1
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
2
|
Zhou Q, Gu M, Sun Y, Zhang Q, Wang GL. In situ surface oxygen vacancy effect synergistic with internal polarization effect in BiFeO 3 for photoelectrochemical detection of T4 DNA ligase. Talanta 2025; 287:127595. [PMID: 39827477 DOI: 10.1016/j.talanta.2025.127595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Recently, the field of cathode photoelectrochemistry has advanced significantly, yet there remained a dearth of innovative approaches in signal transmission strategies. This paper introduced a novel concept where the dopamine (DA)-engineered surface vacancy (Ov) effect on BiFeO3 microspheres synergistically interacted with the intrinsic polarization of the material, leading to a significantly enhanced photocurrent when compared to that of Bi2O3 or Fe2O3 alone without a built-in electric field. Based on this finding, we proposed a PEC biosensor that leveraged the competitive binding reaction between single-base nucleotides and DA for photocurrent output, wherein the T4 DNA ligase-mediated ligation reaction governed the production of single-base nucleotides. The detection system demonstrated commendable performance for T4 DNA ligase analysis, with a linear detection range spanning from 0.0006 to 10 U/mL. The detection limit was determined to be 0.0001 U/mL. This ligase detection method requires no labeling, was straightforward to operate, and exhibited high sensitivity and excellent selectivity. This study not only elucidates the synergistic effect of in-situ surface Ov effect and the internal polarization effect the ferroelectric material to construct an efficient PEC sensing mechanism, but also introduces a new method for measuring T4 DNA ligase.
Collapse
Affiliation(s)
- Qing Zhou
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Gu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qi Zhang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Almohdar D, Ratcliffe J, Gulkis M, Çağlayan M. Probing the mechanism of nick searching by LIG1 at the single-molecule level. Nucleic Acids Res 2024; 52:12604-12615. [PMID: 39404052 PMCID: PMC11551761 DOI: 10.1093/nar/gkae865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
DNA ligase 1 (LIG1) joins Okazaki fragments during the nuclear replication and completes DNA repair pathways by joining 3'-OH and 5'-PO4 ends of nick at the final step. Yet, the mechanism of how LIG1 searches for a nick at single-molecule level is unknown. Here, we combine single-molecule fluorescence microscopy approaches, C-Trap and total internal reflection fluorescence (TIRF), to investigate the dynamics of LIG1-nick DNA binding. Our C-Trap data reveal that DNA binding by LIG1 full-length is enriched near the nick sites and the protein exhibits diffusive behavior to form a long-lived ligase/nick complex after binding to a non-nick region. However, LIG1 C-terminal mutant, containing the catalytic core and DNA-binding domain, predominantly binds throughout DNA non-specifically to the regions lacking nick site for shorter time. These results are further supported by TIRF data for LIG1 binding to DNA with a single nick site and demonstrate that a fraction of LIG1 full-length binds significantly longer period compared to the C-terminal mutant. Overall comparison of DNA binding modes provides a mechanistic model where the N-terminal domain promotes 1D diffusion and the enrichment of LIG1 binding at nick sites with longer binding lifetime, thereby facilitating an efficient nick search process.
Collapse
Affiliation(s)
- Surajit Chatterjee
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Loïc Chaubet
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | | | - Ann Mukhortava
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Mishra N, Callaghan S, Briney B. Decoding protein dynamicity in DNA ligase activity through deep learning-based structural ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622521. [PMID: 39574676 PMCID: PMC11581005 DOI: 10.1101/2024.11.07.622521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Numerous proteins perform their functions by transitioning between various structures. Understanding the conformational ensembles associated with these states is essential for uncovering crucial mechanistic aspects that regulate protein function. In this study, we utilized AlphaFold3 ( AF3 ) to investigate the structural dynamics and mechanisms of enzymes involved in DNA homeostasis, using NAD-dependent Taq ligases and human DNA Ligase 1 as a case example. Modifying the input parameters for AF3 yielded detailed conformational states of a DNA-binding enzyme, thereby offering enhanced mechanistic insights. We applied AF3 to model the various stages of thermophilic Taq DNA ligase activity, from its ground state to substrate-bound complexes, revealing significant mobility in the N-terminal adenylation and C-terminal BRCT domains. These detailed structural ensembles provided novel insights into the enzyme's behavior during DNA repair, underscoring the potential of AF3 in elucidating mechanistic details critical for therapeutic and biotechnological targeting. Extending this approach to human LIG1, we examined its end-joining activity on double-strand breaks ( DSBs ) with short 3' and 5' overhangs. In alignment with published experimental data, AF3 conformational ensembles indicated LIG1 has lower catalytic efficiency for 5' overhangs due to suboptimal DNA positioning within the catalytic site, demonstrating AF3's capability to capture subtle yet functionally significant conformational differences by generating conformational ensembles capturing greater structural variance.
Collapse
Affiliation(s)
- Nitesh Mishra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
- Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
- Multi-Omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA 92037 USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037 USA
- San Diego Center for AIDS Research, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
5
|
Veenstra JH, Chabez A, Haanen TJ, Keranen A, Cunningham-Rundles C, O'Brien PJ. Rare Variants of DNA Ligase 1 Show Distinct Mechanisms of Deficiency. J Biol Chem 2024:107957. [PMID: 39510190 DOI: 10.1016/j.jbc.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the KM for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.
Collapse
Affiliation(s)
- Jenna H Veenstra
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Alexandria Chabez
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Terrance J Haanen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Austin Keranen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
6
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024; 15:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
7
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Walther RE, Hrabak M, Bernstein DA. How advancements in molecular biology impact education and training. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0006124. [PMID: 38975770 PMCID: PMC11360415 DOI: 10.1128/jmbe.00061-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Molecular biology, broadly defined as the investigation of complex biomolecules in the laboratory, is a rapidly advancing field and as such the technologies available to investigators are constantly evolving. This constant advancement has obvious advantages because it allows students and researchers to perform more complex experiments in shorter periods of time. One challenge with such a rapidly advancing field is that techniques that had been vital for students to learn how to perform are now not essential for a laboratory scientist. For example, while cloning a gene in the past could have led to a publication and form the bulk of a PhD thesis project, technology has now made this process only a step toward one of these larger goals and can, in many cases, be performed by a company or core facility. As teachers and mentors, it is imperative that we understand that the technologies we teach in the lab and classroom must also evolve to match these advancements. In this perspective, we discuss how the rapid advances in gene synthesis technologies are affecting curriculum and how our classrooms should evolve to ensure our lessons prepare students for the world in which they will do science.
Collapse
|
9
|
Moor NA, Vasil'eva IA, Lavrik OI. Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair. Biochimie 2024; 219:84-95. [PMID: 37573020 DOI: 10.1016/j.biochi.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Mammalian Base Excision Repair (BER) DNA ligases I and IIIα (LigI, LigIIIα) are major determinants of DNA repair fidelity, alongside with DNA polymerases. Here we compared activities of human LigI and LigIIIα on specific and nonspecific substrates representing intermediates of distinct BER sub-pathways. The enzymes differently discriminate mismatches in the nicked DNA, depending on their identity and position, but are both more selective against the 3'-end non-complementarity. LigIIIα is less active than LigI in premature ligation of one-nucleotide gapped DNA and more efficiently discriminates misinsertion products of DNA polymerase β-catalyzed gap filling, that reinforces a leading role of LigIIIα in the accuracy of short-patch BER. LigI and LigIIIα reseal the intermediate of long-patch BER containing an incised synthetic AP site (F) with different efficiencies, depending on the DNA sequence context, 3'-end mismatch presence and coupling of the ligation reaction with DNA repair synthesis. Processing of this intermediate in the absence of flap endonuclease 1 generates non-canonical DNAs with bulged F site, which are very inefficiently repaired by AP endonuclease 1 and represent potential mutagenic repair products. The extent of conversion of the 5'-adenylated intermediates of specific and nonspecific substrates is revealed to depend on the DNA sequence context; a higher sensitivity of LigI to the sequence is in line with the enzyme structural feature of DNA binding. LigIIIα exceeds LigI in generation of potential abortive ligation products, justifying importance of XRCC1-mediated coordination of LigIIIα and aprataxin activities for the efficient DNA repair.
Collapse
Affiliation(s)
- Nina A Moor
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Inna A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia.
| |
Collapse
|
10
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Gulkis M, Çağlayan M. Uncovering nick DNA binding by LIG1 at the single-molecule level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587287. [PMID: 38586032 PMCID: PMC10996606 DOI: 10.1101/2024.03.28.587287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
DNA ligases repair the strand breaks are made continually and naturally throughout the genome, if left unrepaired and allowed to persist, they can lead to genome instability in the forms of lethal double-strand (ds) breaks, deletions, and duplications. DNA ligase 1 (LIG1) joins Okazaki fragments during the replication machinery and seals nicks at the end of most DNA repair pathways. Yet, how LIG1 recognizes its target substrate is entirely missing. Here, we uncover the dynamics of nick DNA binding by LIG1 at the single-molecule level. Our findings reveal that LIG1 binds to dsDNA both specifically and non-specifically and exhibits diffusive behavior to form a stable complex at the nick. Furthermore, by comparing with the LIG1 C-terminal protein, we demonstrate that the N-terminal non-catalytic region promotes binding enriched at nick sites and facilitates an efficient nick search process by promoting 1D diffusion along the DNA. Our findings provide a novel single-molecule insight into the nick binding by LIG1, which is critical to repair broken phosphodiester bonds in the DNA backbone to maintain genome integrity.
Collapse
|
11
|
Li D, Chen X, Wang Y, Huang W, Wang Y, Zhao X, Song X, Cao X. Panoptic elucidation of algicidal mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT quantitative proteomics. CHEMOSPHERE 2024; 352:141287. [PMID: 38272139 DOI: 10.1016/j.chemosphere.2024.141287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Gundesø SE, Rothweiler U, Heimland E, Piotrowski Y, Rødum IK, Söderberg JJ, Gábor IM, Solstad T, Williamson A, Lanes O, Striberny BK. R2D ligase: Unveiling a novel DNA ligase with surprising DNA-to-RNA ligation activity. Biotechnol J 2024; 19:e2300711. [PMID: 38528369 DOI: 10.1002/biot.202300711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
DNA ligases catalyze bond formation in the backbone of nucleic acids via the formation of a phosphodiester bond between adjacent 5' phosphates and 3' hydroxyl groups on one strand of the duplex. While DNA ligases preferentially ligate single breaks in double-stranded DNA (dsDNA), they are capable of ligating a multitude of other nucleic acid substrates like blunt-ended dsDNA, TA overhangs, short overhangs and various DNA-RNA hybrids. Here we report a novel DNA ligase from Cronobacter phage CR 9 (R2D Ligase) with an unexpected DNA-to-RNA ligation activity. The R2D ligase shows excellent efficiency when ligating DNA to either end of RNA molecules using a DNA template. Furthermore, we show that DNA can be ligated simultaneously to both the 5' and 3' ends of microRNA-like molecules in a single reaction mixture. Abortive adenylated side product formation is suppressed at lower ATP concentrations and the ligase reaction reaches near completion when ligating RNA-to-DNA or DNA-to-RNA. The ligation of a DNA strand to the 5'-PO4 2- end of RNA is unique among the commercially available ligases and may facilitate novel workflows in microRNA analysis, RNA sequencing and the preparation of chimeric guide DNA-RNA for gene editing applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olav Lanes
- ArcticZymes Technologies ASA, Tromsø, Norway
| | | |
Collapse
|
13
|
Zhang HJ, Ociepa M, Nassir M, Zheng B, Lewicki SA, Salmaso V, Baburi H, Nagel J, Mirza S, Bueschbell B, Al-Hroub H, Perzanowska O, Lin Z, Schmidt MA, Eastgate MD, Jacobson KA, Müller CE, Kowalska J, Jemielity J, Baran PS. Stereocontrolled access to thioisosteres of nucleoside di- and triphosphates. Nat Chem 2024; 16:249-258. [PMID: 37857844 PMCID: PMC11789459 DOI: 10.1038/s41557-023-01347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Michał Ociepa
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Molhm Nassir
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helay Baburi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Beatriz Bueschbell
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Olga Perzanowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ziqin Lin
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Michael A Schmidt
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Martin D Eastgate
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
14
|
Abbas Q, Muhammad MA, Shakir NA, Aslam M, Rashid N. Molecular cloning and characterization of Pcal_0039, an ATP-/NAD +-independent DNA ligase from hyperthermophilic archaeon Pyrobaculum calidifontis. Int J Biol Macromol 2023; 253:126711. [PMID: 37673141 DOI: 10.1016/j.ijbiomac.2023.126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.
Collapse
Affiliation(s)
- Qamar Abbas
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nisar Ahmad Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
15
|
Wu Z, Kou R, Ni K, Song R, Li Y, Li T, Zhang H. Extraordinarily Stable Hairpin-Based Biosensors for Rapid Detection of DNA Ligases. BIOSENSORS 2023; 13:875. [PMID: 37754109 PMCID: PMC10527192 DOI: 10.3390/bios13090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
DNA ligases are essential enzymes involved in DNA replication and repair processes in all organisms. These enzymes seal DNA breaks by catalyzing the formation of phosphodiester bonds between juxtaposed 5' phosphate and 3' hydroxyl termini in double-stranded DNA. In addition to their critical roles in maintaining genomic integrity, DNA ligases have been recently identified as diagnostic biomarkers for several types of cancers and recognized as potential drug targets for the treatment of various diseases. Although DNA ligases are significant in basic research and medical applications, developing strategies for efficiently detecting and precisely quantifying these crucial enzymes is still challenging. Here, we report our design and fabrication of a highly sensitive and specific biosensor in which a stable DNA hairpin is utilized to stimulate the generation of fluorescence signals. This probe is verified to be stable under a wide range of experimental conditions and exhibits promising performance in detecting DNA ligases. We anticipate that this hairpin-based biosensor will significantly benefit the development of new targeting strategies and diagnostic tools for certain diseases.
Collapse
Affiliation(s)
- Ziang Wu
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Physical Sciences, Great Bay University & Great Bay Institute for Advanced Study, Dongguan 523000, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Roujuan Kou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Kun Ni
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Rui Song
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yuxuan Li
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianhu Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Zhang
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- School of Physical Sciences, Great Bay University & Great Bay Institute for Advanced Study, Dongguan 523000, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
16
|
Gulkis M, Tang Q, Petrides M, Çağlayan M. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533718. [PMID: 36993234 PMCID: PMC10055324 DOI: 10.1101/2023.03.21.533718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1 EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1 EE/AA /8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.
Collapse
|
17
|
Duckworth AT, Bilotti K, Potapov V, Lohman GJS. Profiling DNA Ligase Substrate Specificity with a Pacific Biosciences Single-Molecule Real-Time Sequencing Assay. Curr Protoc 2023; 3:e690. [PMID: 36880776 PMCID: PMC10494924 DOI: 10.1002/cpz1.690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
DNA ligases catalyze the joining of breaks in nucleic acid backbones and are essential enzymes for in vivo genome replication and repair across all domains of life. These enzymes are also critically important to in vitro manipulation of DNA in applications such as cloning, sequencing, and molecular diagnostics. DNA ligases generally catalyze the formation of a phosphodiester bond between an adjacent 5'-phosphate and 3'-hydroxyl in DNA, but they exhibit different substrate structure preferences, sequence-dependent biases in reaction kinetics, and variable tolerance for mismatched base pairs. Information on substrate structure and sequence specificity can inform both biological roles and molecular biology applications of these enzymes. Given the high complexity of DNA sequence space, testing DNA ligase substrate specificity on individual nucleic acid sequences in parallel rapidly becomes impractical when a large sequence space is investigated. Here, we describe methods for investigating DNA ligase sequence bias and mismatch discrimination using Pacific Biosciences Single-Molecule Real-Time (PacBio SMRT) sequencing technology. Through its rolling-circle amplification methodology, SMRT sequencing can give multiple reads of the same insert. This feature permits high-quality top- and bottom-strand consensus sequences to be determined while preserving information on top-bottom strand mismatches that can be obfuscated or lost when using other sequencing methods. Thus, PacBio SMRT sequencing is uniquely suited to measuring substrate bias and enzyme fidelity through multiplexing a diverse set of sequences in a single reaction. The protocols describe substrate synthesis, library preparation, and data analysis methods suitable for measuring fidelity and bias of DNA ligases. The methods are easily adapted to different nucleic acid substrate structures and can be used to characterize many enzymes under a variety of reaction conditions and sequence contexts in a rapid and high-throughput manner. © 2023 New England Biolabs and The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of overhang DNA substrates for ligation Basic Protocol 2: Preparation of ligation fidelity libraries Support Protocol 1: Preparation of ligation libraries for PacBio Sequel II sequencing Support Protocol 2: Loading and sequencing of a prepared library on the Sequel II instrument Basic Protocol 3: Computational processing of ligase fidelity sequencing data.
Collapse
|
18
|
Abraham Punnoose J, Thomas KJ, Chandrasekaran AR, Vilcapoma J, Hayden A, Kilpatrick K, Vangaveti S, Chen A, Banco T, Halvorsen K. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nat Commun 2023; 14:631. [PMID: 36746949 PMCID: PMC9902561 DOI: 10.1038/s41467-023-36373-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Base stacking interactions between adjacent bases in DNA and RNA are important for many biological processes and in biotechnology applications. Previous work has estimated stacking energies between pairs of bases, but contributions of individual bases has remained unknown. Here, we use a Centrifuge Force Microscope for high-throughput single molecule experiments to measure stacking energies between adjacent bases. We found stacking energies strongest between purines (G|A at -2.3 ± 0.2 kcal/mol) and weakest between pyrimidines (C|T at -0.5 ± 0.1 kcal/mol). Hybrid stacking with phosphorylated, methylated, and RNA nucleotides had no measurable effect, but a fluorophore modification reduced stacking energy. We experimentally show that base stacking can influence stability of a DNA nanostructure, modulate kinetics of enzymatic ligation, and assess accuracy of force fields in molecular dynamics simulations. Our results provide insights into fundamental DNA interactions that are critical in biology and can inform design in biotechnology applications.
Collapse
Affiliation(s)
- Jibin Abraham Punnoose
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Kevin J Thomas
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | | | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Kacey Kilpatrick
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Alan Chen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Thomas Banco
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA.
| |
Collapse
|
19
|
McNally JR, Ames AM, Admiraal SJ, O’Brien PJ. Human DNA ligases I and III have stand-alone end-joining capability, but differ in ligation efficiency and specificity. Nucleic Acids Res 2023; 51:796-805. [PMID: 36625284 PMCID: PMC9881130 DOI: 10.1093/nar/gkac1263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.
Collapse
Affiliation(s)
- Justin R McNally
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda M Ames
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne J Admiraal
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick J O’Brien
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Khurana A, Sayed N, Singh V, Khurana I, Allawadhi P, Rawat PS, Navik U, Pasumarthi SK, Bharani KK, Weiskirchen R. A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. J Cell Biochem 2022; 123:1674-1698. [PMID: 36128934 DOI: 10.1002/jcb.30329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas technology possesses revolutionary potential to positively affect various domains of drug discovery. It has initiated a rise in the area of genetic engineering and its advantages range from classical science to translational medicine. These genome editing systems have given a new dimension to our capabilities to alter, detect and annotate specified gene sequences. Moreover, the ease, robustness and adaptability of the CRISPR/Cas9 technology have led to its extensive utilization in research areas in such a short period of time. The applications include the development of model cell lines, understanding disease mechanisms, discovering disease targets, developing transgenic animals and plants, and transcriptional modulation. Further, the technology is rapidly growing; hence, an overlook of progressive success is crucial. This review presents the current status of the CRISPR-Cas technology in a tailor-made format from its discovery to several advancements for drug discovery alongwith future trends associated with possibilities and hurdles including ethical concerns.
Collapse
Affiliation(s)
- Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Hyderabad, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik, Maharashtra, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | | | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
21
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
22
|
Tang Q, Gulkis M, McKenna R, Çağlayan M. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Nat Commun 2022; 13:3860. [PMID: 35790757 PMCID: PMC9256674 DOI: 10.1038/s41467-022-31585-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
DNA ligase I (LIG1) catalyzes the ligation of the nick repair intermediate after gap filling by DNA polymerase (pol) β during downstream steps of the base excision repair (BER) pathway. However, how LIG1 discriminates against the mutagenic 3'-mismatches incorporated by polβ at atomic resolution remains undefined. Here, we determine the X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncover the ligase strategies that favor or deter the ligation of base substitution errors. Our structures reveal that the LIG1 active site can accommodate a G:T mismatch in the wobble conformation, where an adenylate (AMP) is transferred to the 5'-phosphate of a nick (DNA-AMP), while it stays in the LIG1-AMP intermediate during the initial step of the ligation reaction in the presence of an A:C mismatch at the 3'-strand. Moreover, we show mutagenic ligation and aberrant nick sealing of dG:T and dA:C mismatches, respectively. Finally, we demonstrate that AP-endonuclease 1 (APE1), as a compensatory proofreading enzyme, removes the mismatched bases and interacts with LIG1 at the final BER steps. Our overall findings provide the features of accurate versus mutagenic outcomes coordinated by a multiprotein complex including polβ, LIG1, and APE1 to maintain efficient repair.
Collapse
Affiliation(s)
- Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
24
|
Evolution of plasmid-construction. Int J Biol Macromol 2022; 209:1319-1326. [PMID: 35452702 DOI: 10.1016/j.ijbiomac.2022.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
Developing for almost half a century, plasmid-construction has explored more than 37 methods. Some methods have evolved into new versions. From a global and evolutionary viewpoint, a review will make a clear understand and an easy practice for plasmid-construction. The 37 methods employ three principles as creating single-strand overhang, recombining homology arms, or serving amplified insert as mega-primer, and are classified into three groups as single strand overhang cloning, homologous recombination cloning, and mega-primer cloning. The methods evolve along a route for easy, efficient, or/and seamless cloning. Mechanism of plasmid-construction is primer annealing or/and primer invasion. Scar junction is a must-be faced scientific problem in plasmid-construction.
Collapse
|
25
|
Li X, Jin J, Xu W, Wang M, Liu L. Abortive ligation intermediate blocks seamless repair of double-stranded breaks. Int J Biol Macromol 2022; 209:1498-1503. [PMID: 35469952 DOI: 10.1016/j.ijbiomac.2022.04.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Because indel results in frame-shift mutations, seamless repair of double-stranded break (DSB)s plays a pivotal role in synthetic biology, molecular biology, and genome integrity. However, DSB repair is not well documented. T4 DNA ligase (T4lig) served to ligate intra-molecularly a zero bp break-apart DSB linear plasmid DNA pET22b(28a)-xylanase. An ATP T4lig ligation reaction joined one single-stranded break (SSB) into a phosphodiester-bond, whereas the opposite SSB into an abortive ligation intermediate blocking the DSB sequential repair. The intermediate proved to be fluorescent Cy5-AMP-SSB by a T4lig ligation reaction in the aid of Alexa Fluor 647 ATP having Cy5-AMP fluorescence. The fluorescent Cy5-AMP-SSB was de-adenylated into SSB by an ATP-free T4lig or Mg2+-free T4ligL159L reaction. The de-adenylated SSB was re-joined into another phosphodiester-bond by a sequential ATP T4lig re-ligation reaction. Thereby, DSB repair proceeds an abortive ligation, a reverse de-adenylation, and a sequential re-ligation reaction. The result has a potential usage in synthetic biology, molecular biology, and cancer-curing.
Collapse
Affiliation(s)
- Xuegang Li
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiacheng Jin
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Xu
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingdao Wang
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
26
|
Zhang B, Sun W, Ran L, Wang C, Wang J, An R, Liang X. Anti-Interference Detection of Vibrio parahaemolyticus from Aquatic Food Based on Target-Cyclized RCA with Dynamic Adapter Followed by LAMP. Foods 2022; 11:foods11030352. [PMID: 35159502 PMCID: PMC8834026 DOI: 10.3390/foods11030352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is considered the most concerning pathogen for seafood. Like other pathogens in food samples, its gene detection suffers from a problem of background interference when isothermal detection methods are used. The sensitivity and specificity greatly decrease due to large amounts of background genome. Here we describe a novel isothermal detection technology based on target-cyclized rolling circle amplification combined with loop-mediated isothermal amplification (tRCA-lamp). By avoiding unexpected ligation, a short dynamic adapter is employed to increase the sensitivity of target cyclization in the presence of the background genome. At the amplification step, highly specific detection is obtained by linear RCA and simplified LAMP (only two primers are used). Furthermore, visual detection is easily realized with hydroxynaphthol blue (HNB). In the oyster samples, the tRCA-lamp approach can detect V. parahaemolyticus with a detection limit of 22 cfu/g with none necessary to enrich the bacteria and remove the host DNA. This method gets rid of the complicated primer design process and can be extended to the detection of other pathogens in food samples.
Collapse
Affiliation(s)
- Boying Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
| | - Wenhua Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
| | - Lingling Ran
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
| | - Chenru Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
| | - Jing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Correspondence:
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (B.Z.); (W.S.); (L.R.); (C.W.); (J.W.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
27
|
Bilotti K, Potapov V, Pryor JM, Duckworth AT, Keck J, Lohman GJS. OUP accepted manuscript. Nucleic Acids Res 2022; 50:4647-4658. [PMID: 35438779 PMCID: PMC9071435 DOI: 10.1093/nar/gkac241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - John M Pryor
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Alexander T Duckworth
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gregory J S Lohman
- To whom correspondence should be addressed. Tel: +1 978 998 7916; Fax: +1 978 921 1350;
| |
Collapse
|
28
|
Nazarbek G, Kutzhanova A, Nurtay L, Mu C, Kazybay B, Li X, Ma C, Amin A, Xie Y. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing ( Rhizoma polygonati) and Goji ( Lycium chinense). NANOSCALE ADVANCES 2021; 3:6728-6738. [PMID: 36132653 PMCID: PMC9418865 DOI: 10.1039/d1na00475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Nanozymes and natural product-derived herbzymes have been identified in different types of enzymes simulating the natural protein-based enzyme function. How to explore and predict enzyme types of novel nanozymes when synthesized remains elusive. An informed analysis might be useful for the prediction. Here, we applied a protein-evolution analysis method to predict novel types of enzymes with experimental validation. First, reported nanozymes were analyzed by chemical classification and nano-evolution. We found that nanozymes are predominantly classified as protein-based EC1 oxidoreductase. In comparison, we analyzed the evolution of protein-based natural enzymes by a phylogenetic tree and the most conserved enzymes were found to be peroxidase and lyase. Therefore, the natural products of Rhizoma polygonati and Goji herbs were analyzed to explore and test the potent new types of natural nanozymes/herbzymes using the simplicity simulation of natural protein enzyme evolution as they contain these conserved enzyme types. The experimental validation showed that the natural products from the total extract of nanoscale traditional Chinese medicine Huangjing (RP, Rhizoma polygonati) from Mount-Tai (Taishan) exhibit fructose-bisphosphate aldolase of lyase while nanoscale Goji (Lycium chinense) extract exhibits peroxidase activities. Thus, the bioinformatics analysis would provide an additional tool for the virtual discovery of natural product nanozymes.
Collapse
Affiliation(s)
- Guldan Nazarbek
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Aidana Kutzhanova
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Lazzat Nurtay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Bexultan Kazybay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Amr Amin
- Biology Department, UAE University Al Ain 15551 UAE
- The College, The University of Chicago Chicago IL 60637 USA
| | - Yingqiu Xie
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| |
Collapse
|
29
|
Bacteriophage origin of some minimal ATP-dependent DNA ligases: a new structure from Burkholderia pseudomallei with striking similarity to Chlorella virus ligase. Sci Rep 2021; 11:18693. [PMID: 34548548 PMCID: PMC8455567 DOI: 10.1038/s41598-021-98155-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
DNA ligases, the enzymes responsible for joining breaks in the phosphodiester backbone of DNA during replication and repair, vary considerably in size and structure. The smallest members of this enzyme class carry out their functions with pared-down protein scaffolds comprising only the core catalytic domains. Here we use sequence similarity network analysis of minimal DNA ligases from all biological super kingdoms, to investigate their evolutionary origins, with a particular focus on bacterial variants. This revealed that bacterial Lig C sequences cluster more closely with Eukaryote and Archaeal ligases, while bacterial Lig E sequences cluster most closely with viral sequences. Further refinement of the latter group delineates a cohesive cluster of canonical Lig E sequences that possess a leader peptide, an exclusively bacteriophage group of T7 DNA ligase homologs and a group with high similarity to the Chlorella virus DNA ligase which includes both bacterial and viral enzymes. The structure and function of the bacterially-encoded Chlorella virus homologs were further investigated by recombinantly producing and characterizing, the ATP-dependent DNA ligase from Burkholderia pseudomallei as well as determining its crystal structure in complex with DNA. This revealed that the enzyme has similar activity characteristics to other ATP-dependent DNA ligases, and significant structural similarity to the eukaryotic virus Chlorella virus including the positioning and DNA contacts of the binding latch region. Analysis of the genomic context of the B. pseudomallei ATP-dependent DNA ligase indicates it is part of a lysogenic bacteriophage present in the B. pseudomallei chromosome representing one likely entry point for the horizontal acquisition of ATP-dependent DNA ligases by bacteria.
Collapse
|
30
|
Afsar M, Shukla A, Kumar N, Ramachandran R. Salt bridges at the subdomain interfaces of the adenylation domain and active-site residues of Mycobacterium tuberculosis NAD +-dependent DNA ligase A (MtbLigA) are important for the initial steps of nick-sealing activity. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:776-789. [PMID: 34076591 DOI: 10.1107/s2059798321003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 11/10/2022]
Abstract
NAD+-dependent DNA ligase (LigA) is the principal bacterial ligase and catalyses a multistep ligation reaction. The adenylation (AdD) domain at the N-terminus consists of subdomains 1a and 1b, where subdomain 1a is unique to LigA. Small-angle X-ray scattering and X-ray diffraction studies were used to probe changes in the relative spatial dispositions of the two subdomains during the adenylation reaction. Structural analyses of the inter-subdomain interactions of the AdD domain suggest that salt bridges formed by Glu22, Glu26 and Glu87 of subdomain 1a with Arg144, Arg315 and His240 of subdomain 1b play an important role in stabilizing the intermediate conformations of the two subdomains. E22A, E26A and E87A mutations reduce the in vitro activity by 89%, 64% and 39%, respectively, on a nicked DNA substrate, while they show no activity loss on a pre-adenylated DNA substrate, thus suggesting that the salt bridges are important in the initial steps of the ligation reaction. Furthermore, the E22A, E26A and E87A mutants exhibited extremely delayed growth in complementation assays involving the Escherichia coli GR501 strain, which harbours its own temperature-sensitive LigA. The H236A and H236Y mutants, which involve the residue that stacks against the adenine moiety of AMP, severely impact the activity and the ability to complement the growth-defective E. coli GR501 strain. Analysis of the K123A and K123R mutations in the active site rationalizes their total loss of activity and inability to rescue the growth-defective E. coli GR501 strain.
Collapse
Affiliation(s)
- Mohammad Afsar
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Nelam Kumar
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226 031, India
| |
Collapse
|
31
|
Wiedermannová J, Julius C, Yuzenkova Y. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201979. [PMID: 34017598 PMCID: PMC8131947 DOI: 10.1098/rsos.201979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recent years witnessed the discovery of ubiquitous and diverse 5'-end RNA cap-like modifications in prokaryotes as well as in eukaryotes. These non-canonical caps include metabolic cofactors, such as NAD+/NADH, FAD, cell wall precursors UDP-GlcNAc, alarmones, e.g. dinucleotides polyphosphates, ADP-ribose and potentially other nucleoside derivatives. They are installed at the 5' position of RNA via template-dependent incorporation of nucleotide analogues as an initiation substrate by RNA polymerases. However, the discovery of NAD-capped processed RNAs in human cells suggests the existence of alternative post-transcriptional NC capping pathways. In this review, we compiled growing evidence for a number of these other mechanisms which produce various non-canonically capped RNAs and a growing repertoire of capping small molecules. Enzymes shown to be involved are ADP-ribose polymerases, glycohydrolases and tRNA synthetases, and may potentially include RNA 3'-phosphate cyclases, tRNA guanylyl transferases, RNA ligases and ribozymes. An emerging rich variety of capping molecules and enzymes suggests an unrecognized level of complexity of RNA metabolism.
Collapse
Affiliation(s)
| | | | - Yulia Yuzenkova
- Medical School, NUBI, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Alomari A, Gowland R, Southwood C, Barrow J, Bentley Z, Calvin-Nelson J, Kaminski A, LeFevre M, Callaghan AJ, Vincent HA, Gowers DM. Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA). Molecules 2021; 26:molecules26092508. [PMID: 33923034 PMCID: PMC8123306 DOI: 10.3390/molecules26092508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.
Collapse
Affiliation(s)
- Arqam Alomari
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Department of Basic Sciences, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Robert Gowland
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Callum Southwood
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jak Barrow
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Zoe Bentley
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jashel Calvin-Nelson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Alice Kaminski
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Matthew LeFevre
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Correspondence:
| |
Collapse
|
33
|
Stracy M, Schweizer J, Sherratt DJ, Kapanidis AN, Uphoff S, Lesterlin C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol Cell 2021; 81:1499-1514.e6. [PMID: 33621478 PMCID: PMC8022225 DOI: 10.1016/j.molcel.2021.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%–99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins. Protein motion was compared between unperturbed cells and DNA-free cells Protein mobility was dictated by DNA interactions rather than molecular weight The nucleoid is not a physical barrier for protein diffusion The proteins studied spend most (58%–99%) of their search time bound to DNA
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Jakob Schweizer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France.
| |
Collapse
|
34
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
35
|
Li Q, Zhang S, Li W, Ge Z, Fan C, Gu H. Programming CircLigase Catalysis for DNA Rings and Topologies. Anal Chem 2020; 93:1801-1810. [PMID: 33382236 DOI: 10.1021/acs.analchem.0c04668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular single-stranded (ss) DNA is an essential element in rolling circle amplification and many DNA nanotechnology constructions. It is commonly synthesized from linear ssDNA by a ligase, which nevertheless suffers from low and inconsistent efficiency due to the simultaneous formation of concatemeric byproducts. Here, we design an intramolecular terminal hybridization strategy to program the ring formation catalytic process of CircLigase, a thermostable RNA ligase 1 that can ligate ssDNA in an intramolecular fashion. With the enthalpy gained from the programmed hybridization to override disfavored entropic factors associated with end coupling, we broke the limit of natural CircLigase on circularization of ssDNA, realizing over 75% yields of byproduct-free monomeric rings on a series of hundred-to-half-kilo-based linear DNAs. We found that this hybridization strategy can be twisted from intra- to intermolecular to also program CircLigase to efficiently and predominantly join one ssDNA strand to another. We focused on DNA rings premade by CircLigase and demonstrated their utility in elevating the preparation, quantity, and quality of DNA topologies. We expect that the new insights on engineering CircLigase will further promote the development of nucleic acid biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Shu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD +-dependent DNA ligase A. J Struct Biol 2020; 213:107655. [PMID: 33197566 DOI: 10.1016/j.jsb.2020.107655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
NAD+-dependent DNA ligase (LigA) is the essential replicative ligase in bacteria and differs from ATP-dependent counterparts like the human DNA ligase I (HligI) in several aspects. LigA uses NAD+ as the co-factor while the latter uses ATP. Further, the LigA carries out enzymatic activity with a single divalent metal ion in the active site while ATP-dependent ligases use two metal ions. Instead of the second metal ion, LigA have a unique NMN binding subdomain that facilitates the orientation of the β-phosphate and NMN leaving group. LigA are therefore attractive targets for new anti-bacterial therapeutic development. Others and our group have earlier identified several LigA inhibitors that mainly bind to AMP binding site of LigA. However, no inhibitor is known to bind to the unique NMN binding subdomain. We initiated a fragment inhibitor discovery campaign against the M. tuberculosis LigA based on our co-crystal structure of adenylation domain with AMP and NMN. The study identified two fragments, 4-(4-fluorophenyl)-4,5,6,7-tetrahydro-3H imidazo[4,5-c] pyridine and N-(4-methylbenzyl)-1H-pyrrole-2-carboxamide, that bind to the NMN site. The fragments inhibit LigA with IC50 of 16.9 and 28.7 µM respectively and exhibit MIC of ~20 and 60 µg/ml against a temperature sensitive E. coli GR501 ligAts strain, rescued by MtbLigA. Co-crystal structures of the fragments with the adenylation domain of LigA show that they mimic the interactions of NMN. Overall, our results suggest that the NMN binding-site is a druggable target site for developing anti-LigA therapeutic strategies.
Collapse
|
37
|
Williamson A, Leiros HKS. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res 2020; 48:8225-8242. [PMID: 32365176 PMCID: PMC7470946 DOI: 10.1093/nar/gkaa307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
DNA ligases are diverse enzymes with essential functions in replication and repair of DNA; here we review recent advances in their structure and distribution and discuss how this contributes to understanding their biological roles and technological potential. Recent high-resolution crystal structures of DNA ligases from different organisms, including DNA-bound states and reaction intermediates, have provided considerable insight into their enzymatic mechanism and substrate interactions. All cellular organisms possess at least one DNA ligase, but many species encode multiple forms some of which are modular multifunctional enzymes. New experimental evidence for participation of DNA ligases in pathways with additional DNA modifying enzymes is defining their participation in non-redundant repair processes enabling elucidation of their biological functions. Coupled with identification of a wealth of DNA ligase sequences through genomic data, our increased appreciation of the structural diversity and phylogenetic distribution of DNA ligases has the potential to uncover new biotechnological tools and provide new treatment options for bacterial pathogens.
Collapse
Affiliation(s)
- Adele Williamson
- School of Science, University of Waikato, Hamilton 3240, New Zealand.,Department of Chemistry, UiT The Arctic University of Norway, Tromsø N-9037, Norway
| | | |
Collapse
|
38
|
Unciuleac MC, Goldgur Y, Shuman S. Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Res 2020; 48:5603-5615. [PMID: 32315072 PMCID: PMC7261155 DOI: 10.1093/nar/gkaa238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3′-OH RNA strands in the context of 3′-OH/5′-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl–AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
39
|
Khanam T, Afsar M, Shukla A, Alam F, Kumar S, Soyar H, Dolma K, Pasupuleti M, Srivastava KK, Ampapathi RS, Ramachandran R. M. tuberculosis class II apurinic/ apyrimidinic-endonuclease/3'-5' exonuclease (XthA) engages with NAD+-dependent DNA ligase A (LigA) to counter futile cleavage and ligation cycles in base excision repair. Nucleic Acids Res 2020; 48:4325-4343. [PMID: 32232338 PMCID: PMC7530888 DOI: 10.1093/nar/gkaa188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Class-II AP-endonuclease (XthA) and NAD+-dependent DNA ligase (LigA) are involved in initial and terminal stages of bacterial DNA base excision repair (BER), respectively. XthA acts on abasic sites of damaged DNA to create nicks with 3′OH and 5′-deoxyribose phosphate (5′-dRP) moieties. Co-immunoprecipitation using mycobacterial cell-lysate, identified MtbLigA-MtbXthA complex formation. Pull-down experiments using purified wild-type, and domain-deleted MtbLigA mutants show that LigA-XthA interactions are mediated by the BRCT-domain of LigA. Small-Angle-X-ray scattering, 15N/1H-HSQC chemical shift perturbation experiments and mutational analysis identified the BRCT-domain region that interacts with a novel 104DGQPSWSGKP113 motif on XthA for complex-formation. Isothermal-titration calorimetry experiments show that a synthetic peptide with this sequence interacts with MtbLigA and disrupts XthA–LigA interactions. In vitro assays involving DNA substrate and product analogs show that LigA can efficiently reseal 3′OH and 5′dRP DNA termini created by XthA at abasic sites. Assays and SAXS experiments performed in the presence and absence of DNA, show that XthA inhibits LigA by specifically engaging with the latter's BRCT-domain to prevent it from encircling substrate DNA. Overall, the study suggests a coordinating function for XthA whereby it engages initially with LigA to prevent the undesirable consequences of futile cleavage and ligation cycles that might derail bacterial BER.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Afsar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Faiyaz Alam
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Horam Soyar
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kunzes Dolma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
40
|
Abstract
Life on Earth depends on polymerases. These enzymes copy genetic information to produce the DNA and RNA strands at the core of the central dogma. Polymerases act by forming phosphodiester linkages to produce polynucleotide strands. While synthetic chemistry can generate a broad range of alternative genetic materials with unnatural linkages, polymerases have so far been limited to forming O-P bonds. Here, we show that, in fact, unnatural N-P bonds can also be formed by a modified DNA polymerase. This template-directed activity generates complementary strands linked by phosphoramidate (NP) esters, an alternative backbone linkage only known to exist in the laboratory. The emergence of NP-DNA polymerase activity implies the biochemical plausibility of alternative central dogmas for cellular life. All known polymerases copy genetic material by catalyzing phosphodiester bond formation. This highly conserved activity proceeds by a common mechanism, such that incorporated nucleoside analogs terminate chain elongation if the resulting primer strand lacks a terminal hydroxyl group. Even conservatively substituted 3′-amino nucleotides generally act as chain terminators, and no enzymatic pathway for their polymerization has yet been found. Although 3′-amino nucleotides can be chemically coupled to yield stable oligonucleotides containing N3′→P5′ phosphoramidate (NP) bonds, no such internucleotide linkages are known to occur in nature. Here, we report that 3′-amino terminated primers are, in fact, slowly extended by the DNA polymerase from B. stearothermophilus in a template-directed manner. When its cofactor is Ca2+ rather than Mg2+, the reaction is fivefold faster, permitting multiple turnover NP bond formation to yield NP-DNA strands from the corresponding 3′-amino-2′,3′-dideoxynucleoside 5′-triphosphates. A single active site mutation further enhances the rate of NP-DNA synthesis by an additional 21-fold. We show that DNA-dependent NP-DNA polymerase activity depends on conserved active site residues and propose a likely mechanism for this activity based on a series of crystal structures of bound complexes. Our results significantly broaden the catalytic scope of polymerase activity and suggest the feasibility of a genetic transition between native nucleic acids and NP-DNA.
Collapse
|
41
|
Liang Y, Zhang Y, Liu L. Intra-Molecular Homologous Recombination of Scarless Plasmid. Int J Mol Sci 2020; 21:E1697. [PMID: 32131382 PMCID: PMC7084384 DOI: 10.3390/ijms21051697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/15/2023] Open
Abstract
Although many methods have been reported, plasmid construction compromises transformant efficiency (number of transformants per ng of DNAs) with plasmid accuracy (rate of scarless plasmids). An efficient method is two-step PCR serving DNA amplification. An accurate method is ExnaseII cloning serving homology recombination (HR). We combine DNA amplification and HR to develop an intra-molecular HR by amplifying plasmid DNAs to contain homology 5'- and 3'-terminus and recombining the plasmid DNAs in vitro. An example was to construct plasmid pET20b-AdD. The generality was checked by constructing plasmid pET21a-AdD and pET22b-AdD in parallel. The DNAs having 30-bp homology arms were optimal for intra-molecular HR, and transformation of which created 14.2 transformants/ng and 90% scarless plasmids, more than the two-step PCR and the ExnaseII cloning. Transformant efficiency correlated with the component of nicked circular plasmid DNAs of HR products, indicating nick modification in vivo leads to scar plasmids.
Collapse
Affiliation(s)
- Yaping Liang
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.Z.)
| | - Yu Zhang
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.Z.)
| | - Liangwei Liu
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (Y.Z.)
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
42
|
Rodrigues TCS, Subramaniam K, Varsani A, McFadden G, Schaefer AM, Bossart GD, Romero CH, Waltzek TB. Genome characterization of cetaceanpox virus from a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus). Virus Res 2020; 278:197861. [PMID: 31923559 DOI: 10.1016/j.virusres.2020.197861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 01/08/2023]
Abstract
Cetaceanpox viruses (CePVs) are associated with a cutaneous disease in cetaceans often referred to as "tattoo" lesions. To date, only partial genomic data are available for CePVs, and thus, they remain unclassified members of the subfamily Chordopoxvirinae within the family Poxviridae. Herein, we describe the first complete CePV genome sequenced from the tattoo lesion of a managed Indo-Pacific bottlenose dolphin (Tursiops aduncus), using next-generation sequencing. The T. aduncus CePV genome (CePV-TA) was determined to encode 120 proteins, including eight genes unique to the CePV-TA and five genes predicted to function as immune-evasion genes. The results of CePV-TA genetic analyses supported the creation of a new chordopoxvirus genus for CePVs. The complete sequencing of a CePV represents an important first step in unraveling the evolutionary relationship and taxonomy of CePVs, and significantly increases our understanding of the genomic characteristics of these chordopoxviruses.
Collapse
Affiliation(s)
- Thaís C S Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, 85287 Tempe, Arizona, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, Western Cape 7701, South Africa
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, 85287 Tempe, Arizona, USA
| | - Adam M Schaefer
- Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1, North, 34946 Fort Pierce, Florida, USA
| | - Gregory D Bossart
- Georgia Aquarium, 225 Baker Street, 30313 Atlanta, Georgia, USA; University of Miami, PO Box 016960 (R-46), 33101 Miami, Florida, USA
| | - Carlos H Romero
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2187 Mowry Road, 32611 Gainesville, Florida, USA.
| |
Collapse
|
43
|
Bartnik K, Barth A, Pilo-Pais M, Crevenna AH, Liedl T, Lamb DC. A DNA Origami Platform for Single-Pair Förster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation. J Am Chem Soc 2020; 142:815-825. [PMID: 31800234 DOI: 10.1021/jacs.9b09093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Förster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.
Collapse
Affiliation(s)
- Kira Bartnik
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Anders Barth
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Mauricio Pilo-Pais
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Alvaro H Crevenna
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| | - Tim Liedl
- Department of Physics and Center for Nanoscience (CeNS) , Ludwig-Maximilians-Universität , 80539 Munich , Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS), Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CIPSM) , Ludwig-Maximilians-Universität München , 81377 Munich , Germany
| |
Collapse
|
44
|
Williamson A, Leiros HKS. Structural intermediates of a DNA-ligase complex illuminate the role of the catalytic metal ion and mechanism of phosphodiester bond formation. Nucleic Acids Res 2019; 47:7147-7162. [PMID: 31312841 PMCID: PMC6698739 DOI: 10.1093/nar/gkz596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023] Open
Abstract
DNA ligases join adjacent 5' phosphate (5'P) and 3' hydroxyl (3'OH) termini of double-stranded DNA via a three-step mechanism requiring a nucleotide cofactor and divalent metal ion. Although considerable structural detail is available for the first two steps, less is known about step 3 where the DNA-backbone is joined or about the cation role at this step. We have captured high-resolution structures of an adenosine triphosphate (ATP)-dependent DNA ligase from Prochlorococcus marinus including a Mn-bound pre-ternary ligase-DNA complex poised for phosphodiester bond formation, and a post-ternary intermediate retaining product DNA and partially occupied AMP in the active site. The pre-ternary structure unambiguously identifies the binding site of the catalytic metal ion and confirms both its role in activating the 3'OH terminus for nucleophilic attack on the 5'P group and stabilizing the pentavalent transition state. The post-ternary structure indicates that DNA distortion and most enzyme-AMP contacts remain after phosphodiester bond formation, implying loss of covalent linkage to the DNA drives release of AMP, rather than active site rearrangement. Additionally, comparisons of this cyanobacterial DNA ligase with homologs from bacteria and bacteriophage pose interesting questions about the structural origin of double-strand break joining activity and the evolution of these ATP-dependent DNA ligase enzymes.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, N-9037, Norway.,School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
| |
Collapse
|
45
|
Mishra PKK, Nimmanapalli R. In silico characterization of Leptospira interrogans DNA ligase A and delineation of its antimicrobial stretches. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Potapov V, Ong JL, Langhorst BW, Bilotti K, Cahoon D, Canton B, Knight TF, Evans TC, Lohman GJS. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining. Nucleic Acids Res 2019; 46:e79. [PMID: 29741723 PMCID: PMC6061786 DOI: 10.1093/nar/gky303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5′-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5′-TNA overhangs ligate extremely inefficiently compared to all other Watson–Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.
Collapse
Affiliation(s)
- Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Jennifer L Ong
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | - Bradley W Langhorst
- Applications and Product Development, New England Biolabs, Ipswich, MA 01938, USA
| | | | | | | | | | - Thomas C Evans
- Research Department, New England Biolabs, Ipswich, MA 01938, USA
| | | |
Collapse
|
47
|
Abstract
DNA ligases are used chiefly to create novel combinations of nucleic acid molecules and to attach them to vectors before molecular cloning. They are either of bacterial origin or bacteriophage encoded and have different properties, as discussed here.
Collapse
|
48
|
Williamson A, Grgic M, Leiros HKS. DNA binding with a minimal scaffold: structure-function analysis of Lig E DNA ligases. Nucleic Acids Res 2019; 46:8616-8629. [PMID: 30007325 PMCID: PMC6144786 DOI: 10.1093/nar/gky622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
DNA ligases join breaks in the phosphodiester backbone of DNA by catalysing the formation of bonds between opposing 5′P and 3′OH ends in an adenylation-dependent manner. Catalysis is accompanied by reorientation of two core domains to provide access to the active site for cofactor utilization and enable substrate binding and product release. The general paradigm is that DNA ligases engage their DNA substrate through complete encirclement of the duplex, completed by inter-domain kissing contacts via loops or additional domains. The recent structure of a minimal Lig E-type DNA ligase, however, implies it must use a different mechanism, as it lacks any domains or loops appending the catalytic core which could complete encirclement. In the present study, we have used a structure-guided mutagenesis approach to investigate the role of conserved regions in the Lig E proteins with respect to DNA binding. We report the structure of a Lig-E type DNA ligase bound to the nicked DNA-adenylate reaction intermediate, confirming that complete encirclement is unnecessary for substrate engagement. Biochemical and biophysical measurements of point mutants to residues implicated in binding highlight the importance of basic residues in the OB domain, and inter-domain contacts to the linker.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Miriam Grgic
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | |
Collapse
|
49
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
50
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|