• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633406)   Today's Articles (4933)   Subscriber (49951)
For: Aubol BE, Serrano P, Fattet L, Wüthrich K, Adams JA. Molecular interactions connecting the function of the serine-arginine-rich protein SRSF1 to protein phosphatase 1. J Biol Chem 2018;293:16751-16760. [PMID: 30185622 DOI: 10.1074/jbc.ra118.004587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/29/2018] [Indexed: 12/15/2022]  Open
Number Cited by Other Article(s)
1
Segovia D, Adams DW, Hoffman N, Safaric Tepes P, Wee TL, Cifani P, Joshua-Tor L, Krainer AR. SRSF1 interactome determined by proximity labeling reveals direct interaction with spliceosomal RNA helicase DDX23. Proc Natl Acad Sci U S A 2024;121:e2322974121. [PMID: 38743621 PMCID: PMC11126954 DOI: 10.1073/pnas.2322974121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]  Open
2
Jiang T, Wang L, Tang L, Zeb A, Hou Y. Identification of two short peptide motifs from serine/arginine-rich protein ribonucleic acid recognition motif-1 domain acting as splicing regulators. PeerJ 2023;11:e16103. [PMID: 37744237 PMCID: PMC10512959 DOI: 10.7717/peerj.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]  Open
3
Li D, Yu W, Lai M. Targeting serine- and arginine-rich splicing factors to rectify aberrant alternative splicing. Drug Discov Today 2023;28:103691. [PMID: 37385370 DOI: 10.1016/j.drudis.2023.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
4
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023;13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]  Open
5
Sandoval-Castellanos AM, Bhargava A, Zhao M, Xu J, Ning K. Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases. Neural Regen Res 2023;18:1411-1416. [PMID: 36571335 PMCID: PMC10075106 DOI: 10.4103/1673-5374.360243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]  Open
6
Aubol BE, Adams JA. SRPK1 regulates RNA binding in a pre-spliceosomal complex using a catalytic bypass mechanism. FEBS J 2022;289:7428-7445. [PMID: 35730996 DOI: 10.1111/febs.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023]
7
Peciuliene I, Jakubauskiene E, Vilys L, Zinkeviciute R, Kvedaraviciute K, Kanopka A. Short-Term Hypoxia in Cells Induces Expression of Genes Which Are Enhanced in Stressed Cells. Genes (Basel) 2022;13:genes13091596. [PMID: 36140764 PMCID: PMC9498350 DOI: 10.3390/genes13091596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]  Open
8
Kundinger SR, Dammer EB, Yin L, Hurst C, Shapley S, Ping L, Khoshnevis S, Ghalei H, Duong DM, Seyfried NT. Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization. J Biol Chem 2021;297:101306. [PMID: 34673031 PMCID: PMC8569591 DOI: 10.1016/j.jbc.2021.101306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]  Open
9
Mikolaskova B, Jurcik M, Cipakova I, Selicky T, Jurcik J, Polakova SB, Stupenova E, Dudas A, Sivakova B, Bellova J, Barath P, Aronica L, Gregan J, Cipak L. Identification of Nrl1 Domains Responsible for Interactions with RNA-Processing Factors and Regulation of Nrl1 Function by Phosphorylation. Int J Mol Sci 2021;22:7011. [PMID: 34209806 PMCID: PMC8268110 DOI: 10.3390/ijms22137011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]  Open
10
Baba T, Tanimura S, Yamaguchi A, Horikawa K, Yokozeki M, Hachiya S, Iemura SI, Natsume T, Matsuda N, Takeda K. Cleaved PGAM5 dephosphorylates nuclear serine/arginine-rich proteins during mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021;1868:119045. [PMID: 33872670 DOI: 10.1016/j.bbamcr.2021.119045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 01/23/2023]
11
CLK1 reorganizes the splicing factor U1-70K for early spliceosomal protein assembly. Proc Natl Acad Sci U S A 2021;118:2018251118. [PMID: 33811140 DOI: 10.1073/pnas.2018251118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
12
Liu H, Gong Z, Li K, Zhang Q, Xu Z, Xu Y. SRPK1/2 and PP1α exert opposite functions by modulating SRSF1-guided MKNK2 alternative splicing in colon adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021;40:75. [PMID: 33602301 PMCID: PMC7893936 DOI: 10.1186/s13046-021-01877-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
13
Chavali SS, Cavender CE, Mathews DH, Wedekind JE. Arginine Forks Are a Widespread Motif to Recognize Phosphate Backbones and Guanine Nucleobases in the RNA Major Groove. J Am Chem Soc 2020;142:19835-19839. [PMID: 33170672 DOI: 10.1021/jacs.0c09689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
14
Aubol BE, Fattet L, Adams JA. A conserved sequence motif bridges two protein kinases for enhanced phosphorylation and nuclear function of a splicing factor. FEBS J 2020;288:566-581. [DOI: 10.1111/febs.15351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
15
Huang HH, Ferguson ID, Thornton AM, Bastola P, Lam C, Lin YHT, Choudhry P, Mariano MC, Marcoulis MD, Teo CF, Malato J, Phojanakong PJ, Martin TG, Wolf JL, Wong SW, Shah N, Hann B, Brooks AN, Wiita AP. Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma. Nat Commun 2020;11:1931. [PMID: 32321912 PMCID: PMC7176739 DOI: 10.1038/s41467-020-15521-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023]  Open
16
Kundinger SR, Bishof I, Dammer EB, Duong DM, Seyfried NT. Middle-Down Proteomics Reveals Dense Sites of Methylation and Phosphorylation in Arginine-Rich RNA-Binding Proteins. J Proteome Res 2020;19:1574-1591. [PMID: 31994892 DOI: 10.1021/acs.jproteome.9b00633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
17
Kilchert C, Sträßer K, Kunetsky V, Änkö ML. From parts lists to functional significance-RNA-protein interactions in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019;11:e1582. [PMID: 31883228 DOI: 10.1002/wrna.1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
18
Girstun A, Ishikawa T, Staron K. Effects of SRSF1 on subnuclear localization of topoisomerase I. J Cell Biochem 2019;120:11794-11808. [PMID: 30775805 DOI: 10.1002/jcb.28459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
19
George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. J Biol Chem 2019;294:9631-9641. [PMID: 31064840 DOI: 10.1074/jbc.ra119.008463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Indexed: 01/22/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA