1
|
Ragavendran PV, Tripathi V, Gandotra S. Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748562 DOI: 10.1099/mic.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis.
Collapse
Affiliation(s)
- P V Ragavendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Vaishnavi Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| |
Collapse
|
2
|
Han YS, Chen JX, Li ZB, Chen J, Yi WJ, Huang H, Wei LL, Jiang TT, Li JC. Identification of potential lipid biomarkers for active pulmonary tuberculosis using ultra-high-performance liquid chromatography-tandem mass spectrometry. Exp Biol Med (Maywood) 2020; 246:387-399. [PMID: 33175608 DOI: 10.1177/1535370220968058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Early diagnosis of active pulmonary tuberculosis (TB) is the key to controlling the disease. Host lipids are nutrient sources for the metabolism of Mycobacterium tuberculosis. In this research work, we used ultra-high-performance liquid chromatography-tandem mass spectrometry to screen plasma lipids in TB patients, lung cancer patients, community-acquired pneumonia patients, and normal healthy controls. Principal component analysis, orthogonal partial least squares discriminant analysis, and K-means clustering algorithm analysis were used to identify lipids with differential abundance. A total of 22 differential lipids were filtered out among all subjects. The plasma phospholipid levels were decreased, while the cholesterol ester levels were increased in patients with TB. We speculate that the infection of M. tuberculosis may regulate the lipid metabolism of TB patients and may promote host-assisted bacterial degradation of phospholipids and accumulation of cholesterol esters. This may be related to the formation of lung cavities with caseous necrosis. The results of receiver operating characteristic curve analysis revealed four lipids such as phosphatidylcholine (PC, 12:0/22:2), PC (16:0/18:2), cholesteryl ester (20:3), and sphingomyelin (d18:0/18:1) as potential biomarkers for early diagnosis of TB. The diagnostic model was fitted by using logistic regression analysis and combining the above four lipids with a sensitivity of 92.9%, a specificity of 82.4%, and the area under the curve (AUC) value of 0.934 (95% CI 0.873 - 0.971). The machine learning method (10-fold cross-validation) demonstrated that the model had good accuracy (0.908 AUC, 85.3% sensitivity, and 85.9% specificity). The lipids identified in this study may serve as novel biomarkers in TB diagnosis. Our research may pave the foundation for understanding the pathogenesis of TB.
Collapse
Affiliation(s)
- Yu-Shuai Han
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Xi Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Chen
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wen-Jing Yi
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Huai Huang
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing 312000, China
| | - Ting-Ting Jiang
- Central Laboratory, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Ji-Cheng Li
- Institute of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Vartak A, Goins C, de Moura VCN, Schreidah CM, Landgraf AD, Lin B, Du J, Jackson M, Ronning DR, Sucheck SJ. Biochemical and microbiological evaluation of N-aryl urea derivatives against mycobacteria and mycobacterial hydrolases. MEDCHEMCOMM 2019; 10:1197-1204. [PMID: 31741730 PMCID: PMC6677023 DOI: 10.1039/c9md00122k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Abstract
A focused library of 24 N-aryl urea derivatives was prepared and evaluated against serine esterases of Mycobacterium tuberculosis (Mtb) Rv3802c and Mtb Ag85C. The members of the library were evaluated for both selectivity and mode of inhibition. Furan-based urea derivative 6c was found to be the most potent non-covalent inhibitor of Rv3802c with a K i value of 5.2 ± 0.7 μM. On the other hand, triazole-based ureas 10a and 10b selectively inhibited Ag85C irreversibly with a k inact/K i value of 2.3 ± 0.3 and 5.5 ± 0.4 × 10-3 μM-1 min-1, respectively. The library was also evaluated for minimum inhibitory concentration (MIC) against two strains of Mtb, Mycobacterium smegmatis, and Mycobacterium abscessus. Compounds 4a and 4c were active against Mtb H37Rv mc26206 with MIC values of 3.12 and 1.5 μM, respectively. Closely related 4e showed similar activity against Mtb H37Rv mc26206 but also possessed activity against Mtb H37Ra, Mycobacterium smegmatis and Mycobacterium abscessus. Compounds 4a, 4c, and 4e all contained a common 1-(cyclohexylmethyl)-3-phenylurea motif. In summary, we identified a selective non-covalent inhibitor of Rv3802c and covalently irreversible inhibitors of Ag85C as well as the 1-(cyclohexylmethyl)-3-phenylurea motif which showed activity against a variety of mycobacteria.
Collapse
Affiliation(s)
- Abhishek Vartak
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Christopher Goins
- Center for Therapeutic Discovery , Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , OH 44195 , USA
| | - Vinicius Calado Nogueira de Moura
- Mycobacteria Research Laboratories , Department of Microbiology , Immunology and Pathology , Colorado State University , Fort Collins , USA
| | - Celine M Schreidah
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Alexander D Landgraf
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Boren Lin
- Department of Biological Sciences , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA
| | - Jianyang Du
- Department of Biological Sciences , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA
| | - Mary Jackson
- Mycobacteria Research Laboratories , Department of Microbiology , Immunology and Pathology , Colorado State University , Fort Collins , USA
| | - Donald R Ronning
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| | - Steven J Sucheck
- Department of Chemistry and Biochemistry , University of Toledo , 2801 West Bancroft Street , Toledo , Ohio 43606 , USA . ;
| |
Collapse
|
4
|
Yamada H, Yamaguchi M, Igarashi Y, Chikamatsu K, Aono A, Murase Y, Morishige Y, Takaki A, Chibana H, Mitarai S. Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM Examination. Front Microbiol 2018; 9:1992. [PMID: 30258411 PMCID: PMC6145149 DOI: 10.3389/fmicb.2018.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023] Open
Abstract
A series of structome analyses, that is, quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level, have already been achieved individually in Exophiala dermatitidis, Saccharomyces cerevisiae, Mycobacterium tuberculosis, Myojin spiral bacteria, and Escherichia coli. In these analyses, sample cells were processed through cryo-fixation and rapid freeze-substitution, resulting in the exquisite preservation of ultrastructures on the serial ultrathin sections examined by transmission electron microscopy. In this paper, structome analysis of non pathogenic Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis, was performed. As M. smegmatis has often been used in molecular biological experiments and experimental tuberculosis as a substitute of highly pathogenic M. tuberculosis, it has been a task to compare two species in the same genus, Mycobacterium, by structome analysis. Seven M. smegmatis cells cut into serial ultrathin sections, and, totally, 220 serial ultrathin sections were examined by transmission electron microscopy. Cell profiles were measured, including cell length, diameter of cell and cytoplasm, surface area of outer membrane and plasma membrane, volume of whole cell, periplasm, and cytoplasm, and total ribosome number and density per 0.1 fl cytoplasm. These data are based on direct measurement and enumeration of exquisitely preserved single cell structures in the transmission electron microscopy images, and are not based on the calculation or assumptions from biochemical or molecular biological indirect data. All measurements in M. smegmatis, except cell length, are significantly higher than those of M. tuberculosis. In addition, these data may explain the more rapid growth of M. smegmatis than M. tuberculosis and contribute to the understanding of their structural properties, which are substantially different from M. tuberculosis, relating to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance in relation to the ratio of the targets to the corresponding drugs. In addition, data obtained from cryo-transmission electron microscopy examination were used to support the validity of structome analysis. Finally, our data strongly support the most recent establishment of the novel genus Mycolicibacterium, into which basonym Mycobacterium smegmatis has been classified.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | | | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Goins CM, Sudasinghe TD, Liu X, Wang Y, O'Doherty GA, Ronning DR. Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases. Biochemistry 2018; 57:2383-2393. [PMID: 29601187 DOI: 10.1021/acs.biochem.8b00152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetrahydrolipstatin (THL) is a covalent inhibitor of many serine esterases. In mycobacteria, THL has been found to covalently react with 261 lipid esterases upon treatment of Mycobacterium bovis cell lysate. However, the covalent adduct is considered unstable in some cases because of the hydrolysis of the enzyme-linked THL adduct resulting in catalytic turnover. In this study, a library of THL stereoderivatives was tested against three essential Mycobacterium tuberculosis lipid esterases of interest for drug development to assess how the stereochemistry of THL affects respective enzyme inhibition and allows for cross enzyme inhibition. The mycolyltransferase Antigen 85C (Ag85C) was found to be stereospecific with regard to THL; covalent inhibition occurs within minutes and was previously shown to be irreversible. Conversely, the Rv3802 phospholipase A/thioesterase was more accepting of a variety of THL configurations and uses these compounds as alternative substrates. The reaction of the THL stereoderivatives with the thioesterase domain of polyketide synthase 13 (Pks13-TE) also leads to hydrolytic turnover and is nonstereospecific but occurs on a slower, multihour time scale. Our findings suggest the stereochemistry of the β-lactone ring of THL is important for cross enzyme reactivity, while the two stereocenters of the peptidyl arm can affect enzyme specificity and the catalytic hydrolysis of the β-lactone ring. The observed kinetic data for all three target enzymes are supported by recently published X-ray crystal structures of Ag85C, Rv3802, and Pks13-TE. Insights from this study provide a molecular basis for the kinetic modulation of three essential M. tuberculosis lipid esterases by THL and can be applied to increase potency and enzyme residence times and enhance the specificity of the THL scaffold.
Collapse
Affiliation(s)
- Christopher M Goins
- Department of Chemistry and Biochemistry , University of Toledo , Toledo , Ohio 43606 , United States
| | - Thanuja D Sudasinghe
- Department of Chemistry and Biochemistry , University of Toledo , Toledo , Ohio 43606 , United States
| | - Xiaofan Liu
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Yanping Wang
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Donald R Ronning
- Department of Chemistry and Biochemistry , University of Toledo , Toledo , Ohio 43606 , United States
| |
Collapse
|