1
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Ma J, Fang X, Chen M, Wang Y, Zhang L. Hyaluronan-CD44 Interaction Regulates Mouse Retinal Progenitor Cells Migration, Proliferation and Neuronal Differentiation. Stem Cell Rev Rep 2023; 19:2929-2942. [PMID: 37707669 PMCID: PMC10661819 DOI: 10.1007/s12015-023-10622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Cell-based therapies have shown great potential because of their abilities to replace dying retinal neuron cells and preserve vision. The migration, proliferation and differentiation of retinal progenitor cells(RPCs) plays a vital role in the integration of the RPCs into the retina when transplanted into the host. Our study aimed to explore the effects of Hyaluronan(HA)-CD44 interactions on the regulation of RPCs migration, proliferation and differentiation, and investigate the underlying regulatory mechanisms. We found that CD44 was expressed in RPCs, and the HA-CD44 interaction markedly improved RPCs adhesion and migration. The stimulation of microRNA-21(miR-21) expression by the HA-CD44 interaction was protein kinase C (PKC)/Nanog-dependent in RPCs. Treatment of RPCs with PKC- or Nanog-specific ASODN or miR-21 antagomir effectively blocked HA-mediated RPCs adhesion and migration. Moreover, Rho-Kinase(ROK)/ Grb2-associated binders(Gab-1) associated phosphatidylinositol 3-kinase(PI3K)/AKT signalling activation was required for HA-CD44 interaction mediated RPCs proliferation and neuronal differentiation. Our findings demonstrated new roles for the HA-CD44 interaction in regulating the migration, proliferation and neuronal differentiation of RPCs. HA-CD44 signalling could represent a novel approach to controlling RPC fates, and the findings may be instructive for the application of RPCs for future therapeutic applications.
Collapse
Affiliation(s)
- Jian Ma
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaoyun Fang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Min Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Wang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Li Zhang
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
5
|
Topal J, Panchal N, Barroeta A, Roppelt A, Mudde A, Gaspar HB, Thrasher AJ, Houghton BC, Booth C. Lentiviral Gene Transfer Corrects Immune Abnormalities in XIAP Deficiency. J Clin Immunol 2023; 43:440-451. [PMID: 36329240 PMCID: PMC9892131 DOI: 10.1007/s10875-022-01389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) deficiency is a severe immunodeficiency with clinical features including hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD) due to defective NOD2 responses. Management includes immunomodulatory therapies and hematopoietic stem cell transplant (HSCT). However, this cohort is particularly susceptible to the chemotherapeutic regimens and acutely affected by graft-vs-host disease (GvHD), driving poor long-term survival in transplanted patients. Autologous HSC gene therapy could offer an alternative treatment option and would abrogate the risks of alloreactivity. METHODS Hematopoietic progenitor (Lin-ve) cells from XIAPy/- mice were transduced with a lentiviral vector encoding human XIAP cDNA before transplantation into irradiated XIAP y/- recipients. After 12 weeks animals were challenged with the dectin-1 ligand curdlan and recovery of innate immune function was evaluated though analysis of inflammatory cytokines, body weight, and splenomegaly. XIAP patient-derived CD14+ monocytes were transduced with the same vector and functional recovery was demonstrated using in vitro L18-MDP/NOD2 assays. RESULTS In treated XIAPy/- mice, ~40% engraftment of gene-corrected Lin-ve cells led to significant recovery of weight loss, splenomegaly, and inflammatory cytokine responses to curdlan, comparable to wild-type mice. Serum IL-6, IL-10, MCP-1, and TNF were significantly reduced 2-h post-curdlan administration in non-corrected XIAPy/- mice compared to wild-type and gene-corrected animals. Appropriate reduction of inflammatory responses was observed in gene-corrected mice, whereas non-corrected mice developed an inflammatory profile 9 days post-curdlan challenge. In gene-corrected patient CD14+ monocytes, TNF responses were restored following NOD2 activation with L18-MDP. CONCLUSION Gene correction of HSCs recovers XIAP-dependent immune defects and could offer a treatment option for patients with XIAP deficiency.
Collapse
Affiliation(s)
- Joseph Topal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amairelys Barroeta
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Roppelt
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Annelotte Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Orchard Therapeutics, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Benjamin C Houghton
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Subcellular localization of X-linked inhibitor of apoptosis protein (XIAP) in cancer: does that matter? BBA ADVANCES 2022; 2:100050. [PMID: 37082602 PMCID: PMC10074912 DOI: 10.1016/j.bbadva.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) finely tunes the balance between survival and death to control homeostasis. XIAP is found aberrantly expressed in cancer, which has been shown to promote resistance to therapy-induced apoptosis and confer poor outcome. Despite its predominant cytoplasmic localization in human tissues, growing evidence implicates the expression of XIAP in other subcellular compartments in sustaining cancer hallmarks. Herein, we review our current knowledge on the prognostic role of XIAP localization and discuss molecular mechanisms underlying differential biological functions played in each compartment. The comprehension of XIAP subcellular shuttling and functional dynamics might provide the rationale for future anticancer therapeutics.
Collapse
|
7
|
Shiri Heris R, Pourbagheri-Sigaroodi A, Yousefi AM, Bashash D. The Superior Cytotoxicity of Dual Targeting of BCR/ABL and PI3K in K562 Cells: Proposing a Novel Therapeutic Potential for the Treatment of CML. Indian J Hematol Blood Transfus 2022; 38:51-60. [PMID: 35125711 PMCID: PMC8804072 DOI: 10.1007/s12288-021-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/27/2021] [Indexed: 01/03/2023] Open
Abstract
Apart from BCR/ABL which is the main player in the pathogenesis of chronic myeloid leukemia (CML), the role of other signaling cascades should not be underestimated especially for the maintenance of leukemic cells survival. The results of the present study indicate that either an isoform-specific or a pan-PI3K inhibitor could potently reduce the survival of CML-derived K562 cells, shedding more light on the involvement of the PI3K axis in the pathogenesis of CML. Of particular interest, the importance of the PI3K pathway in this disease became more evident when we found that there was a more remarkable reduction in the viability of K562 cells when BKM120 was used in combination with imatinib. Moreover, BKM120 robustly enhanced the growth-suppressive effect of imatinib through p21-mediated induction of G2/M cell cycle arrest and induction of apoptotic cell death. Despite the favorable anti-survival effects of the drug combination, these agents failed to induce inhibitory effects on the expression of c-Myc and NF-κB anti-apoptotic target genes. However, the ability of combinational therapy in diminishing K562 cell survival was potentiated either in the presence of 10058-F4 (c-Myc inhibitor) or Bortezomib (proteasome inhibitor), suggestive of the role of both NF-κB and c-Myc in overshadowing the therapeutic value of drugs combination. Taken together, the results of this study showed that inhibition of the PI3K pathway is a suitable approach to enhance the therapeutic value of imatinib in the treatment of CML.
Collapse
Affiliation(s)
- Reza Shiri Heris
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.449862.50000 0004 0518 4224Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Atieh Pourbagheri-Sigaroodi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
PTPN18 promotes colorectal cancer progression by regulating the c-MYC-CDK4 axis. Genes Dis 2021; 8:838-848. [PMID: 34522712 PMCID: PMC8427258 DOI: 10.1016/j.gendis.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023] Open
Abstract
Protein tyrosine phosphatase non-receptor type 18 (PTPN18) is often highly expressed in colorectal cancer (CRC), but its role in this disease remains unclear. We demonstrated that PTPN18 overexpression promotes growth and tumorigenesis in CRC cells and that PTPN18 deficiency yields the opposite results in vitro. Moreover, a xenograft assay showed that PTPN18 deficiency significantly inhibited tumorigenesis in vivo. PTPN18 activated the MYC signaling pathway and enhanced CDK4 expression, which is tightly associated with the cell cycle and proliferation in cancer cells. Finally, we found that MYC interacted with PTPN18 and increased the protein level of MYC. In conclusion, our results suggest that PTPN18 promotes CRC development by stabilizing the MYC protein level, which in turn activates the MYC-CDK4 axis. Thus, PTPN18 could be a novel therapeutic target in the future.
Collapse
|
9
|
XIAP's Profile in Human Cancer. Biomolecules 2020; 10:biom10111493. [PMID: 33138314 PMCID: PMC7692959 DOI: 10.3390/biom10111493] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA-XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA-XIAP interactions are discussed.
Collapse
|
10
|
TCF21: a critical transcription factor in health and cancer. J Mol Med (Berl) 2020; 98:1055-1068. [DOI: 10.1007/s00109-020-01934-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
|
11
|
Xue C, Kang B, Su P, Wang D, Zhao F, Zhang J, Wang X, Lang H, Cao Z. MicroRNA-106b-5p participates in lead (Pb 2+)-induced cell viability inhibition by targeting XIAP in HT-22 and PC12 cells. Toxicol In Vitro 2020; 66:104876. [PMID: 32344020 DOI: 10.1016/j.tiv.2020.104876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Previous studies reported perturbed expressing of X-linked inhibitor of apoptosis protein (XIAP) under lead (Pb) exposure. However, researches on XIAP expression mainly focused on its transcriptional and post-translational regulation, rarely involving post-transcriptional mechanism manipulated by certain indispensable microRNAs (miRNAs). Interestingly, we unveiled that miR-106b-5p, a widely expressed miRNA in various tissues, is up-regulated by Pb2+-induced stress. Moreover, we found a binding site for miR-106b-5p in the 3'-UTR of xiap mRNA using bioinformatics analysis, and provided the evidences that miR-106b-5p can interact and function with this regulatory region via luciferase reporter assay. Our results further showed that miR-106b-5p down-regulates XIAP protein level, and suppression of miR-106b-5p reverses the decrease in both XIAP level and cell viability in Pb2+-treated HT-22 and PC12 cells. In brief, we identified a novel function of miR-106b-5p in the post-transcriptional regulation of XIAP expression associated with Pb neurotoxicity.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Beipei Kang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaojing Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China; Department of Neurology and Endocrinology, 989 Hospital of PLA, Pingdingshan 467021, China
| | - Haiyang Lang
- School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|