1
|
Sarsons CD, Gilham D, Tsujikawa LM, Wasiak S, Fu L, Rakai BD, Stotz SC, Carestia A, Sweeney M, Kulikowski E. Apabetalone, a Clinical-Stage, Selective BET Inhibitor, Opposes DUX4 Target Gene Expression in Primary Human FSHD Muscle Cells. Biomedicines 2023; 11:2683. [PMID: 37893058 PMCID: PMC10604783 DOI: 10.3390/biomedicines11102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a muscle disease caused by inappropriate expression of the double homeobox 4 (DUX4) gene in skeletal muscle, and its downstream activation of pro-apoptotic transcriptional programs. Inhibitors of DUX4 expression have the potential to treat FSHD. Apabetalone is a clinical-stage bromodomain and extra-terminal (BET) inhibitor, selective for the second bromodomain on BET proteins. Using primary human skeletal muscle cells from FSHD type 1 patients, we evaluated apabetalone for its ability to counter DUX4's deleterious effects and compared it with the pan-BET inhibitor JQ1, and the p38 MAPK inhibitor-and DUX4 transcriptional repressor-losmapimod. We applied RNA-sequencing and bioinformatic analysis to detect treatment-associated impacts on the transcriptome of these cells. Apabetalone inhibited the expression of DUX4 downstream markers, reversing hallmarks of FSHD gene expression in differentiated muscle cells. JQ1, but not apabetalone, was found to induce apoptosis. While both BET inhibitors modestly impacted differentiation marker expression, they did not affect myotube fusion. Losmapimod also reduced expression of DUX4 target genes but differed in its impact on FSHD-associated pathways. These findings demonstrate that apabetalone inhibits DUX4 target gene expression and reverses transcriptional programs that contribute to FSHD pathology, making this drug a promising candidate therapeutic for FSHD.
Collapse
Affiliation(s)
| | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M. Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D. Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Stephanie C. Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp., 535 Mission St., 14th Floor, San Francisco, CA 94105, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
2
|
Smith AA, Nip Y, Bennett SR, Hamm DC, Lemmers RJLF, van der Vliet PJ, Setty M, van der Maarel SM, Tapscott SJ. DUX4 expression in cancer induces a metastable early embryonic totipotent program. Cell Rep 2023; 42:113114. [PMID: 37691147 PMCID: PMC10578318 DOI: 10.1016/j.celrep.2023.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/16/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
The transcription factor DUX4 regulates a portion of the zygotic gene activation (ZGA) program in the early embryo. Many cancers express DUX4 but it is unknown whether this generates cells similar to early embryonic stem cells. Here we identified cancer cell lines that express DUX4 and showed that DUX4 is transiently expressed in a small subset of the cells. DUX4 expression activates the DUX4-regulated ZGA transcriptional program, the subsequent 8C-like program, and markers of early embryonic lineages, while suppressing steady-state and interferon-induced MHC class I expression. Although DUX4 was expressed in a small number of cells under standard culture conditions, DNA damage or changes in growth conditions increased the fraction of cells expressing DUX4 and its downstream programs. Our demonstration that transient expression of endogenous DUX4 in cancer cells induces a metastable early embryonic stem cell program and suppresses antigen presentation has implications for cancer growth, progression, and immune evasion.
Collapse
Affiliation(s)
- Andrew A Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Yee Nip
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Danielle C Hamm
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Richard J L F Lemmers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Manu Setty
- Basic Sciences Division and Translational Science IRC, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Neurology, University of Washington, Seattle WA 98105, USA.
| |
Collapse
|
3
|
Knox RN, Eidahl JO, Wallace L, Choudury S, Rashnonejad A, Daman K, Guggenbiller M, Saad N, Hoover ME, Zhang L, Branson OE, Emerson CP, Freitas MA, Harper SQ. Post-Translational Modifications of the DUX4 Protein Impact Toxic Function in FSHD Cell Models. Ann Neurol 2023; 94:398-413. [PMID: 37186119 PMCID: PMC10777487 DOI: 10.1002/ana.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.
Collapse
Affiliation(s)
- Renatta N. Knox
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63108
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lindsay Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sarah Choudury
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Matthew Guggenbiller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nizar Saad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Michael E. Hoover
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Liwen Zhang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen E. Branson
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Charles P. Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Duranti E, Villa C. Influence of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Possible Treatments. Int J Mol Sci 2023; 24:ijms24119503. [PMID: 37298453 DOI: 10.3390/ijms24119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common form of muscular dystrophy and is characterized by muscle weakness and atrophy. FSHD is caused by the altered expression of the transcription factor double homeobox 4 (DUX4), which is involved in several significantly altered pathways required for myogenesis and muscle regeneration. While DUX4 is normally silenced in the majority of somatic tissues in healthy individuals, its epigenetic de-repression has been linked to FSHD, resulting in DUX4 aberrant expression and cytotoxicity in skeletal muscle cells. Understanding how DUX4 is regulated and functions could provide useful information not only to further understand FSHD pathogenesis, but also to develop therapeutic approaches for this disorder. Therefore, this review discusses the role of DUX4 in FSHD by examining the possible molecular mechanisms underlying the disease as well as novel pharmacological strategies targeting DUX4 aberrant expression.
Collapse
Affiliation(s)
- Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Lu-Nguyen N, Dickson G, Malerba A, Popplewell L. Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 2022; 10:biomedicines10071623. [PMID: 35884928 PMCID: PMC9313434 DOI: 10.3390/biomedicines10071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Silencing the expression of the double homeobox 4 (DUX4) gene offers great potential for the treatment of facioscapulohumeral muscular dystrophy (FSHD). Several research groups have recently reported promising results using systemic antisense therapy in a transgenic small animal model of FSHD, the ACTA1-MCM/FLExDUX4 mouse model. However, the treatment was applied in non-DUX4-induced mice or shortly after DUX4 activation, which resulted in conditions that do not correctly represent the situation in a clinic. Here, we generated progressive FSHD-like pathology in ACTA1-MCM/FLExDUX4 mice and then treated the animals with vivoPMO-PACS4, an antisense compound that efficiently downregulates DUX4. To best mimic the translation of this treatment in clinical settings, the systemic antisense oligonucleotide administration was delayed to 3 weeks after the DUX4 activation so that the pathology was established at the time of the treatment. The chronic administration of vivoPMO-PACS4 for 8 weeks downregulated the DUX4 expression by 60%. Consequently, the treated mice showed an increase by 18% in body-wide muscle mass and 32% in muscle strength, and a reduction in both myofiber central nucleation and muscle fibrosis by up to 29% and 37%, respectively. Our results in a more suitable model of FSHD pathology confirm the efficacy of vivoPMO-PACS4 administration, and highlight the significant benefit provided by the long-term treatment of the disease.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - George Dickson
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
| | - Alberto Malerba
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- Correspondence: (A.M.); (L.P.)
| | - Linda Popplewell
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (G.D.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Correspondence: (A.M.); (L.P.)
| |
Collapse
|
6
|
Lehka L, Wojton D, Topolewska M, Chumak V, Majewski Ł, Rędowicz MJ. Loss of Unconventional Myosin VI Affects cAMP/PKA Signaling in Hindlimb Skeletal Muscle in an Age-Dependent Manner. Front Physiol 2022; 13:933963. [PMID: 35837016 PMCID: PMC9273875 DOI: 10.3389/fphys.2022.933963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Myosin VI (MVI) is a unique unconventional myosin ubiquitously expressed in metazoans. Its diverse cellular functions are mediated by interactions with a number of binding partners present in multi-protein complexes. MVI is proposed to play important roles in muscle function and myogenesis. Previously, we showed that MVI is present in striated muscles and myogenic cells, and MVI interacts with A-kinase anchoring protein 9 (AKAP9), a scaffold for PKA and its regulatory proteins. Since PKA directly phosphorylates the MVI cargo binding domain, we hypothesized that the cellular effects of MVI are mediated by the cAMP/PKA signaling pathway, known to play important roles in skeletal muscle metabolism and myogenesis. To elucidate the potential role of MVI in PKA signaling in hindlimb muscle function, we used mice lacking MVI (Snell’s waltzer, SV), considered as natural MVI knockouts, and heterozygous littermates. We used muscles isolated from newborn (P0) as well as 3- and 12-month-old adult mice. We observed a significant increase in the muscle to body mass ratio, which was most evident for the soleus muscle, as well as changes in fiber size, indicating alterations in muscle metabolism. These observations were accompanied by age-dependent changes in the activity of PKA and cAMP/PKA-dependent transcriptional factor (CREB). Additionally, the levels of adenylate cyclase isoforms and phosphodiesterase (PDE4) were age-dependent. Also, cAMP levels were decreased in the muscle of P0 mice. Together, these observations indicate that lack of MVI impairs PKA signaling and results in the observed alterations in the SV muscle metabolism, in particular in newborn mice.
Collapse
Affiliation(s)
- Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Wojton
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Topolewska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Maria Jolanta Rędowicz,
| |
Collapse
|
7
|
Himeda CL, Jones PL. FSHD Therapeutic Strategies: What Will It Take to Get to Clinic? J Pers Med 2022; 12:jpm12060865. [PMID: 35743650 PMCID: PMC9225474 DOI: 10.3390/jpm12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of DUX4 in skeletal muscle. The complex nature of the locus and the fact that FSHD is a toxic, gain-of-function disease present unique challenges for the design of therapeutic strategies. There are three major DUX4-targeting avenues of therapy for FSHD: small molecules, oligonucleotide therapeutics, and CRISPR-based approaches. Here, we evaluate the preclinical progress of each avenue, and discuss efforts being made to overcome major hurdles to translation.
Collapse
|
8
|
Lu-Nguyen N, Malerba A, Antoni Pineda M, Dickson G, Popplewell LJ. Improving molecular and histopathology in diaphragm muscle of the double transgenic ACTA1-MCM/FLExDUX4 mouse model of FSHD with systemic antisense therapy. Hum Gene Ther 2022; 33:923-935. [PMID: 35078334 DOI: 10.1089/hum.2021.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a rare muscle dystrophy causing muscle weakness initially in the face, shoulders and upper arms, and extended to lower body muscles as the disease progresses. Respiratory restriction in FSHD is increasingly reported to be more common and severe than previously thought, with the involvement of diaphragm weakness in pulmonary insufficiency being under debate. As aberrant expression of the double homeobox 4 (DUX4) gene is the prime cause of FSHD, we and others have developed numerous strategies and reported promising results on downregulating DUX4 expression in both cellular and animal models of FSHD. However, the effect of DUX4 and anti-DUX4 approaches on diaphragm muscle has not been elucidated. Here we show that toxic DUX4 expression causes pathology that affects the diaphragm of ACTA1-MCM/FLExDUX4 mouse model of FSHD at both molecular and histological levels. Of importance, a systemic antisense treatment that suppresses DUX4 and target genes expression by 50% significantly improves muscle regeneration and muscle fibrosis, and prevents modification in myofiber type composition, supporting its development as a treatment for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Alberto Malerba
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Marina Antoni Pineda
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - George Dickson
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Linda J Popplewell
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
9
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
10
|
Banerji CRS, Panamarova M, Zammit PS. DUX4 expressing immortalized FSHD lymphoblastoid cells express genes elevated in FSHD muscle biopsies, correlating with the early stages of inflammation. Hum Mol Genet 2021; 29:2285-2299. [PMID: 32242220 PMCID: PMC7424723 DOI: 10.1093/hmg/ddaa053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Maryna Panamarova
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
11
|
Karpukhina A, Tiukacheva E, Dib C, Vassetzky YS. Control of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Cancer. Trends Mol Med 2021; 27:588-601. [PMID: 33863674 DOI: 10.1016/j.molmed.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
DUX4, a gene encoding a transcription factor involved in early embryogenesis, is located within the D4Z4 subtelomeric repeat on chromosome 4q35. In most healthy somatic tissues, DUX4 is heavily repressed by multiple genetic and epigenetic mechanisms, and its aberrant expression is linked to facioscapulohumeral muscular dystrophy (FSHD) where it has been extensively studied. Recently, DUX4 expression has been implicated in oncogenesis, although this is much less explored. In this review, we discuss multiple levels of control of DUX4 expression, including enhancer-promoter interactions, DNA methylation, histone modifications, noncoding RNAs, and telomere positioning effect. We also connect disparate data on intrachromosomal contacts involving DUX4 and emphasize the feedback loops in DUX4 regulation. Finally, we bridge data on DUX4 in FSHD and cancer and discuss prospective approaches for future FSHD therapies and the potential outcomes of DUX4 inhibition in cancer.
Collapse
Affiliation(s)
- Anna Karpukhina
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France
| | - Carla Dib
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Stanford University School of Medicine, Stanford, CA 94305-510, USA
| | - Yegor S Vassetzky
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia.
| |
Collapse
|
12
|
Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:298-311. [PMID: 33511244 PMCID: PMC7806950 DOI: 10.1016/j.omtm.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by incomplete silencing of the disease locus, leading to pathogenic misexpression of DUX4 in skeletal muscle. Previously, we showed that CRISPR inhibition could successfully target and repress DUX4 in FSHD myocytes. However, an effective therapy will require both efficient delivery of therapeutic components to skeletal muscles and long-term repression of the disease locus. Thus, we re-engineered our platform to allow in vivo delivery of more potent epigenetic repressors. We designed an FSHD-optimized regulatory cassette to drive skeletal muscle-specific expression of dCas9 from Staphylococcus aureus fused to HP1α, HP1γ, the MeCP2 transcriptional repression domain, or the SUV39H1 SET domain. Targeting each regulator to the DUX4 promoter/exon 1 increased chromatin repression at the locus, specifically suppressing DUX4 and its target genes in FSHD myocytes and in a mouse model of the disease. Importantly, minimizing the regulatory cassette and using the smaller Cas9 ortholog allowed our therapeutic cassettes to be effectively packaged into adeno-associated virus (AAV) vectors for in vivo delivery. By engineering a muscle-specific epigenetic CRISPR platform compatible with AAV vectors for gene therapy, we have laid the groundwork for clinical use of dCas9-based chromatin effectors in skeletal muscle disorders.
Collapse
Affiliation(s)
- Charis L. Himeda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Takako I. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- Corresponding author Peter L. Jones, Department of Pharmacology, Center for Molecular Medicine/MS-0318, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
13
|
Bouwman LF, van der Maarel SM, de Greef JC. The prospects of targeting DUX4 in facioscapulohumeral muscular dystrophy. Curr Opin Neurol 2020; 33:635-640. [PMID: 32796277 PMCID: PMC7735392 DOI: 10.1097/wco.0000000000000849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder, which is caused by incomplete repression of the transcription factor double homeobox 4 (DUX4) in skeletal muscle. To date, there is no DUX4-targeting treatment to prevent or delay disease progression. In the present review, we summarize developments in therapeutic strategies with the focus on inhibiting DUX4 and DUX4 target gene expression. RECENT FINDINGS Different studies show that DUX4 and its target genes can be repressed with genetic therapies using diverse strategies. Additionally, different small compounds can reduce DUX4 and its target genes in vitro and in vivo. SUMMARY Most studies that show DUX4 repression by genetic therapies have only been tested in vitro. More efforts should be made to test them in vivo for clinical translation. Several compounds have been shown to prevent DUX4 and target gene expression in vitro and in vivo. However, their efficiency and specificity has not yet been shown. With emerging clinical trials, the clinical benefit from DUX4 repression in FSHD will likely soon become apparent.
Collapse
Affiliation(s)
- Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Le Gall L, Sidlauskaite E, Mariot V, Dumonceaux J. Therapeutic Strategies Targeting DUX4 in FSHD. J Clin Med 2020; 9:E2886. [PMID: 32906621 PMCID: PMC7564105 DOI: 10.3390/jcm9092886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle dystrophy typically affecting patients within their second decade. Patients initially exhibit asymmetric facial and humeral muscle damage, followed by lower body muscle involvement. FSHD is associated with a derepression of DUX4 gene encoded by the D4Z4 macrosatellite located on the subtelomeric part of chromosome 4. DUX4 is a highly regulated transcription factor and its expression in skeletal muscle contributes to multiple cellular toxicities and pathologies ultimately leading to muscle weakness and atrophy. Since the discovery of the FSHD candidate gene DUX4, many cell and animal models have been designed for therapeutic approaches and clinical trials. Today there is no treatment available for FSHD patients and therapeutic strategies targeting DUX4 toxicity in skeletal muscle are being actively investigated. In this review, we will discuss different research areas that are currently being considered to alter DUX4 expression and toxicity in muscle tissue and the cell and animal models designed to date.
Collapse
Affiliation(s)
- Laura Le Gall
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Eva Sidlauskaite
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland BT47 6SB, UK
| |
Collapse
|
15
|
Sidlauskaite E, Le Gall L, Mariot V, Dumonceaux J. DUX4 Expression in FSHD Muscles: Focus on Its mRNA Regulation. J Pers Med 2020; 10:E73. [PMID: 32731450 PMCID: PMC7564753 DOI: 10.3390/jpm10030073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is the most frequent muscular disease in adults. FSHD is characterized by a weakness and atrophy of a specific set of muscles located in the face, the shoulder, and the upper arms. FSHD patients may present different genetic defects, but they all present epigenetic alterations of the D4Z4 array located on the subtelomeric part of chromosome 4, leading to chromatin relaxation and, ultimately, to the aberrant expression of one gene called DUX4. Once expressed, DUX4 triggers a cascade of deleterious events, eventually leading to muscle dysfunction and cell death. Here, we review studies on DUX4 expression in skeletal muscle to determine the genetic/epigenetic factors and regulatory proteins governing DUX4 expression, with particular attention to the different transcripts and their very low expression in muscle.
Collapse
Affiliation(s)
- Eva Sidlauskaite
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (E.S.); (L.L.G.); (V.M.)
| | - Laura Le Gall
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (E.S.); (L.L.G.); (V.M.)
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (E.S.); (L.L.G.); (V.M.)
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (E.S.); (L.L.G.); (V.M.)
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland BT47 6SB, UK
| |
Collapse
|
16
|
Rojas LA, Valentine E, Accorsi A, Maglio J, Shen N, Robertson A, Kazmirski S, Rahl P, Tawil R, Cadavid D, Thompson LA, Ronco L, Chang AN, Cacace AM, Wallace O. p38α Regulates Expression of DUX4 in a Model of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2020; 374:489-498. [DOI: 10.1124/jpet.119.264689] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
|
17
|
Greco A, Goossens R, van Engelen B, van der Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin Genet 2020; 97:799-814. [PMID: 32086799 PMCID: PMC7318180 DOI: 10.1111/cge.13726] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4 chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain Containing 1 (FSHD2). These two genotypes share a phenotype characterized by progressive and often asymmetric muscle weakening and atrophy, and common epigenetic alterations of the D4Z4 repeat. All together, these epigenetic changes converge the two genetic forms into one disease and explain the derepression of the DUX4 gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consistently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where it is believed to exercise a toxic effect. Here we provide a review of the recent literature describing the progress in understanding the complex genetic and epigenetic architecture of FSHD, with a focus on one of the consequences that these epigenetic changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we review the latest therapeutic strategies, with particular attention to the potential of epigenetic correction of the FSHD locus.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Experimental Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Remko Goossens
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
18
|
Banerji CRS, Zammit PS. PAX7 target gene repression is a superior FSHD biomarker than DUX4 target gene activation, associating with pathological severity and identifying FSHD at the single-cell level. Hum Mol Genet 2020; 28:2224-2236. [PMID: 31067297 PMCID: PMC6586142 DOI: 10.1093/hmg/ddz043] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. The condition is linked to hypomethylation of the D4Z4 macrosatellite repeat at chromosome 4q35, leading to epigenetic derepression of the transcription factor DUX4; coupled with a permissive 4qA haplotype supplying a poly(A) signal. DUX4 may drive FSHD pathology via both induction of target genes and inhibition of the function of the myogenic master regulator PAX7. Biomarkers for FSHD have focused on DUX4 target gene expression. We have, however, reported that PAX7 target gene repression is a hallmark of FSHD skeletal muscle. Here we demonstrate that PAX7 target gene repression is an equivalent biomarker to DUX4 target gene expression when considering RNA-Sequencing data from magnetic resonance imaging-guided muscle biopsies. Moreover, PAX7 target gene repression correlates with active disease, independent to DUX4 target gene expression. PAX7 target genes are also repressed in RNA-Sequencing data from single cells, representing a significantly better biomarker of FSHD cells than DUX4 target gene expression. Importantly, PAX7 target gene repression is a significant biomarker in the majority of FSHD cells that are DUX4 target gene negative, and on which the DUX4 biomarker is indiscriminate. To facilitate the evaluation of validated biomarkers we provide a simple tool that outputs biomarker values from a normalized expression data matrix. In summary, PAX7 target gene repression in FSHD correlates with disease severity, independently of DUX4 target gene expression. At the single-cell level, PAX7 target gene repression can efficiently discriminate FSHD cells, even when no DUX4 target genes are detectable.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK.,Faculty of Medicine, Imperial College London, Level, Faculty Building, South Kensington Campus, London, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
19
|
Klingler C, Ashley J, Shi K, Stiefvater A, Kyba M, Sinnreich M, Aihara H, Kinter J. DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB J 2020; 34:4573-4590. [PMID: 32020675 PMCID: PMC7079142 DOI: 10.1096/fj.201902696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Aberrant expression of the transcription factor double homeobox protein 4 (DUX4) can lead to a number of diseases including facio‐scapulo‐humeral muscular dystrophy (FSHD), acute lymphoblastic leukemia, and sarcomas. Inhibition of DUX4 may represent a therapeutic strategy for these diseases. By applying Systematic Evolution of Ligands by EXponential Enrichment (SELEX), we identified aptamers against DUX4 with specific secondary structural elements conveying high affinity to DUX4 as assessed by fluorescence resonance energy transfer and fluorescence polarization techniques. Sequences analysis of these aptamers revealed the presence of two consensus DUX4 motifs in a reverse complementary fashion forming hairpins interspersed with bulge loops at distinct positions that enlarged the binding surface with the DUX4 protein, as determined by crystal structure analysis. We demonstrate that insertion of specific structural elements into transcription factor binding oligonucleotides can enhance specificity and affinity.
Collapse
Affiliation(s)
- Christian Klingler
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jon Ashley
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adeline Stiefvater
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Sinnreich
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jochen Kinter
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Lim KRQ, Nguyen Q, Yokota T. DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E729. [PMID: 31979100 PMCID: PMC7037115 DOI: 10.3390/ijms21030729] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a disabling inherited muscular disorder characterized by asymmetric, progressive muscle weakness and degeneration. Patients display widely variable disease onset and severity, and sometimes present with extra-muscular symptoms. There is a consensus that FSHD is caused by the aberrant production of the double homeobox protein 4 (DUX4) transcription factor in skeletal muscle. DUX4 is normally expressed during early embryonic development, and is then effectively silenced in all tissues except the testis and thymus. Its reactivation in skeletal muscle disrupts numerous signalling pathways that mostly converge on cell death. Here, we review studies on DUX4-affected pathways in skeletal muscle and provide insights into how understanding these could help explain the unique pathogenesis of FSHD.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
| |
Collapse
|
21
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the DUX4 gene in skeletal muscle. DUX4 is a pioneer transcription factor that activates a program of gene expression during early human development, after which its expression is silenced in most somatic cells. When misexpressed in FSHD skeletal muscle, the DUX4 program leads to accumulated muscle pathology. Epigenetic regulators of the disease locus represent particularly attractive therapeutic targets for FSHD, as many are not global modifiers of the genome, and altering their expression or activity should allow correction of the underlying defect.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 4
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing
- Genetic Loci
- Genome, Human
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/classification
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Mutation
- Severity of Illness Index
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| | - Peter L Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Nevada 89557, USA;
| |
Collapse
|
22
|
Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019; 370:219-230. [PMID: 31189728 PMCID: PMC6652132 DOI: 10.1124/jpet.119.259663] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the β-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38β suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38β isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.
Collapse
Affiliation(s)
- Jonathan Oliva
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Scott Galasinski
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amelia Richey
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amy E Campbell
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Marvin J Meyers
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Neal Modi
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Jun Wen Zhong
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Rabi Tawil
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Stephen J Tapscott
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Francis M Sverdrup
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| |
Collapse
|
23
|
Long-read sequencing unveils IGH-DUX4 translocation into the silenced IGH allele in B-cell acute lymphoblastic leukemia. Nat Commun 2019; 10:2789. [PMID: 31243274 PMCID: PMC6594946 DOI: 10.1038/s41467-019-10637-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
IGH@ proto-oncogene translocation is a common oncogenic event in lymphoid lineage cancers such as B-ALL, lymphoma and multiple myeloma. Here, to investigate the interplay between IGH@ proto-oncogene translocation and IGH allelic exclusion, we perform long-read whole-genome and transcriptome sequencing along with epigenetic and 3D genome profiling of Nalm6, an IGH-DUX4 positive B-ALL cell line. We detect significant allelic imbalance on the wild-type over the IGH-DUX4 haplotype in expression and epigenetic data, showing IGH-DUX4 translocation occurs on the silenced IGH allele. In vitro, this reduces the oncogenic stress of DUX4 high-level expression. Moreover, patient samples of IGH-DUX4 B-ALL have similar expression profile and IGH breakpoints as Nalm6, suggesting a common mechanism to allow optimal dosage of non-toxic DUX4 expression. The IGH@ proto-oncogene translocation is a known genomic driver in several blood cancers. Here, the authors show that IGH-DUX4 translocation occurs on the silenced IGH allele avoiding toxic high-level expression of DUX4 in B-ALL.
Collapse
|
24
|
Pharmacologic normalization of pathogenic dosage underlying genetic diseases: an overview of the literature and path forward. Emerg Top Life Sci 2019; 3:53-62. [PMID: 33523192 DOI: 10.1042/etls20180099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Most monogenic disorders are caused by a pathologic deficit or excess of a single transcript and/or protein. Given that small molecules, including drugs, can affect levels of mRNA and protein, the pharmacologic normalization of such pathogenic dosage represents a possible therapeutic approach for such conditions. Here, we review the literature exploring pharmacologic modulation of mRNA and/or protein levels for disorders with paralogous modifier genes, for haploinsufficient disorders (insufficient gene-product), as well as toxic gain-of-function disorders (surplus or pathologic gene-product). We also discuss challenges facing the development of rare disease therapy by pharmacologic modulation of mRNA and protein. Finally, we lay out guiding principles for selection of disorders which may be amenable to this approach.
Collapse
|