1128/ec.00252-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle.
Collapse
|
19
|
Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 2014; 509:447-52. [PMID: 24805235 DOI: 10.1038/nature13318] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 04/11/2014] [Indexed: 12/30/2022]
Abstract
In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Collapse
Affiliation(s)
- Deepankar Pratap Singh
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Baptiste Saudemont
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [3] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Gérard Guglielmi
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Jean-François Goût
- 1] CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 Novembre 1918, Villeurbanne F-69622, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Malgorzata Prajer
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, St Petersburg State University, Saint Petersburg 199034, Russia
| | - Ewa Przybòs
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Anne Aubusson-Fleury
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Simran Bhullar
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Khaled Bouhouche
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Maoussi Lhuillier-Akakpo
- 1] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [2] Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Corinne Blugeon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| |
Collapse
|
20
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
21
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Vogt A, Mochizuki K. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena. PLoS Genet 2013; 9:e1004032. [PMID: 24348275 PMCID: PMC3861120 DOI: 10.1371/journal.pgen.1004032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
The somatic genome of the ciliated protist Tetrahymena undergoes DNA elimination of defined sequences called internal eliminated sequences (IESs), which account for ~30% of the germline genome. During DNA elimination, IES regions are heterochromatinized and assembled into heterochromatin bodies in the developing somatic nucleus. The domesticated piggyBac transposase Tpb2p is essential for the formation of heterochromatin bodies and DNA elimination. In this study, we demonstrate that the activities of Tpb2p involved in forming heterochromatin bodies and executing DNA elimination are genetically separable. The cysteine-rich domain of Tpb2p, which interacts with the heterochromatin-specific histone modifications, is necessary for both heterochromatin body formation and DNA elimination, whereas the endonuclease activity of Tpb2p is only necessary for DNA elimination. Furthermore, we demonstrate that the endonuclease activity of Tpb2p in vitro and the endonuclease activity that executes DNA elimination in vivo have similar substrate sequence preferences. These results strongly indicate that Tpb2p is the endonuclease that directly catalyzes the excision of IESs and that the boundaries of IESs are at least partially determined by the combination of Tpb2p-heterochromatin interaction and relaxed sequence preference of the endonuclease activity of Tpb2p.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Abstract
DNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.
Collapse
|
24
|
Zhang H, Ehrenkaufer GM, Hall N, Singh U. Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics 2013; 14:53. [PMID: 23347563 PMCID: PMC3610107 DOI: 10.1186/1471-2164-14-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 01/02/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Small RNA mediated gene silencing is a well-conserved regulatory pathway. In the parasite Entamoeba histolytica an endogenous RNAi pathway exists, however, the depth and diversity of the small RNA population remains unknown. RESULTS To characterize the small RNA population that associates with E. histolytica Argonaute-2 (EhAGO2-2), we immunoprecipitated small RNAs that associate with it and performed one full pyrosequencing run. Data analysis revealed new features of the 27nt small RNAs including the 5'-G predominance, distinct small RNA distribution patterns on protein coding genes, small RNAs mapping to both introns and exon-exon junctions, and small RNA targeted genes that are clustered particularly in sections of genome duplication. Characterization of genomic loci to which both sense and antisense small RNAs mapped showed that both sets of small RNAs have 5'-polyphosphate termini; strand-specific RT-PCR detected transcripts in both directions at these loci suggesting that both transcripts may serve as template for small RNA generation. In order to determine whether small RNA abundance patterns account for strain-specific gene expression profiles of E. histolytica virulent and non-virulent strains, we sequenced small RNAs from a non-virulent strain and found that small RNAs mapped to genes in a manner consistent with their regulation of strain-specific virulence genes. CONCLUSIONS We provided a full spectrum analysis for E. histolytica AGO2-2 associated 27nt small RNAs. Additionally, comparative analysis of small RNA populations from virulent and non-virulent amebic strains indicates that small RNA populations may regulate virulence genes.
Collapse
Affiliation(s)
- Hanbang Zhang
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305-5107, USA
| | | | | | | |
Collapse
|
25
|
McKinnon C, Drouin G. Chromatin diminution in the copepod Mesocyclops edax: elimination of both highly repetitive and nonhighly repetitive DNA. Genome 2013; 56:1-8. [PMID: 23379333 DOI: 10.1139/gen-2012-0097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin diminution, a developmentally regulated process of DNA elimination, is found in numerous eukaryotic species. In the copepod Mesocyclops edax, some 90% of its genomic DNA is eliminated during the differentiation of embryonic cells into somatic cells. Previous studies have shown that the eliminated DNA contains highly repetitive sequences. Here, we sequenced DNA fragments from pre- and postdiminution cells to determine whether nonhighly repetitive sequences are also eliminated during the process of chromatin diminution. Comparative analyses of these sequences, as well as the sequences eliminated from the genome of the copepod Cyclops kolensis, show that they all share similar abundances of tandem repeats, dispersed repeats, transposable elements, and various coding and noncoding sequences. This suggests that, in the chromatin diminution observed in M. edax, both highly repetitive and nonhighly repetitive sequences are eliminated and that there is no bias in the type of nonhighly repetitive DNA being eliminated.
Collapse
Affiliation(s)
- Christian McKinnon
- Département de biologie et Centre de recherche avancée en génomique environnementale, Université d'Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
26
|
The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 2012; 8:e1002984. [PMID: 23071448 PMCID: PMC3464196 DOI: 10.1371/journal.pgen.1002984] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. Ciliates are unicellular eukaryotes that rearrange their genomes at every sexual generation when a new somatic macronucleus, responsible for gene expression, develops from a copy of the germline micronucleus. In Paramecium, assembly of a functional somatic genome requires precise excision of interstitial DNA segments, the Internal Eliminated Sequences (IES), involving a domesticated piggyBac transposase, PiggyMac. To study IES origin and evolution, we sequenced germline DNA and identified 45,000 IESs. We found that at least some of these unique-copy elements are decayed Tc1/mariner transposons and that IES insertion is likely an ongoing process. After insertion, elements decay rapidly by accumulation of deletions and substitutions. The 93% of IESs shorter than 150 bp display a remarkable size distribution with a periodicity of 10 bp, the helical repeat of double-stranded DNA, consistent with the idea that evolution has only retained IESs that can form a double-stranded DNA loop during assembly of an excision complex. We propose that the ancient domestication of a piggyBac transposase, which provided a precise excision mechanism, enabled transposons to subsequently invade Paramecium coding sequences, a fraction of the genome that does not usually tolerate parasitic DNA.
Collapse
|
27
|
Schoeberl UE, Kurth HM, Noto T, Mochizuki K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev 2012; 26:1729-42. [PMID: 22855833 PMCID: PMC3418590 DOI: 10.1101/gad.196493.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023]
Abstract
The ciliated protozoan Tetrahymena undergoes extensive programmed DNA elimination when the germline micronucleus produces the new macronucleus during sexual reproduction. DNA elimination is epigenetically controlled by DNA sequences of the parental macronuclear genome, and this epigenetic regulation is mediated by small RNAs (scan RNAs [scnRNAs]) of ∼28-30 nucleotides that are produced and function by an RNAi-related mechanism. Here, we examine scnRNA production and turnover by deep sequencing. scnRNAs are produced exclusively from the micronucleus and nonhomogeneously from a variety of chromosomal locations. scnRNAs are preferentially derived from the eliminated sequences, and this preference is mainly determined at the level of transcription. Despite this bias, a significant fraction of scnRNAs is also derived from the macronuclear-destined sequences, and these scnRNAs are degraded during the course of sexual reproduction. These results indicate that the pattern of DNA elimination in the new macronucleus is shaped by the biased transcription in the micronucleus and the selective degradation of scnRNAs in the parental macronucleus.
Collapse
Affiliation(s)
| | | | | | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| |
Collapse
|
28
|
Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:436196. [PMID: 22888464 PMCID: PMC3408717 DOI: 10.1155/2012/436196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes.
Collapse
|
29
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
30
|
Abstract
In biology, scientific discoveries are often linked to technical innovations made possible by an inspired choice of model organism. Ciliate species, especially Tetrahymena thermophila, have had historically significant roles as uniquely enabling experimental systems. More importantly, as the chapters in this volume attest, ongoing efforts of the T. thermophila model organism community have created a knowledge and resource infrastructure for systems-level studies across a whole genome or proteome, setting the stage for understanding the fundamental biology underlying the sophisticated life cycle and environmentally responsive behaviors of this free-living, single-celled eukaryote. One hope is that these developments will stimulate the integration of ciliates into phylogenomic comparative analyses and also encourage the experimental use of T. thermophila by a broader scientific community. This early branching yet highly gene-rich eukaryote has much to offer for future studies of human-relevant basic biology.
Collapse
Affiliation(s)
- Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
31
|
Abstract
Nuclear dualism is a characteristic feature of the ciliated protozoa. Tetrahymena have two different nuclei in each cell. The larger, polyploid, somatic macronucleus (MAC) is the site of transcriptional activity in the vegetatively growing cell. The smaller, diploid micronucleus (MIC) is transcriptionally inactive in vegetative cells, but is transcriptionally active in mating cells and responsible for the genetic continuity during sexual reproduction. Although the MICs and MACs develop from mitotic products of a common progenitor and reside in a common cytoplasm, they are different from one another in almost every respect.
Collapse
Affiliation(s)
- Kathleen M Karrer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|