1
|
Antonova D, Belousova VV, Zhivkoplias E, Sobinina M, Artamonova T, Vishnyakov IE, Kurdyumova I, Arseniev A, Morozova N, Severinov K, Khodorkovskii M, Yakunina MV. The Dynamics of Synthesis and Localization of Jumbo Phage RNA Polymerases inside Infected Cells. Viruses 2023; 15:2096. [PMID: 37896872 PMCID: PMC10612078 DOI: 10.3390/v15102096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
A nucleus-like structure composed of phage-encoded proteins and containing replicating viral DNA is formed in Pseudomonas aeruginosa cells infected by jumbo bacteriophage phiKZ. The PhiKZ genes are transcribed independently from host RNA polymerase (RNAP) by two RNAPs encoded by the phage. The virion RNAP (vRNAP) transcribes early viral genes and must be injected into the cell with phage DNA. The non-virion RNAP (nvRNAP) is composed of early gene products and transcribes late viral genes. In this work, the dynamics of phage RNAPs localization during phage phiKZ infection were studied. We provide direct evidence of PhiKZ vRNAP injection in infected cells and show that it is excluded from the phage nucleus. The nvRNAP is synthesized shortly after the onset of infection and localizes in the nucleus. We propose that spatial separation of two phage RNAPs allows coordinated expression of phage genes belonging to different temporal classes.
Collapse
Affiliation(s)
- Daria Antonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Viktoriia V. Belousova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Erik Zhivkoplias
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Mariia Sobinina
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Tatyana Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Innokentii E. Vishnyakov
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology of the Russian Academy of Science, St. Petersburg 194064, Russia;
| | - Inna Kurdyumova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Anatoly Arseniev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Morozova
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Konstantin Severinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics National Kurchatov Center, Moscow 123182, Russia
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mikhail Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Maria V. Yakunina
- Research Center of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| |
Collapse
|
2
|
Boon M, De Zitter E, De Smet J, Wagemans J, Voet M, Pennemann FL, Schalck T, Kuznedelov K, Severinov K, Van Meervelt L, De Maeyer M, Lavigne R. 'Drc', a structurally novel ssDNA-binding transcription regulator of N4-related bacterial viruses. Nucleic Acids Res 2020; 48:445-459. [PMID: 31724707 PMCID: PMC7145618 DOI: 10.1093/nar/gkz1048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function. We demonstrate that gp14, termed here as Drc (ssDNA-binding RNA Polymerase Cofactor), preferentially binds single-stranded DNA, yet contains a structural fold distinct from other ssDNA-binding proteins (SSBs). By comparison with other SSB folds and creation of truncation and amino acid substitution mutants, we provide the first evidence for the binding mechanism of this unique fold. From a biological perspective, Drc interacts with the phage-encoded RNA Polymerase complex (RNAPII), implying a functional role as an SSB required for the transition from early to middle gene transcription during phage infection. Similar to the coliphage N4 gp2 protein, Drc likely binds locally unwound middle promoters and recruits the phage RNA polymerase. However, unlike gp2, Drc does not seem to need an additional cofactor for promoter melting. A comparison among N4-related phage genera highlights the evolutionary diversity of SSB proteins in an otherwise conserved transcription regulation mechanism.
Collapse
Affiliation(s)
- Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Elke De Zitter
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Leuven 3001, Belgium
| | - Jeroen De Smet
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Jeroen Wagemans
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Marleen Voet
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Friederike L Pennemann
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Thomas Schalck
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | | | | | - Luc Van Meervelt
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Leuven 3001, Belgium
| | - Marc De Maeyer
- Department of Chemistry, Laboratory of Biomolecular Modelling and Design, KU Leuven, Leuven 3001, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|