1
|
Suleiman IM, Yu H, Xu J, Zhen J, Xu H, Abudukadier A, Hafiza AR, Xie J. Mycobacterium smegmatis MraZ Regulates Multiple Genes within and Outside of the dcw Operon during Hypoxia. ACS Infect Dis 2024; 10:4301-4313. [PMID: 39556327 DOI: 10.1021/acsinfecdis.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis is the most ancient human tuberculosis pathogen and has been the leading cause of death from bacterial infectious diseases throughout human history. According to the World Health Organization Global Tuberculosis Report, in 2022, 7.5 million new tuberculosis cases were identified, marking the highest number of cases since the World Health Organization initiated its worldwide tuberculosis surveillance program in 1995. The 2019 peak was 7.1 million cases, with 5.8 million cases in 2020 and 6.4 million in 2021. The increase in 2022, which may be attributed to the COVID-19 pandemic complicating tuberculosis case tracing, has raised concerns. To better understand the regulation spectrum of Mycobacterium smegmatis mraZ under hypoxia, we performed a transcriptome analysis of M. smegmatis mutant and wild-type strains using Illumina Agilent 5300 sequencing. The study identified 6898 differentially expressed genes, which were annotated with NCBI nonredundant protein sequences, a manually annotated and reviewed protein sequence database, Pfam, Clusters of Orthologous Groups of Proteins, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Several mycobacteria transcriptional regulators, virulence genes, membrane transporters, and cell wall biosynthesis genes were annotated. These data serve as a valuable resource for future investigations and may offer insight into the development of drugs to combat M. tuberculosis infection.
Collapse
Affiliation(s)
- Ismail Mohamed Suleiman
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- Department of Science and Laboratory Technology, Dar-es-Salaam Institute of Technology, Bibititi and Morogoro Rd Junction, P.O. Box 2958, Dar-es-salaam 11101, Tanzania
| | - Huang Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Hongxiang Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Abulimiti Abudukadier
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Amina Rafique Hafiza
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
2
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
3
|
Jamontas R, Laurynėnas A, Povilaitytė D, Meškys R, Aučynaitė A. RudS: bacterial desulfidase responsible for tRNA 4-thiouridine de-modification. Nucleic Acids Res 2024; 52:10543-10562. [PMID: 39166491 PMCID: PMC11417400 DOI: 10.1093/nar/gkae716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, we present an extensive analysis of a widespread group of bacterial tRNA de-modifying enzymes, dubbed RudS, which consist of a TudS desulfidase fused to a Domain of Unknown Function 1722 (DUF1722). RudS enzymes exhibit specific de-modification activity towards the 4-thiouridine modification (s4U) in tRNA molecules, as indicated by our experimental findings. The heterologous overexpression of RudS genes in Escherichia coli significantly reduces the tRNA 4-thiouridine content and diminishes UVA-induced growth delay, indicating the enzyme's role in regulating photosensitive tRNA s4U modification. Through a combination of protein modeling, docking studies, and molecular dynamics simulations, we have identified amino acid residues involved in catalysis and tRNA binding. Experimental validation through targeted mutagenesis confirms the TudS domain as the catalytic core of RudS, with the DUF1722 domain facilitating tRNA binding in the anticodon region. Our results suggest that RudS tRNA modification eraser proteins may play a role in regulating tRNA during prokaryotic stress responses.
Collapse
Affiliation(s)
- Rapolas Jamontas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Deimantė Povilaitytė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Fisher CE, Bak DW, Miller KE, Washington-Hughes CL, Dickfoss AM, Weerapana E, Py B, Outten FW. Escherichia coli monothiol glutaredoxin GrxD replenishes Fe-S clusters to the essential ErpA A-type carrier under low iron stress. J Biol Chem 2024; 300:107506. [PMID: 38944118 PMCID: PMC11327457 DOI: 10.1016/j.jbc.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.
Collapse
Affiliation(s)
- Claire E Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Daniel W Bak
- Department of Chemistry, Boston College, Massachusetts, USA
| | - Kennedy E Miller
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Anna M Dickfoss
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | | | - Béatrice Py
- Aix-Marseille Université-Centre National de la Recherche Scientifique (UMR7283), Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Marseille, France.
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
5
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
6
|
Kümpel C, Grosser M, Tanabe TS, Dahl C. Fe/S proteins in microbial sulfur oxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119732. [PMID: 38631440 DOI: 10.1016/j.bbamcr.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Iron-sulfur clusters serve as indispensable cofactors within proteins across all three domains of life. Fe/S clusters emerged early during the evolution of life on our planet and the biogeochemical cycle of sulfur is one of the most ancient and important element cycles. It is therefore no surprise that Fe/S proteins have crucial roles in the multiple steps of microbial sulfur metabolism. During dissimilatory sulfur oxidation in prokaryotes, Fe/S proteins not only serve as electron carriers in several steps, but also perform catalytic roles, including unprecedented reactions. Two cytoplasmic enzyme systems that oxidize sulfane sulfur to sulfite are of particular interest in this context: The rDsr pathway employs the reverse acting dissimilatory sulfite reductase rDsrAB as its key enzyme, while the sHdr pathway utilizes polypeptides resembling the HdrA, HdrB and HdrC subunits of heterodisulfide reductase from methanogenic archaea. Both pathways involve components predicted to bind unusual noncubane Fe/S clusters acting as catalysts for the formation of disulfide or sulfite. Mapping of Fe/S cluster machineries on the sulfur-oxidizing prokaryote tree reveals that ISC, SUF, MIS and SMS are all sufficient to meet the Fe/S cluster maturation requirements for operation of the sHdr or rDsr pathways. The sHdr pathway is dependent on lipoate-binding proteins that are assembled by a novel pathway, involving two Radical SAM proteins, namely LipS1 and LipS2. These proteins coordinate sulfur-donating auxiliary Fe/S clusters in atypical patterns by three cysteines and one histidine and act as lipoyl synthases by jointly inserting two sulfur atoms to an octanoyl residue. This article is part of a Special Issue entitled: Biogenesis and Function of Fe/S proteins.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Lund T, Kulkova MY, Jersie-Christensen R, Atlung T. Essentiality of the Escherichia coli YgfZ Protein for the In Vivo Thiomethylation of Ribosomal Protein S12 by the RimO Enzyme. Int J Mol Sci 2023; 24:ijms24054728. [PMID: 36902159 PMCID: PMC10002905 DOI: 10.3390/ijms24054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized. YgfZ is needed for activity of the radical S-adenosyl methionine [4Fe-4S] cluster enzyme MiaB which thiomethylates some tRNAs. The growth of cells lacking YgfZ is compromised especially at low temperature. The RimO enzyme is homologous to MiaB and thiomethylates a conserved aspartic acid in ribosomal protein S12. To quantitate thiomethylation by RimO, we developed a bottom-up LC-MS2 analysis of total cell extracts. We show here that the in vivo activity of RimO is very low in the absence of YgfZ and independent of growth temperature. We discuss these results in relation to the hypotheses relating to the role of the auxiliary 4Fe-4S cluster in the Radical SAM enzymes that make Carbon-Sulfur bonds.
Collapse
|
8
|
Warui D, Sil D, Lee KH, Neti SS, Esakova OA, Knox HL, Krebs C, Booker SJ. In Vitro Demonstration of Human Lipoyl Synthase Catalytic Activity in the Presence of NFU1. ACS BIO & MED CHEM AU 2022; 2:456-468. [PMID: 36281303 PMCID: PMC9585516 DOI: 10.1021/acsbiomedchemau.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipoyl synthase (LS) catalyzes the last step in the biosynthesis of the lipoyl cofactor, which is the attachment of sulfur atoms at C6 and C8 of an n-octanoyllysyl side chain of a lipoyl carrier protein (LCP). The protein is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, which use SAM as a precursor to a 5'-deoxyadenosyl 5'-radical (5'-dA·). The role of the 5'-dA· in the LS reaction is to abstract hydrogen atoms from C6 and C8 of the octanoyl moiety of the substrate to initiate subsequent sulfur attachment. All radical SAM enzymes have at least one [4Fe-4S] cluster that is used in the reductive cleavage of SAM to generate the 5'-dA·; however, LSs contain an additional auxiliary [4Fe-4S] cluster from which sulfur atoms are extracted during turnover, leading to degradation of the cluster. Therefore, these enzymes catalyze only 1 turnover in the absence of a system that restores the auxiliary cluster. In Escherichia coli, the auxiliary cluster of LS can be regenerated by the iron-sulfur (Fe-S) cluster carrier protein NfuA as fast as catalysis takes place, and less efficiently by IscU. NFU1 is the human ortholog of E. coli NfuA and has been shown to interact directly with human LS (i.e., LIAS) in yeast two-hybrid analyses. Herein, we show that NFU1 and LIAS form a tight complex in vitro and that NFU1 can efficiently restore the auxiliary cluster of LIAS during turnover. We also show that BOLA3, previously identified as being critical in the biosynthesis of the lipoyl cofactor in humans and Saccharomyces cerevisiae, has no direct effect on Fe-S cluster transfer from NFU1 or GLRX5 to LIAS. Further, we show that ISCA1 and ISCA2 can enhance LIAS turnover, but only slightly.
Collapse
Affiliation(s)
- Douglas
M. Warui
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Debangsu Sil
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Kyung-Hoon Lee
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Syam Sundar Neti
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Olga A. Esakova
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Hayley L. Knox
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Jeyachandran VR, Boal AK. Structural insights into auxiliary cofactor usage by radical S-adenosylmethionine enzymes. Curr Opin Chem Biol 2022; 68:102153. [PMID: 35512465 DOI: 10.1016/j.cbpa.2022.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.
Collapse
Affiliation(s)
- Vivian Robert Jeyachandran
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Tripathi A, Anand K, Das M, O'Niel RA, P S S, Thakur C, R L RR, Rajmani RS, Chandra N, Laxman S, Singh A. Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathog 2022; 18:e1010475. [PMID: 35427399 PMCID: PMC9045647 DOI: 10.1371/journal.ppat.1010475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/27/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase's enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Kushi Anand
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Mayashree Das
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Ruchika Annie O'Niel
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sabarinath P S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Raghunatha Reddy R L
- Regional Horticultural Research and Extension Centre (RHREK), GKVK, Bengaluru, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Amit Singh
- Centre for Infectious Disease Research (CIDR), Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| |
Collapse
|
11
|
Lénon M, Arias-Cartín R, Barras F. The Fe-S proteome of Escherichia coli: prediction, function and fate. Metallomics 2022; 14:6555457. [PMID: 35349713 DOI: 10.1093/mtomcs/mfac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic ubiquitous and ancient cofactors. Fe-S bound proteins contribute to most cellular processes, including DNA replication and integrity, genetic expression and regulation, metabolism, biosynthesis and most bioenergetics systems. Also, Fe-S proteins hold a great biotechnological potential in metabolite and chemical production, including antibiotics. From classic biophysics and spectroscopy methodologies to recent development in bioinformatics, including structural modeling and chemoproteomics, our capacity to predict and identify Fe-S proteins has spectacularly increased over the recent years. Here, these developments are presented and collectively used to update the composition of Escherichia coli Fe-S proteome, for which we predict 181 occurrences, i.e. 40 more candidates than in our last catalog (Py and Barras, 2010), and equivalent to 4% of its total proteome. Besides, Fe-S clusters can be targeted by redox active compounds or reactive oxygen and nitrosative species, and even be destabilized by contaminant metals. Accordingly, we discuss how cells handle damaged Fe-S proteins, i.e. degradation, recycling or repair.
Collapse
Affiliation(s)
- Marine Lénon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Rodrigo Arias-Cartín
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Frédéric Barras
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| |
Collapse
|
12
|
Abstract
Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.
Collapse
|
13
|
Jain A, Singh A, Maio N, Rouault TA. Assembly of the [4Fe-4S] cluster of NFU1 requires the coordinated donation of two [2Fe-2S] clusters from the scaffold proteins, ISCU2 and ISCA1. Hum Mol Genet 2021; 29:3165-3182. [PMID: 32776106 DOI: 10.1093/hmg/ddaa172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023] Open
Abstract
NFU1, a late-acting iron-sulfur (Fe-S) cluster carrier protein, has a key role in the pathogenesis of the disease, multiple mitochondrial dysfunctions syndrome. In this work, using genetic and biochemical approaches, we identified the initial scaffold protein, mitochondrial ISCU (ISCU2) and the secondary carrier, ISCA1, as the direct donors of Fe-S clusters to mitochondrial NFU1, which appears to dimerize and reductively mediate the formation of a bridging [4Fe-4S] cluster, aided by ferredoxin 2. By monitoring the abundance of target proteins that acquire their Fe-S clusters from NFU1, we characterized the effects of several novel pathogenic NFU1 mutations. We observed that NFU1 directly interacts with each of the Fe-S cluster scaffold proteins known to ligate [2Fe-2S] clusters, ISCU2 and ISCA1, and we mapped the site of interaction to a conserved hydrophobic patch of residues situated at the end of the C-terminal alpha-helix of NFU1. Furthermore, we showed that NFU1 lost its ability to acquire its Fe-S cluster when mutagenized at the identified site of interaction with ISCU2 and ISCA1, which thereby adversely affected biochemical functions of proteins that are thought to acquire their Fe-S clusters directly from NFU1, such as lipoic acid synthase, which supports the Fe-S-dependent process of lipoylation of components of multiple key enzyme complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and the glycine cleavage complex.
Collapse
Affiliation(s)
- Anshika Jain
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anamika Singh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nunziata Maio
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Allele-specific mitochondrial stress induced by Multiple Mitochondrial Dysfunctions Syndrome 1 pathogenic mutations modeled in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009771. [PMID: 34449775 PMCID: PMC8428684 DOI: 10.1371/journal.pgen.1009771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/09/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1) is a rare, autosomal recessive disorder caused by mutations in the NFU1 gene. NFU1 is responsible for delivery of iron-sulfur clusters (ISCs) to recipient proteins which require these metallic cofactors for their function. Pathogenic variants of NFU1 lead to dysfunction of its target proteins within mitochondria. To date, 20 NFU1 variants have been reported and the unique contributions of each variant to MMDS1 pathogenesis is unknown. Given that over half of MMDS1 individuals are compound heterozygous for different NFU1 variants, it is valuable to investigate individual variants in an isogenic background. In order to understand the shared and unique phenotypes of NFU1 variants, we used CRISPR/Cas9 gene editing to recreate exact patient variants of NFU1 in the orthologous gene, nfu-1 (formerly lpd-8), in C. elegans. Five mutant C. elegans alleles focused on the presumptive iron-sulfur cluster interaction domain were generated and analyzed for mitochondrial phenotypes including respiratory dysfunction and oxidative stress. Phenotypes were variable between the mutant nfu-1 alleles and generally presented as an allelic series indicating that not all variants have lost complete function. Furthermore, reactive iron within mitochondria was evident in some, but not all, nfu-1 mutants indicating that iron dyshomeostasis may contribute to disease pathogenesis in some MMDS1 individuals. Functional mitochondria are essential to life in eukaryotes, but they can be perterbured by inherent dysfunction of important proteins or stressors. Mitochondrial dysfunction is the root cause of dozens of diseases many of which involve complex phenotypes. One such disease is Multiple Mitochondrial Dysfunctions Syndrome 1, a pediatric-fatal disease that is poorly understood in part due to the lack of clarity about how mutations in the causative gene, NFU1, affect protein function and phenotype development and severity. Here we employ the power of CRISPR/Cas9 gene editing in the small nematode Caenorhabditis elegans to recreate five patient-specific mutations known to cause Multiple Mitochondrial Dysfunctions Syndrome 1. We are able to analyze each of these mutations individually, evaluate how mitochondrial dysfunction differs between them, and whether or not the phenotypes can be improved. We find that there are meaningful differences between each mutation which not only effects the types of stress that develop, but also the ability to rescue deleterious phenotypes. This work thus provides insight into disease pathogenesis and establishes a foundation for potential future therapeutic intervention.
Collapse
|
15
|
Biochemical Approaches to Probe the Role of the Auxiliary Iron-Sulfur Cluster of Lipoyl Synthase from Mycobacterium Tuberculosis. Methods Mol Biol 2021. [PMID: 34292556 DOI: 10.1007/978-1-0716-1605-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipoic acid is an essential sulfur-containing cofactor used by several multienzyme complexes involved in energy metabolism and the breakdown of certain amino acids. It is composed of n-octanoic acid with sulfur atoms appended at C6 and C8. Lipoic acid is biosynthesized de novo in its cofactor form, in which it is covalently bound in an amide linkage to a target lysyl residue on a lipoyl carrier protein (LCP). The n-octanoyl moiety of the cofactor is derived from type 2 fatty acid biosynthesis and is transferred to an LCP to afford an octanoyllysyl amino acid. Next, lipoyl synthase (LipA in bacteria) catalyzes the attachment of the two sulfur atoms to afford the intact cofactor. LipA is a radical S-adenosylmethionine (SAM) enzyme that contains two [4Fe-4S] clusters. One [4Fe-4S] cluster is used to facilitate a reductive cleavage of SAM to render the highly oxidizing 5'-deoxyadenosyl 5'-radical needed to abstract C6 and C8 hydrogen atoms to allow for sulfur attachment. By contrast, the second cluster is the sulfur source, necessitating its destruction during turnover. In Escherichia coli, this auxiliary cluster can be restored after each turnover by NfuA or IscU, which are two iron-sulfur cluster carrier proteins that are implicated in iron-sulfur cluster biogenesis. In this chapter, we describe methods for purifying and characterizing LipA and NfuA from Mycobacterium tuberculosis, a human pathogen for which endogenously synthesized lipoic acid is essential. These studies provide the foundation for assessing lipoic acid biosynthesis as a potential target for the design of novel antituberculosis agents.
Collapse
|
16
|
Identification of Genes Involved in Fe-S Cluster Biosynthesis of Nitrogenase in Paenibacillus polymyxa WLY78. Int J Mol Sci 2021; 22:ijms22073771. [PMID: 33916504 PMCID: PMC8038749 DOI: 10.3390/ijms22073771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
NifS and NifU (encoded by nifS and nifU) are generally dedicated to biogenesis of the nitrogenase Fe–S cluster in diazotrophs. However, nifS and nifU are not found in N2-fixing Paenibacillus strains, and the mechanisms involved in Fe–S cluster biosynthesis of nitrogenase is not clear. Here, we found that the genome of Paenibacillus polymyxa WLY78 contains the complete sufCDSUB operon, a partial sufC2D2B2 operon, a nifS-like gene, two nifU-like genes (nfuA-like and yutI), and two iscS genes. Deletion and complementation studies showed that the sufC, sufD, and sufB genes of the sufCDSUB operon, and nifS-like and yutI genes were involved in the Fe–S cluster biosynthesis of nitrogenase. Heterologous complementation studies demonstrated that the nifS-like gene of P. polymyxa WLY78 is interchangeable with Klebsiella oxytoca nifS, but P. polymyxa WLY78 SufCDB cannot be functionally replaced by K. oxytoca NifU. In addition, K. oxytoca nifU and Escherichia coli nfuA are able to complement the P. polymyxa WLY78 yutI mutant. Our findings thus indicate that the NifS-like and SufCDB proteins are the specific sulfur donor and the molecular scaffold, respectively, for the Fe–S cluster formation of nitrogenase in P. polymyxa WLY78. YutI can be an Fe–S cluster carrier involved in nitrogenase maturation in P. polymyxa WLY78.
Collapse
|
17
|
A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical SAM protein MoaA for the synthesis of active molybdoenzymes. J Bacteriol 2021; 203:e0008621. [PMID: 33782054 DOI: 10.1128/jb.00086-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them were characterized in detail in Escherichia coli, namely IscA, SufA and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli Our studies include the identification of the A-type carrier proteins ErpA and IscA involved in [4Fe-4S] cluster insertion into the S-adenosyl-methionine dependent radical SAM protein MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth of nitrate respiration, based on low gene expression levels.IMPORTANCEUnderstanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics and gene regulation. Still remaining critical gaps in our knowledge are how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SusA and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.
Collapse
|
18
|
Characterization and Reconstitution of Human Lipoyl Synthase (LIAS) Supports ISCA2 and ISCU as Primary Cluster Donors and an Ordered Mechanism of Cluster Assembly. Int J Mol Sci 2021; 22:ijms22041598. [PMID: 33562493 PMCID: PMC7915201 DOI: 10.3390/ijms22041598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 01/18/2023] Open
Abstract
Lipoyl synthase (LIAS) is an iron-sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe-4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes. Herein, we detail the expression, isolation, and characterization of human LIAS, its reactivity, and evaluation of natural iron-sulfur (Fe-S) cluster reconstitution mechanisms. Cluster donation by a number of possible cluster donor proteins and heterodimeric complexes has been evaluated. [2Fe-2S]-cluster-bound forms of human ISCU and ISCA2 were found capable of reconstituting human LIAS, such that complete product turnover was enabled for LIAS, as monitored via a liquid chromatography-mass spectrometry (LC-MS) assay. Electron paramagnetic resonance (EPR) studies of native LIAS and substituted derivatives that lacked the ability to bind one or the other of LIAS's two [4Fe-4S] clusters revealed a likely order of cluster addition, with the auxiliary cluster preceding the reducing [4Fe-4S] center. These results detail the trafficking of Fe-S clusters in human cells and highlight differences with respect to bacterial LIAS analogs. Likely in vivo Fe-S cluster donors to LIAS are identified, with possible connections to human disease states, and a mechanistic ordering of [4Fe-4S] cluster reconstitution is evident.
Collapse
|
19
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli‐Pimpaneau B. Structural Evidence for a [4Fe‐5S] Intermediate in the Non‐Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Jonathan Fuchs
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Matthias Boll
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
- Department of Chemistry and Bioengineering Vilnius Gediminas Technical University Vilnius Lithuania
| | - Béatrice Golinelli‐Pimpaneau
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| |
Collapse
|
20
|
A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2020; 86:AEM.01359-20. [PMID: 32978128 DOI: 10.1128/aem.01359-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/20/2020] [Indexed: 01/11/2023] Open
Abstract
Lipoic acid is a sulfur-containing cofactor and a component of the glycine cleavage system (GCS) involved in C1 compound metabolism and the 2-oxoacid dehydrogenases that catalyze the oxidative decarboxylation of 2-oxoacids. Lipoic acid is found in all domains of life and is generally synthesized as a lipoyl group on the H-protein of the GCS or the E2 subunit of 2-oxoacid dehydrogenases. Lipoyl synthase catalyzes the insertion of two sulfur atoms to the C-6 and C-8 carbon atoms of the octanoyl moiety on the octanoyl-H-protein or octanoyl-E2 subunit. Although the hyperthermophilic archaeon Thermococcus kodakarensis seemed able to synthesize lipoic acid, a classical lipoyl synthase (LipA) gene homolog cannot be found on the genome. In this study, we aimed to identify the lipoyl synthase in this organism. Genome information analysis suggested that the TK2109 and TK2248 genes, which had been annotated as biotin synthase (BioB), are both involved in lipoic acid metabolism. Based on the chemical reaction catalyzed by BioB, we predicted that the genes encode proteins that catalyze the lipoyl synthase reaction. Genetic analysis of TK2109 and TK2248 provided evidence that these genes are involved in lipoic acid biosynthesis. The purified TK2109 and TK2248 recombinant proteins exhibited lipoyl synthase activity toward a chemically synthesized octanoyl-octapeptide. These in vivo and in vitro analyses indicated that the TK2109 and TK2248 genes encode a structurally novel lipoyl synthase. TK2109 and TK2248 homologs are widely distributed among the archaeal genomes, suggesting that in addition to the LipA homologs, the two proteins represent a new group of lipoyl synthases in archaea.IMPORTANCE Lipoic acid is an essential cofactor for GCS and 2-oxoacid dehydrogenases, and α-lipoic acid has been utilized as a medicine and attracted attention as a supplement due to its antioxidant activity. The biosynthesis pathways of lipoic acid have been established in Bacteria and Eucarya but not in Archaea Although some archaeal species, including Sulfolobus, possess a classical lipoyl synthase (LipA) gene homolog, many archaeal species, including T. kodakarensis, do not. In addition, the biosynthesis mechanism of the octanoyl moiety, a precursor for lipoyl group biosynthesis, is also unknown for many archaea. As the enzyme identified in T. kodakarensis most likely represents a new group of lipoyl synthases in Archaea, the results obtained in this study provide an important step in understanding how lipoic acid is synthesized in this domain and how the two structurally distinct lipoyl synthases evolved in nature.
Collapse
|
21
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli-Pimpaneau B. Structural Evidence for a [4Fe-5S] Intermediate in the Non-Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2020; 60:424-431. [PMID: 32929873 DOI: 10.1002/anie.202011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/10/2022]
Abstract
We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Å resolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| |
Collapse
|
22
|
Maio N, Jain A, Rouault TA. Mammalian iron-sulfur cluster biogenesis: Recent insights into the roles of frataxin, acyl carrier protein and ATPase-mediated transfer to recipient proteins. Curr Opin Chem Biol 2020; 55:34-44. [PMID: 31918395 PMCID: PMC7237328 DOI: 10.1016/j.cbpa.2019.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/31/2022]
Abstract
The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron-sulfur (Fe-S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe-S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anshika Jain
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Rouault TA. The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 2019; 32:343-353. [PMID: 30923992 PMCID: PMC6584224 DOI: 10.1007/s10534-019-00191-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
In recent years, iron sulfur (Fe–S) proteins have been identified as key players in mammalian metabolism, ranging from long-known roles in the respiratory complexes and the citric acid cycle, to more recently recognized roles in RNA and DNA metabolism. Fe–S cofactors have often been missed because of their intrinsic lability and oxygen sensitivity. More Fe–S proteins have now been identified owing to detection of their direct interactions with components of the Fe–S biogenesis machinery, and through use of informatics to detect a motif that binds the co-chaperone responsible for transferring nascent Fe–S clusters to domains of recipient proteins. Dissection of the molecular steps involved in Fe–S transfer to Fe–S proteins has revealed that direct and shielded transfer occurs through highly conserved pathways that operate in parallel in the mitochondrial matrix and in the cytosolic/nuclear compartments of eukaryotic cells. Because Fe–S clusters have the unusual ability to accept or donate single electrons in chemical reactions, their presence renders complex chemical reactions possible. In addition, Fe–S clusters may function as sensors that interconnect activity of metabolic pathways with cellular redox status. Presence in pathways that control growth and division may enable cells to regulate their growth according to sufficiency of energy stores represented by redox capacity, and oxidation of such proteins could diminish anabolic activities to give cells an opportunity to restore energy supplies. This review will discuss mechanisms of Fe–S biogenesis and delivery, and methods that will likely reveal important roles of Fe–S proteins in proteins not yet recognized as Fe–S proteins.
Collapse
|