1
|
Li M, Shi X, Wu Y, Qi B, Zhang C, Wang B, Zhang B, Xu Y. Pmepa1 knockdown alleviates SpA-induced pyroptosis and osteogenic differentiation inhibition of hBMSCs via p38MAPK/NLRP3 axis. Int Immunopharmacol 2023; 124:110843. [PMID: 37634444 DOI: 10.1016/j.intimp.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Osteomyelitis is a refractory bone infectious disease, which usually results in progressive bone destruction and bone loss. The invasion of pathogens and subsequent inflammatory response could damage bone marrow mesenchymal stem cells (BMSCs) and inhibit osteogenic differentiation, and finally aggravate uncontrolled bone remodeling in osteomyelitis by affecting bone formation. Exploring the mechanisms of BMSCs injury and osteogenic differentiation inhibition may would help us to find potential therapeutic targets. METHOD Firstly, staphylococcal protein A (SpA)-treated human bone marrow mesenchymal stem cells (hBMSCs) were used to construct cell models of osteomyelitis. Secondly, transcriptome sequencing was performed to screen differentially expressed genes and then verified the expression of target genes. Next, in vitro experiments were conducted to explore the functions and mechanisms of prostate transmembrane protein androgen induced 1 (Pmepa1) in SpA-treated hBMSCs. Finally, the rat model of osteomyelitis was established to provide an auxiliary validation of the in vitro experimental results. RESULTS We found that SpA treatment induced inflammatory injury and inhibited osteogenic differentiation in hBMSCs, then the transcriptome sequencing and further detection results showed that Pmepa1 was significantly upregulated in this process. Functionally, Pmepa1 knockdown alleviated inflammatory injury and promoted osteogenic differentiation in SpA-treated hBMSCs. Among them, it was demonstrated that Pmepa1 knockdown exerted cytoprotective effects by alleviating pyroptosis of SpA-infected hBMSCs. Furthermore, recovery experiments revealed that Pmepa1 knockdown reversed SpA-mediated adverse effects by downregulating the p38MAPK/NLRP3 axis. Finally, the detection results of rat femoral osteomyelitis showed that the expression of Pmepa1 was up-regulated, and the expression trends of other indicators including p38MAPK, NLRP3, and caspase-1 were also consistent with the in vitro model. CONCLUSION Pmepa1 knockdown alleviates SpA-induced pyroptosis and inhibition of osteogenic differentiation in hBMSCs by downregulating p38MAPK/NLRP3 signaling axis. Modulating the expression of Pmepa1 may be a potential strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Mingjun Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangwen Shi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Baochuang Qi
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Chaoqun Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bin Wang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Bihuan Zhang
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
2
|
Li Y, Zhang Y, Li L, Zhang M, Song N, Zhao Q, Liu Z, Diao A. TMEPAI promotes degradation of the NF-κB signaling pathway inhibitory protein IκBα and contributes to tumorigenesis. Int J Biol Macromol 2023; 235:123859. [PMID: 36868334 DOI: 10.1016/j.ijbiomac.2023.123859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
The transmembrane prostate androgen-induced protein (TMEPAI) is known to be highly expressed in various types of cancer and promoted oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. Here we reported that expression of TMEPAI activated the NF-κB signaling. TMEPAI showed direct interaction with NF-κB pathway inhibitory protein IκBα. Though ubiquitin ligase Nedd4 (neural precursor cell expressed, developmentally down-regulated 4) did not interact with IκBα directly, TMEPAI recruited Nedd4 for ubiquitination of IκBα, leading to IκBα degradation through the proteasomal and lysosomal pathway, and promoted activation of NF-κB signaling. Further study indicated NF-κB signaling is involved in TMEPAI-induced cell proliferation and tumor growth in immune deficient mice. This finding helps to further understand the mechanism of TMEPAI on tumorigenesis and suggests TMEPAI is potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| | - Yaxin Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Lu Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Mei Zhang
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Ning Song
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Qing Zhao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Zhenxing Liu
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
| | - Aipo Diao
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China.
| |
Collapse
|
3
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
5
|
Jiang Q, Mao H, He G, Mao X. Targeting the oncogenic transcription factor c-Maf for the treatment of multiple myeloma. Cancer Lett 2022; 543:215791. [PMID: 35700821 DOI: 10.1016/j.canlet.2022.215791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongwu Mao
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Guisong He
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
6
|
Qiu D, Hu J, Hu J, Yu A, Othmane B, He T, Ding J, Cheng X, Ren W, Tan X, Yu Q, Chen J, Zu X. PMEPA1 Is a Prognostic Biomarker That Correlates With Cell Malignancy and the Tumor Microenvironment in Bladder Cancer. Front Immunol 2021; 12:705086. [PMID: 34777336 PMCID: PMC8582246 DOI: 10.3389/fimmu.2021.705086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression, but the potential role of PMEPA1 in bladder cancer (BLCA) remains elusive. We assess the role of PMEPA1 in BLCA, via a publicly available database and in vitro study. PMEPA1 was identified from 107 differentially expressed genes (DEGs) to have prognostic value. GO, KEGG, and GSEA analysis indicated that PMEPA1 was involved in cancer progression and the tumor microenvironment (TME). Then bioinformatical analysis in TCGA, GEO, TIMER, and TISIDB show a positive correlation with the inflammation and infiltration levels of three tumor-infiltrating immune cells (TAMs, CAFs, and MDSCs) and immune/stromal scores in TME. Moreover, in vitro study revealed that PMEPA1 promotes bladder cancer cell malignancy. Immunohistochemistry and survival analysis shed light on PMEPA1 potential to be a novel biomarker in predicting tumor progression and prognosis. At last, we also analyzed the role of PMEPA1 in predicting the molecular subtype and the response to several treatment options in BLCA. We found that PMEPA1 may be a novel potential biomarker to predict the progression, prognosis, and molecular subtype of BLCA.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Anze Yu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Texas Medical Center, Houston, TX, United States
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tongchen He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Xiyan Tan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoyan Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
PMEPA1/TMEPAI Is a Unique Tumorigenic Activator of AKT Promoting Proteasomal Degradation of PHLPP1 in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13194934. [PMID: 34638419 PMCID: PMC8508116 DOI: 10.3390/cancers13194934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Transmembrane prostate androgen-induced protein (TMEPAI), also known as PMEPA1, is highly expressed in many types of cancer and promotes oncogenic abilities. However, the mechanisms whereby TMEPAI facilitates tumorigenesis are not fully understood. We previously established TMEPAI-knockout (KO) cells from human triple-negative breast cancer (TNBC) cell lines and found that TMEPAI-KO cells showed reduced tumorigenic abilities. Here, we report that TMEPAI-KO cells upregulated the expression of pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and suppressed AKT Ser473 phosphorylation, which was consistent with TCGA dataset analysis. Additionally, the knockdown (KD) of PHLPP1 in TMEPAI-KO cells partially but significantly rescued AKT Ser473 phosphorylation, as well as in vitro and in vivo tumorigenic activities, thus showing that TMEPAI functions as an oncogenic protein through the regulation of PHLPP1 subsequent to AKT activation. Furthermore, we demonstrated that TMEPAI PPxY (PY) motifs are essential for binding to NEDD4-2, an E3 ubiquitin ligase, and PHLPP1-downregulatory ability. Moreover, TMEPAI enhanced the complex formation of PHLPP1 with NEDD4-2 and PHLPP1 polyubiquitination, which leads to its proteasomal degradation. These findings indicate that the PY motifs of TMEPAI suppress the amount of PHLPP1 and maintain AKT Ser473 phosphorylation at high levels to enhance the tumorigenic potentiality of TNBC.
Collapse
|
8
|
Wardhani BWK, Louisa M, Watanabe Y, Setiabudy R, Kato M. TGF-β-Induced TMEPAI Promotes Epithelial-Mesenchymal Transition in Doxorubicin-Treated Triple-Negative Breast Cancer Cells via SMAD3 and PI3K/AKT Pathway Alteration. BREAST CANCER-TARGETS AND THERAPY 2021; 13:529-538. [PMID: 34584450 PMCID: PMC8464328 DOI: 10.2147/bctt.s325429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Introduction Epithelial–mesenchymal transition (EMT) and overexpression of drug efflux transporters have been reported to cause doxorubicin resistance. Our previous study indicated that TMEPAI (transmembrane prostate androgen-induced protein) attenuated doxorubicin sensitivity in triple-negative breast cancer cells. However, how TMEPAI contributes to doxorubicin resistance in TNBC remains unclear. Thus, the present study aimed to elucidate the mechanism of TMEPAI in doxorubicin resistance in triple-negative breast cancer cells. Methods We used BT549, triple-negative cells wild type (WT), and BT549 TMEPAI knock-out. Both cells were treated with TGF-β 2 ng/mL for 24 hours, followed by TGF-β 2 ng/mL and doxorubicin 12.9 nM for another 24 hours. Afterward, the cells were harvested and counted. Cells were further lysed and used for RT-PCR and Western blot analysis. We determined the expression levels of proliferation, apoptosis, EMT markers, and drug efflux transporters. Additionally, we investigated the expressions of PI3K as well as SMAD3 and AKT phosphorylation. Results TNBC cells were shown to be less sensitive to doxorubicin in the presence of TMEPAI. TMEPAI was shown to alleviate the mRNA expressions of apoptosis markers: Bax, Bcl2, Caspase-3, and Caspase-9. Our results indicated that the presence of TMEPAI greatly amplifies EMT and increases drug efflux transporter expressions after doxorubicin treatment. Furthermore, our findings demonstrated that TMEPAI reduced the action of doxorubicin in inhibiting SMAD3 phosphorylation. TMEPAI was also shown to modify the effect of doxorubicin by reducing PI3K expressions and Akt phosphorylation in triple-negative breast cancer cells. Conclusion Our findings indicate that TMEPAI promotes EMT and drug efflux transporters at least in part by shifting doxorubicin action from SMAD3 phosphorylation reduction to PI3K/AKT inhibition in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Bantari W K Wardhani
- Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.,Department of Pharmacology, Faculty of Military Pharmacy, Indonesia Defense University, West Java, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rianto Setiabudy
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Fan F, Podar K. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers (Basel) 2021; 13:2326. [PMID: 34066181 PMCID: PMC8151277 DOI: 10.3390/cancers13102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) transcription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes containing Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1 family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and natural products.
Collapse
Affiliation(s)
- Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China;
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| |
Collapse
|
10
|
Xu Y, Xu M, Tong J, Tang X, Chen J, Chen X, Zhang Z, Cao B, Stewart AK, Moran MF, Wu D, Mao X. Targeting the Otub1/c-Maf axis for the treatment of multiple myeloma. Blood 2021; 137:1478-1490. [PMID: 32842143 DOI: 10.1182/blood.2020005199] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), but how to achieve it is still elusive. In the present study, we found the Otub1/c-Maf axis could be a potential target. Otub1, an OTU family deubiquitinase, was found to interact with c-Maf by mass spectrometry. Otub1 abrogates c-Maf K48-linked polyubiquitination, thus preventing its degradation and enhancing its transcriptional activity. Specifically, this deubiquitinating activity depends on its Lys71 and the N terminus but is independent of UBE2O, a known E2 of c-Maf. Otub1 promotes MM cell survival and MM tumor growth. In contrast, silence of Otub1 leads to c-Maf degradation and c-Maf-expressing MM cell apoptosis. Therefore, the Otub1/c-Maf axis could be a therapeutic target of MM. In order to explore this concept, we performed a c-Maf recognition element-driven luciferase-based screen against US Food and Drug Administration-approved drugs and natural products, from which the generic cardiac glycoside lanatoside C (LanC) is found to prevent c-Maf deubiquitination and induces its degradation by disrupting the interaction of Otub1 and c-Maf. Consequently, LanC inhibits c-Maf transcriptional activity, induces c-Maf-expressing MM cell apoptosis, and suppresses MM growth and prolongs overall survival of model mice, but without apparent toxicity. Therefore, the present study identifies Otub1 as a novel deubiquitinase of c-Maf and establishes that the Otub1/c-Maf axis is a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Yujia Xu
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jiefei Tong
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xuehan Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | | | - Michael F Moran
- Program in Cell Biology, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Suzhou, China
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital-Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Hagg A, Kharoud S, Goodchild G, Goodman CA, Chen JL, Thomson RE, Qian H, Gregorevic P, Harrison CA, Walton KL. TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass. Front Physiol 2020; 11:560225. [PMID: 33250771 PMCID: PMC7672205 DOI: 10.3389/fphys.2020.560225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of myostatin- and activin-mediated SMAD2/3 signaling using ligand traps, such as soluble receptors, ligand-targeting propeptides and antibodies, or follistatin can increase skeletal muscle mass in healthy mice and ameliorate wasting in models of cancer cachexia and muscular dystrophy. However, clinical translation of these extracellular approaches targeting myostatin and activin has been hindered by the challenges of achieving efficacy without potential effects in other tissues. Toward the goal of developing tissue-specific myostatin/activin interventions, we explored the ability of transmembrane prostate androgen-induced (TMEPAI), an inhibitor of transforming growth factor-β (TGF-β1)-mediated SMAD2/3 signaling, to promote growth, and counter atrophy, in skeletal muscle. In this study, we show that TMEPAI can block activin A, activin B, myostatin and GDF-11 activity in vitro. To determine the physiological significance of TMEPAI, we employed Adeno-associated viral vector (AAV) delivery of a TMEPAI expression cassette to the muscles of healthy mice, which increased mass by as much as 30%, due to hypertrophy of muscle fibers. To demonstrate that TMEPAI mediates its effects via inhibition of the SMAD2/3 pathway, tibialis anterior (TA) muscles of mice were co-injected with AAV vectors expressing activin A and TMEPAI. In this setting, TMEPAI blocked skeletal muscle wasting driven by activin-induced phosphorylation of SMAD3. In a model of cancer cachexia associated with elevated circulating activin A, delivery of AAV:TMEPAI into TA muscles of mice bearing C26 colon tumors ameliorated the muscle atrophy normally associated with cancer progression. Collectively, the findings indicate that muscle-directed TMEPAI gene delivery can inactivate the activin/myostatin-SMAD3 pathway to positively regulate muscle mass in healthy settings and models of disease.
Collapse
Affiliation(s)
- Adam Hagg
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Swati Kharoud
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Georgia Goodchild
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A Goodman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Sunshine Hospital, The University of Melbourne, St Albans, VIC, Australia
| | - Justin L Chen
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rachel E Thomson
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hongwei Qian
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, The University of Washington School of Medicine, Seattle, WA, United States
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
12
|
Xu Y, Sun T, Zeng K, Xu M, Chen J, Xu X, Zhang Z, Cao B, Tang X, Wu D, Kong Y, Zeng Y, Mao X. Anti-bacterial and anti-viral nanchangmycin displays anti-myeloma activity by targeting Otub1 and c-Maf. Cell Death Dis 2020; 11:818. [PMID: 32999280 PMCID: PMC7527563 DOI: 10.1038/s41419-020-03017-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
As a deubiqutinase Otub1 stabilizes and promotes the oncogenic activity of the transcription factor c-Maf in multiple myeloma (MM), a malignancy of plasma cells. In the screen for bioactive inhibitors of the Otub1/c-Maf axis for MM treatment, nanchangmycin (Nam), a polyketide antibiotic, was identified to suppress c-Maf activity in the presence of Otub1. By suppressing Otub1, Nam induces c-Maf polyubiquitination and subsequent degradation in proteasomes but does not alter its mRNA level. Consistently, Nam downregulates the expression of CCND2, ARK5, and ITGB7, the downstream genes regulated by c-Maf, and promotes MM cell apoptosis as evidenced by PARP and Caspase-3 cleavage, as well as Annexin V staining. In line with the hypothesis, overexpression of Otub1 partly rescues Nam-induced MM cell apoptosis, and interestingly, when Otub1 is knocked down, Nam-decreased MM cell survival is also partly ablated, suggesting Otub1 is essential for Nam anti-MM activity. Nam also displays potent anti-MM activity synergistically with Doxorubicin or lenalidomide. In the in vivo assays, Nam almost completely suppresses the growth of MM xenografts in nude mice at low dosages but it shows no toxicity. Given its safety and efficacy, Nam has a potential for MM treatment by targeting the Otub1/c-Maf axis.
Collapse
Affiliation(s)
- Yujia Xu
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tong Sun
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Kun Zeng
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Xu
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Jinhao Chen
- Department of Hematology, Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215620, China
| | - Xiaofeng Xu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaowen Tang
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Depei Wu
- Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215100, P. R. China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215100, P. R. China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital; Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
13
|
Ji J, Ding K, Luo T, Xu R, Zhang X, Huang B, Chen A, Zhang D, Miletic H, Bjerkvig R, Thorsen F, Wang J, Li X. PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1. Oncogene 2020; 39:1125-1139. [PMID: 31605013 PMCID: PMC6989403 DOI: 10.1038/s41388-019-1050-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
The Hippo signaling pathway controls organ development and is also known, in cancer, to have a tumor suppressing role. Within the Hippo pathway, we here demonstrate, in human gliomas, a functional interaction of a transmembrane protein, prostate transmembrane protein, androgen induced 1 (PMEPA1) with large tumor suppressor kinase 1 (LATS1). We show that PMEPA1 is upregulated in primary human gliomas. The PMEPA1 isoform PMEPA1a was predominantly expressed in glioma specimens and cell lines, and ectopic expression of the protein promoted glioma growth and invasion in vitro and in an orthotopic xenograft model in nude mice. In co-immunoprecipitation experiments, PMEPA1a associated with the Hippo tumor suppressor kinase LATS1. This interaction led to a proteasomal degradation of LATS1 through recruitment of the ubiquitin ligase, neural precursor cell expressed, developmentally downregulated 4 (NEDD4), which led to silencing of Hippo signaling. Alanine substitution in PMEPA1a at PY motifs resulted in failed LATS1 degradation. Targeting of a downstream component in the Hippo signaling pathway, YAP, with shRNA, interfered with the growth promoting activities of PMEPA1a in vitro and in vivo. In conclusion, the presented work shows that PMEPA1a contributes to glioma progression by a dysregulation of the Hippo signaling pathway and thus represents a promising target for the treatment of gliomas.
Collapse
Affiliation(s)
- Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Tao Luo
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- School of Medicine, Shandong University, Jinan, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, Luxembourg, L-1526, Luxembourg
| | - Frits Thorsen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
| |
Collapse
|
14
|
He Y, Wang S, Tong J, Jiang S, Yang Y, Zhang Z, Xu Y, Zeng Y, Cao B, Moran MF, Mao X. The deubiquitinase USP7 stabilizes Maf proteins to promote myeloma cell survival. J Biol Chem 2019; 295:2084-2096. [PMID: 31822558 DOI: 10.1074/jbc.ra119.010724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The Maf proteins, including c-Maf, MafA, and MafB, are critical transcription factors in myelomagenesis. Previous studies demonstrated that Maf proteins are processed by the ubiquitin-proteasome pathway, but the mechanisms remain elusive. This study applied MS to identify MafB ubiquitination-associated proteins and found that the ubiquitin-specific protease USP7 was present in the MafB interactome. Moreover, USP7 also interacted with c-Maf and MafA and blocked their polyubiquitination and degradation. Consistently, knockdown of USP7 resulted in Maf protein degradation along with increased polyubiquitination levels. The action of USP7 thus promoted Maf transcriptional activity as evidenced by luciferase assays and by the up-regulation of the expression of Maf-modulated genes. Furthermore, USP7 was up-regulated in myeloma cells, and it was negatively associated with the survival of myeloma patients. USP7 promoted myeloma cell survival, and when it was inhibited by its specific inhibitor P5091, myeloma cell lines underwent apoptosis. These results therefore demonstrated that USP7 is a deubiquitinase of Maf proteins and promotes MM cell survival in association with Maf stability. Given the significance of USP7 and Maf proteins in myeloma genesis, targeting the USP7/Maf axle is a potential strategy to the precision therapy of MM.
Collapse
Affiliation(s)
- Yuanming He
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Siyu Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto M5G 0A4, Canada
| | - Shuoyi Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Ye Yang
- School of Basic Medicine, Nanjing University of Traditional Medicine, Nanjing 210023, China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujia Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou 215100, China.
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto M5G 0A4, Canada
| | - Xinliang Mao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Guangzhou and Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China; Guangzhou Institute of Cardiovascular Disease and Department of Hematology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
15
|
Mebendazole elicits potent antimyeloma activity by inhibiting the USP5/c-Maf axis. Acta Pharmacol Sin 2019; 40:1568-1577. [PMID: 31197245 PMCID: PMC7468578 DOI: 10.1038/s41401-019-0249-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
c-Maf is a critical oncogenic transcription factor that contributes to myelomagenesis. Our previous studies demonstrated that the deubiquitinase USP5 stabilizes c-Maf and promotes myeloma cell proliferation and survival; therefore, the USP5/c-Maf axis could be a potential target for myeloma therapy. As a concept of principle, the present study established a USP5/c-Maf-based luciferase system that was used to screen an FDA-approved drug library. It was found that mebendazole, a typical anthelmintic drug, preferentially induced apoptosis in c-Maf-expressing myeloma cells. Moreover, oral administration of mebendazole delayed the growth of human myeloma xenografts in nude mice but did not show overt toxicity. Further studies showed that the selective antimyeloma activity of mebendazole was associated with the inhibition of the USP5/c-Maf axis. Mebendazole downregulated USP5 expression and disrupted the interaction between USP5 and c-Maf, thus leading to increased levels of c-Maf ubiquitination and subsequent c-Maf degradation. Mebendazole inhibited c-Maf transcriptional activity, as confirmed by both luciferase assays and expression measurements of c-Maf downstream genes. In summary, this study identified mebendazole as a USP5/c-Maf inhibitor that could be developed as a novel antimyeloma agent.
Collapse
|
16
|
Nian F, Zhu J, Chang H. Long non-coding RNA ANGPTL1-3 promotes multiple myeloma bortezomib resistance by sponging miR-30a-3p to activate c-Maf expression. Biochem Biophys Res Commun 2019; 514:1140-1146. [DOI: 10.1016/j.bbrc.2019.05.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
|
17
|
Itoh S, Itoh F. TMEPAI family: involvement in regulation of multiple signalling pathways. J Biochem 2018; 164:195-204. [DOI: 10.1093/jb/mvy059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|