1
|
Martín-Alonso S, Kang D, Martínez Del Río J, Luczkowiak J, Frutos-Beltrán E, Zhang L, Cheng X, Liu X, Zhan P, Menéndez-Arias L. Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. J Mol Biol 2022; 434:167507. [PMID: 35217069 DOI: 10.1016/j.jmb.2022.167507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
In retroviruses, strand displacement DNA-dependent DNA polymerization catalyzed by the viral reverse transcriptase (RT) is required to synthesize double-stranded proviral DNA. In addition, strand displacement during RNA-dependent DNA synthesis is critical to generate high-quality cDNA for use in molecular biology and biotechnology. In this work, we show that the loss of RNase H activity due to inactivating mutations in HIV-1 RT (e.g. D443N or E478Q) has no significant effect on strand displacement while copying DNA templates, but has a large impact on DNA polymerization in reactions carried out with RNA templates. Similar effects were observed with β-thujaplicinol and other RNase H active site inhibitors, including compounds with dual activity (i.e., characterized also as inhibitors of HIV-1 integrase and/or the RT DNA polymerase). Among them, dual inhibitors of HIV-1 RT DNA polymerase/RNase H activities, containing a 7-hydroxy-6-nitro-2H-chromen-2-one pharmacophore were found to be very potent and effective strand displacement inhibitors in RNA-dependent DNA polymerization reactions. These findings might be helpful in the development of transcriptomics technologies to obtain more uniform read coverages when copying long RNAs and for the construction of more representative libraries avoiding biases towards 5' and 3' ends, while providing valuable information for the development of novel antiretroviral agents.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Javier Martínez Del Río
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Lina Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Low-bias ncRNA libraries using ordered two-template relay: Serial template jumping by a modified retroelement reverse transcriptase. Proc Natl Acad Sci U S A 2021; 118:2107900118. [PMID: 34649994 PMCID: PMC8594491 DOI: 10.1073/pnas.2107900118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Retrotransposons are noninfectious, mobile genetic elements that proliferate in host genomes via an RNA intermediate that is copied into DNA by a reverse transcriptase (RT) enzyme. RTs are important for biotechnological applications involving information capture from RNA since RNA is first converted into complementary DNA for detection or sequencing. Here, we biochemically characterized RTs from two retroelements and uncovered several activities that allowed us to design a streamlined, efficient workflow for determining the inventory of RNA sequences in processed RNA pools. The unique properties of nonretroviral RT activities obviate many technical issues associated with current methods of RNA sequence analysis, with wide applications in research, biotechnology, and diagnostics. Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale. Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3′ ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.
Collapse
|
3
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
4
|
Martín-Alonso S, Frutos-Beltrán E, Menéndez-Arias L. Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends Biotechnol 2020; 39:194-210. [PMID: 32653101 DOI: 10.1016/j.tibtech.2020.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Abstract
Reverse transcriptases (RTs) are enzymes that can generate a complementary strand of DNA (cDNA) from RNA. Coupled with PCR, RTs have been widely used to detect RNAs and to clone expressed genes. Classical retroviral RTs have been improved by protein engineering. These enzymes and newly characterized RTs are key elements in the development of next-generation sequencing techniques that are now being applied to the study of transcriptomics. In addition, engineered RTs fused to a CRISPR/Cas9 nickase have recently shown great potential as tools to manipulate eukaryotic genomes. In this review, we discuss the properties and uses of wild type and engineered RTs in biotechnological applications, from conventional RT-PCR to recently introduced prime editing.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain. @cbm.csic.es
| |
Collapse
|
5
|
Martín-Alonso S, Álvarez M, Nevot M, Martínez MÁ, Menéndez-Arias L. Defective Strand-Displacement DNA Synthesis Due to Accumulation of Thymidine Analogue Resistance Mutations in HIV-2 Reverse Transcriptase. ACS Infect Dis 2020; 6:1140-1153. [PMID: 32129987 DOI: 10.1021/acsinfecdis.9b00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral reverse transcriptases (RTs) have the ability to carry out strand displacement DNA synthesis in the absence of accessory proteins. Although studies with RTs and other DNA polymerases suggest that fingers subdomain residues participate in strand displacement, molecular determinants of this activity are still unknown. A mutant human immunodeficiency virus type 2 (HIV-2) RT (M41L/D67N/K70R/S215Y) with low strand displacement activity was identified after screening a panel of purified enzymes, including several antiretroviral drug-resistant HIV-1 and HIV-2 RTs. In HIV-1, resistance to zidovudine and other thymidine analogues is conferred by different combinations of M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q (designated as thymidine analogue resistance-associated mutations (TAMs)). However, those changes are rarely selected in HIV-2. We show that the strand displacement activity of HIV-2ROD mutants M41L/S215Y and D67N/K70R was only slightly reduced compared to the wild-type RT. In contrast, mutants D67N/K70R/S215Y and M41L/D67N/K70R/S215Y were the most defective RTs in reactions carried out with nicked and gapped substrates. Moreover, these enzymes showed the lowest nucleotide incorporation rates in assays carried out with strand displacement substrates. Unlike in HIV-2, substitutions M41L/T215Y and D67N/K70R/T215Y/K219Q had no effect on the strand displacement activity of HIV-1BH10 RT. The strand displacement efficiencies of HIV-2ROD RTs were consistent with the lower replication capacity of HIV-2 strains bearing the four major TAMs in their RT. Our results highlight the role of the fingers subdomain in strand displacement. These findings might be important for the development of strand-displacement defective RTs.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - María Nevot
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel Á. Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| |
Collapse
|
6
|
Lentzsch AM, Yao J, Russell R, Lambowitz AM. Template-switching mechanism of a group II intron-encoded reverse transcriptase and its implications for biological function and RNA-Seq. J Biol Chem 2019; 294:19764-19784. [PMID: 31712313 DOI: 10.1074/jbc.ra119.011337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The reverse transcriptases (RTs) encoded by mobile group II introns and other non-LTR retroelements differ from retroviral RTs in being able to template-switch efficiently from the 5' end of one template to the 3' end of another with little or no complementarity between the donor and acceptor templates. Here, to establish a complete kinetic framework for the reaction and to identify conditions that more efficiently capture acceptor RNAs or DNAs, we used a thermostable group II intron RT (TGIRT; GsI-IIC RT) that can template switch directly from synthetic RNA template/DNA primer duplexes having either a blunt end or a 3'-DNA overhang end. We found that the rate and amplitude of template switching are optimal from starter duplexes with a single nucleotide 3'-DNA overhang complementary to the 3' nucleotide of the acceptor RNA, suggesting a role for nontemplated nucleotide addition of a complementary nucleotide to the 3' end of cDNAs synthesized from natural templates. Longer 3'-DNA overhangs progressively decreased the template-switching rate, even when complementary to the 3' end of the acceptor template. The reliance on only a single bp with the 3' nucleotide of the acceptor together with discrimination against mismatches and the high processivity of group II intron RTs enable synthesis of full-length DNA copies of nucleic acids beginning directly at their 3' end. We discuss the possible biological functions of the template-switching activity of group II intron- and other non-LTR retroelement-encoded RTs, as well as the optimization of this activity for adapter addition in RNA- and DNA-Seq protocols.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Institute for Cellular and Molecular Biology, Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712
| | - Jun Yao
- Institute for Cellular and Molecular Biology, Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712
| | - Rick Russell
- Institute for Cellular and Molecular Biology, Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712
| | - Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
7
|
Wulf MG, Maguire S, Humbert P, Dai N, Bei Y, Nichols NM, Corrêa IR, Guan S. Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J Biol Chem 2019; 294:18220-18231. [PMID: 31640989 PMCID: PMC6885630 DOI: 10.1074/jbc.ra119.010676] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Indexed: 11/21/2022] Open
Abstract
Single-cell RNA-Seq (scRNA-Seq) has led to an unprecedented understanding of gene expression and regulation in individual cells. Many scRNA-Seq approaches rely upon the template switching property of Moloney murine leukemia virus (MMLV)-type reverse transcriptases. Template switching is believed to happen in a sequential process involving nontemplated addition of three protruding nucleotides (+CCC) to the 3′-end of the nascent cDNA, which can then anneal to the matching rGrGrG 3′-end of the template-switching oligo (TSO), allowing the reverse transcriptase (RT) to switch templates and continue copying the TSO sequence. In this study, we present a detailed analysis of template switching biases with respect to the RNA template, specifically of the role of the sequence and nature of its 5′-end (capped versus noncapped) in these biases. Our findings confirmed that the presence of a 5′-m7G cap enhances template switching efficiency. We also profiled the composition of the nontemplated addition in the absence of TSO and observed that the 5′-end of RNA template influences the terminal transferase activity of the RT. Furthermore, we found that designing new TSOs that pair with the most common nontemplated additions did little to improve template switching efficiency. Our results provide evidence suggesting that, in contrast to the current understanding of the template switching process, nontemplated addition and template switching are concurrent and competing processes.
Collapse
Affiliation(s)
| | - Sean Maguire
- New England Biolabs, Inc., Ipswich, Massachusetts 01938
| | - Paul Humbert
- New England Biolabs, Inc., Ipswich, Massachusetts 01938
| | - Nan Dai
- New England Biolabs, Inc., Ipswich, Massachusetts 01938
| | - Yanxia Bei
- New England Biolabs, Inc., Ipswich, Massachusetts 01938
| | | | - Ivan R Corrêa
- New England Biolabs, Inc., Ipswich, Massachusetts 01938.
| | - Shengxi Guan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938.
| |
Collapse
|
8
|
Gao Y, Chen Y, Tian Y, Zhao Y, Wu F, Luo X, Ju X, Liu G. In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. NEW J CHEM 2019. [DOI: 10.1039/c9nj03353j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rational design and virtual screening of novel inhibitors of HIV reverse transcriptase associated ribonuclease H based on a combined molecular modeling study.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yafeng Tian
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Yilan Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|