1
|
Sabalette KB, Campo VA, Sotelo-Silveira JR, Smircich P, De Gaudenzi JG. Transcriptomic analysis of N-terminal mutated Trypanosoma cruzi UBP1 knockdown underlines the importance of this RNA-binding protein in parasite development. PLoS Negl Trop Dis 2024; 18:e0012179. [PMID: 38758959 PMCID: PMC11139272 DOI: 10.1371/journal.pntd.0012179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/30/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND During its life cycle, the human pathogen Trypanosoma cruzi must quickly adapt to different environments, in which the variation in the gene expression of the regulatory U-rich RNA-binding protein 1 (TcUBP1) plays a crucial role. We have previously demonstrated that the overexpression of TcUBP1 in insect-dwelling epimastigotes orchestrates an RNA regulon to promote differentiation to infective forms. METHODS In an attempt to generate TcUBP1 knockout parasites by using CRISPR-Cas9 technology, in the present study, we obtained a variant transcript that encodes a protein with 95% overall identity and a modified N-terminal sequence. The expression of this mutant protein, named TcUBP1mut, was notably reduced compared to that of the endogenous form found in normal cells. TcUBP1mut-knockdown epimastigotes exhibited normal growth and differentiation into infective metacyclic trypomastigotes and were capable of infecting mammalian cells. RESULTS We analyzed the RNA-Seq expression profiles of these parasites and identified 276 up- and 426 downregulated genes with respect to the wildtype control sample. RNA-Seq comparison across distinct developmental stages revealed that the transcriptomic profile of these TcUBP1mut-knockdown epimastigotes significantly differs not only from that of epimastigotes in the stationary phase but also from the gene expression landscape characteristic of infective forms. This is both contrary to and consistent with the results of our recent study involving TcUBP1-overexpressing cells. CONCLUSION Together, our findings demonstrate that the genes exhibiting opposite changes under overexpression and knockdown conditions unveil key mRNA targets regulated by TcUBP1. These mostly encompass transcripts that encode for trypomastigote-specific surface glycoproteins and ribosomal proteins, supporting a role for TcUBP1 in determining the molecular characteristics of the infective stage.
Collapse
Affiliation(s)
- Karina B. Sabalette
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín—Consejo Nacional de Investigaciones Científicas y Técnicas, General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, General San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A. Campo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín—Consejo Nacional de Investigaciones Científicas y Técnicas, General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, General San Martín, Prov. de Buenos Aires, Argentina
| | - José R. Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Instituto de Biología, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Instituto de Biología, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Javier G. De Gaudenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín—Consejo Nacional de Investigaciones Científicas y Técnicas, General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, General San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
2
|
Sabalette KB, Campo VA, De Gaudenzi JG. Proteomic data of the Trypanosoma cruzi insect-dwelling epimastigotes overexpressing the RNA-binding protein UBP1. Data Brief 2024; 53:110085. [PMID: 38348324 PMCID: PMC10859248 DOI: 10.1016/j.dib.2024.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
We present data on the proteome of the Trypanosoma cruzi epimastigote cells overexpressing the U-rich RNA-binding protein 1 (UBP1). The role of this regulatory protein during the epimastigote-to-metacyclic trypomastigote stage transition was clearly established by our group at the transcriptome level; nevertheless, the impact of UBP1 overexpression on protein synthesis is not known. To address this question, we performed shotgun label-free quantification proteomics using an in vitro system based on the tetracycline-inducible expression of TcUBP1 and epimastigote wildtype cells. Using tryptic peptide digestion and LC-MS/MS analysis with Orbitrap technology, this data file describes the proteome of three biological samples per condition and yields 1637 correctly quantified proteins. The statistical comparisons of the two analyzed groups within the Proteome Discoverer platform identified 379 differentially expressed proteins, with 207 being up-regulated and 172 being down-regulated. In addition, profile plots and heatmap analysis to visualize the distribution of protein abundances within replicates are also presented. Data are available via ProteomeXchange with identifier PXD047761.
Collapse
Affiliation(s)
- Karina B. Sabalette
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A. Campo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| | - Javier G. De Gaudenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
3
|
Sabalette KB, Campo VA, Sotelo-Silveira JR, Smircich P, De Gaudenzi JG. RNA-seq data exploration after trypanosome RNA-binding protein UBP1 expression is altered by CRISPR-Cas9 gene editing and overexpression. Data Brief 2024; 53:110156. [PMID: 38389957 PMCID: PMC10881420 DOI: 10.1016/j.dib.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Previous studies have shown that overexpression of the Trypanosoma cruzi U-rich RNA-binding protein 1 (TcUBP1) in insect-dwelling epimastigotes results in a gene expression pattern resembling that of the infective form of the pathogen. Here, we used CRISPR-Cas9-induced edition of TcUBP1 and full-length protein overexpression in epimastigote cells to monitor transcriptomic changes during the epimastigote-to-metacyclic trypomastigote stage transition of T. cruzi. This dataset includes the bioinformatics analysis of three different RNA-seq samples, each with three biological replicates, showing differential mRNA abundances. The current transcriptome report has the potential to shed light on the quantitative variances in the expression of significant up- or down-regulated mRNAs as a consequence of the levels of the UBP1 protein. Raw data files were deposited at the NCBI Sequence Read Archive - SRA at http://ncbi.nlm.nih.gov/Traces/sra/sra.cgi with accession numbers PRJNA907231 and PRJNA949967.
Collapse
Affiliation(s)
- Karina B. Sabalette
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A. Campo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| | - José R. Sotelo-Silveira
- Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Instituto de Biología, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Instituto de Biología, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Javier G. De Gaudenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 General San Martín, Prov. de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, 1650 General San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
4
|
Romagnoli BAA, Lucena ACR, Freire ER, Munhoz da Rocha IF, Alves LR, Goldenberg S. TcZC3HTTP, a regulatory element that contributes to Trypanosoma cruzi cell proliferation. Microbiol Spectr 2024; 12:e0288023. [PMID: 38270449 PMCID: PMC10913370 DOI: 10.1128/spectrum.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Post-transcriptional regulation of gene expression is a critical process for adapting to and surviving Trypanosoma cruzi, a parasite with a complex life cycle. RNA-binding proteins (RBPs) are key players in this regulation, forming ribonucleoprotein complexes (messenger ribonucleoproteins) and RNA granules that control transcript stability, localization, degradation, and translation modulation. Understanding the specific roles of individual RBPs is crucial for unraveling the details of this regulatory network. In this study, we generated null mutants of the TcZC3HTTP gene, a specific RBP in the Trypanosoma family characterized by a C3H zinc finger and a DNAJ domain associated with RNA and protein binding, respectively. Through cell growth assays, we demonstrated that the absence of TcZC3HTTP or the expression of an additional tagged version impacted epimastigote growth, indicating its contribution to cell proliferation. TcZC3HTTP was found to associate with mRNAs involved in cell cycle and division in epimastigotes, while in nutritionally stressed parasites it exhibited associations with mRNAs coding for other RBPs and rRNA. Furthermore, our analysis identified that TcZC3HTTP protein partners were different during normal growth conditions compared to starvation conditions, with the latter showing enrichment of ribosomal proteins and other RBPs. Therefore, this study provides insights into TcZC3HTTP's role in the post-transcriptional regulation of gene expression during normal growth and nutritional stress in T. cruzi, uncovering its versatile functions in different cellular contexts.IMPORTANCEUnderstanding how Trypanosoma cruzi, the causative agent of Chagas disease, regulates gene expression is crucial for developing targeted interventions. In this study, we investigated the role of TcZC3HTTP, an RNA-binding protein, in post-transcriptional regulation. Our findings demonstrate that TcZC3HTTP is relevant for the growth and proliferation of epimastigotes, a stage of the parasite's life cycle. We identified its associations with specific mRNAs involved in cell cycle and division and its interactions with enzymes and other RNA-binding proteins (RBPs) under normal and starvation conditions. These insights shed light on the regulatory network underlying gene expression in T. cruzi and reveal the multifaceted functions of RBPs in this parasite. Such knowledge enhances our understanding of the parasite's biology and opens avenues for developing novel therapeutic strategies targeting post-transcriptional gene regulation in T. cruzi.
Collapse
Affiliation(s)
| | - Aline Castro Rodrigues Lucena
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz PR, Curitiba, Paraná, Brazil
| | - Eden Ribeiro Freire
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz PR, Curitiba, Paraná, Brazil
| | | | - Lysangela Ronalte. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz PR, Curitiba, Paraná, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity, CHU de Quebec Research Center, University Laval, Quebec, Canada
| | - Samuel Goldenberg
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, Fiocruz PR, Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Pal J, Sharma V, Khanna A, Saha S. The SET7 protein of Leishmania donovani moderates the parasite's response to a hostile oxidative environment. J Biol Chem 2024; 300:105720. [PMID: 38311179 PMCID: PMC10907163 DOI: 10.1016/j.jbc.2024.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.
Collapse
Affiliation(s)
- Jyoti Pal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Varshni Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Arushi Khanna
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
6
|
RNA-seq reveals that overexpression of TcUBP1 switches the gene expression pattern towards that of the infective form of Trypanosoma cruzi. J Biol Chem 2023; 299:104623. [PMID: 36935010 PMCID: PMC10141520 DOI: 10.1016/j.jbc.2023.104623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Trypanosomes regulate gene expression mainly by using post-transcriptional mechanisms. Key factors responsible for carrying out this regulation are RNA-binding proteins (RBPs), affecting subcellular localization, translation, and/or transcript stability. Trypanosoma cruzi U-rich RBP 1 (TcUBP1) is a small protein that modulates the expression of several surface glycoproteins of the trypomastigote infective stage of the parasite. Its mRNA targets are known but the impact of its overexpression at the transcriptome level in the insect-dwelling epimastigote cells has not yet been investigated. Thus, in the present study, by using a tetracycline-inducible system, we generated a population of TcUBP1-overexpressing parasites and analyzed its effect by RNA-seq methodology. This allowed us to identify 793 up- and 371 down-regulated genes with respect to the wild-type control sample. Among the up-regulated genes, it was possible to identify members coding for the TcS superfamily, MASP, MUCI/II, and protein kinases, whereas among the down-regulated transcripts, we found mainly genes coding for ribosomal, mitochondrial, and synthetic pathway proteins. RNA-seq comparison with two previously published datasets revealed that the expression profile of this TcUBP1-overexpressing replicative epimastigote form resembles the transition to the infective metacyclic trypomastigote stage. We identified novel cis-regulatory elements in the 3'-untranslated region of the affected transcripts and confirmed that UBP1m -a signature TcUBP1 binding element previously characterized in our lab- is enriched in the list of stabilized genes. We can conclude that the overall effect of TcUBP1 overexpression on the epimastigote transcriptome is mainly the stabilization of mRNAs coding for proteins that are important for parasite infection.
Collapse
|
7
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
8
|
An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi. PLoS Negl Trop Dis 2021; 15:e0009435. [PMID: 34029334 PMCID: PMC8177656 DOI: 10.1371/journal.pntd.0009435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, has a digenetic life cycle. In its passage from the insect vector to the mammalian host, and vice versa, it must be prepared to cope with abrupt changes in environmental conditions, such as carbon source, pH, temperature and osmolarity, in order to survive. Sensing and signaling pathways that allow the parasite to adapt, have unique characteristics with respect to their hosts and other free-living organisms. Many of the canonical proteins involved in these transduction pathways have not yet been found in the genomes of these parasites because they present divergences either at the functional, structural and/or protein sequence level. All of this makes these pathways promising targets for therapeutic drugs. The AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by environmental stresses such as osmotic stress, hypoxia, ischaemia and exercise that results in reduction of ATP and increase of AMP levels. Thus, AMPK is regarded as a fuel gauge, functioning both as a nutrient and an energy sensor, to maintain energy homeostasis and, eventually, to protect cells from death by nutrient starvation. In the present study we report the characterization of AMPK complexes for the first time in T. cruzi and propose the function of TcAMPK as a novel regulator of nutritional stress in epimastigote forms. We show that there is phosphotransferase activity specific for SAMS peptide in epimastigotes extracts, which is inhibited by Compound C and is modulated by carbon source availability. In addition, TcAMPKα2 subunit has an unprecedented functional substitution (Ser x Thr) at the activation loop and its overexpression in epimastigotes led to higher autophagic activity during prolonged nutritional stress. Moreover, the over-expression of the catalytic subunits resulted in antagonistic phenotypes associated with proliferation. Together, these results point to a role of TcAMPK in autophagy and nutrient sensing, key processes for the survival of trypanosomatids and for its life cycle progression. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. This silent illness is endemic in Latin-American countries and is conventionally transmitted to humans by insects from the Reduviidae family. In its passage from the insect vector to the mammalian host, and vice versa, the parasite must overcome abrupt changes in environmental conditions in order to survive. The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase activated by environmental stresses that cause imbalances of the intracellular AMP:ATP ratios. Thus, AMPK is regarded as a “fuel gauge”, functioning both as a nutrient and an energy sensor to help maintain energy homeostasis and protect cells from death by nutrient starvation. In the present study we report the characterization of AMPK complexes for the first time in T. cruzi and describe the function of AMPK as a novel regulator of nutritional stress in epimastigote forms. We demonstrate that this complex possesses specific AMPK kinase activity, is inhibited by Compound C and is modulated by carbon source availability. Together, these results point to a role of AMPK in autophagy and nutrient sensing, key processes for the survival of this parasite and for its life cycle progression.
Collapse
|
9
|
Lander N, Chiurillo MA, Docampo R. Signaling pathways involved in environmental sensing in Trypanosoma cruzi. Mol Microbiol 2021; 115:819-828. [PMID: 33034088 PMCID: PMC8032824 DOI: 10.1111/mmi.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a unicellular parasite and the etiologic agent of Chagas disease. The parasite has a digenetic life cycle alternating between mammalian and insect hosts, where it faces a variety of environmental conditions to which it must adapt in order to survive. The adaptation to these changes is mediated by signaling pathways that coordinate the cellular responses to the new environmental settings. Major environmental changes include temperature, nutrient availability, ionic composition, pH, osmolarity, oxidative stress, contact with host cells and tissues, host immune response, and intracellular life. Some of the signaling pathways and second messengers potentially involved in the response to these changes have been elucidated in recent years and will be the subject of this review.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Miguel A. Chiurillo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
De Souza W, Barrias ES. May the epimastigote form of Trypanosoma cruzi be infective? Acta Trop 2020; 212:105688. [PMID: 32888934 DOI: 10.1016/j.actatropica.2020.105688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
For many years it has been considered that there are three basic developmental stages of Trypanosoma cruzi: Epimastigote (Epi), Amastigote (Ama) and Trypomastigote (Typo). Epi and Ama are able to divide while Trypo does not divide. Epi are not infective while Ama and Trypo are able to infect host cells. Here we review the available data for the epimastigote form. Taken together the data show that (a) there are intermediate forms between epimastigotes and trypomastigotes in axenic cultures as well as between amastigote and trypomastigote forms within the cells (both in vitro and in vivo), and (c) that the intermediate forms, here designated as "Transitional Epimastigote", most of the time considered as epimastigotes, are able to infect cells. The recognition of the existence of this stage is of practical importance for those work with T. cruzi. Many laboratories working only with T. cruzi in axenic cultures usually consider to work with nonpathogenic cultures. This attitude needs to be changed requiring special care by those working with this protozoan to avoid accidental infections in the laboratory. In view of these observation a new scheme for the life cycle of T. cruzi is proposed.
Collapse
|
12
|
A Trypanosoma cruzi zinc finger protein that is implicated in the control of epimastigote-specific gene expression and metacyclogenesis. Parasitology 2020; 148:1171-1185. [PMID: 33190649 PMCID: PMC8312218 DOI: 10.1017/s0031182020002176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi has three biochemically and morphologically distinct developmental stages that are programmed to rapidly respond to environmental changes the parasite faces during its life cycle. Unlike other eukaryotes, Trypanosomatid genomes contain protein coding genes that are transcribed into polycistronic pre-mRNAs and have their expression controlled by post-transcriptional mechanisms. Transcriptome analyses comparing three stages of the T. cruzi life cycle revealed changes in gene expression that reflect the parasite adaptation to distinct environments. Several genes encoding RNA binding proteins (RBPs), known to act as key post-transcriptional regulatory factors, were also differentially expressed. We characterized one T. cruzi RBP, named TcZH3H12, which contains a zinc finger domain and is up-regulated in epimastigotes compared to trypomastigotes and amastigotes. TcZC3H12 knockout (KO) epimastigotes showed decreased growth rates and increased capacity to differentiate into metacyclic trypomastigotes. Transcriptome analyses comparing wild type and TcZC3H12 KOs revealed a TcZC3H12-dependent expression of epimastigote-specific genes such as genes encoding amino acid transporters and proteins associated with differentiation (PADs). RNA immunoprecipitation assays showed that transcripts from the PAD family interact with TcZC3H12. Taken together, these findings suggest that TcZC3H12 positively regulates the expression of genes involved in epimastigote proliferation and also acts as a negative regulator of metacyclogenesis.
Collapse
|
13
|
Romagnoli BAA, Holetz FB, Alves LR, Goldenberg S. RNA Binding Proteins and Gene Expression Regulation in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:56. [PMID: 32154189 PMCID: PMC7045066 DOI: 10.3389/fcimb.2020.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. In the case of Trypanosoma cruzi, the characterization of messenger ribonucleoprotein (mRNP) particles has allowed the identification of several classes of RNA binding proteins (RBPs), as well as non-canonical RBPs, associated with mRNA molecules. The protein composition of the mRNPs as well as the localization and functionality of the mRNAs depend on their associated proteins. mRNPs can also be organized into larger complexes forming RNA granules, which function as stress granules or P-bodies depending on the associated proteins. The fate of mRNAs in the cell, and consequently the genes expressed, depends on the set of proteins associated with the messenger molecule. These proteins allow the coordinated expression of mRNAs encoding proteins that are related in function, resulting in the formation of post-transcriptional operons. However, the puzzle posed by the combinatorial association of sets of RBPs with mRNAs and how this relates to the expressed genes remain to be elucidated. One important tool in this endeavor is the use of the CRISPR/CAS system to delete genes encoding RBPs, allowing the evaluation of their effect on the formation of mRNP complexes and associated mRNAs in the different compartments of the translation machinery. Accordingly, we recently established this methodology for T. cruzi and deleted the genes encoding RBPs containing zinc finger domains. In this manuscript, we will discuss the data obtained and the potential of the CRISPR/CAS methodology to unveil the role of RBPs in T. cruzi gene expression regulation.
Collapse
Affiliation(s)
- Bruno A A Romagnoli
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Fabiola B Holetz
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Lysangela R Alves
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| | - Samuel Goldenberg
- Gene Expression Regulation Laboratory, Institute Carlos Chagas, Curitiba, Brazil
| |
Collapse
|
14
|
Callejas-Hernández F, Gutierrez-Nogues Á, Rastrojo A, Gironès N, Fresno M. Analysis of mRNA processing at whole transcriptome level, transcriptomic profile and genome sequence refinement of Trypanosoma cruzi. Sci Rep 2019; 9:17376. [PMID: 31758058 PMCID: PMC6874640 DOI: 10.1038/s41598-019-53924-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
The genomic sequence of Trypanosoma cruzi, the protozoan causative of Chagas disease was published more than a decade ago. However, due to their complexity, its complete haploid predicted sequence and therefore its genetic repertoire remains unconfirmed. In this work, we have used RNAseq data to improve the previous genome assembly of Sylvio X10 strain and to define the complete transcriptome at trypomastigote stage (mammalian stage). A total of 22,977 transcripts were identified, of which more than half could be considered novel as they did not match previously annotated genes. Moreover, for the first time in T. cruzi, we are providing their relative abundance levels. We have identified that Sylvio X10 trypomastigotes exhibit a predominance of surface protein genes, specifically those encoding trans-sialidase and mucin-like proteins. On the other hand, detailed analysis of the pre-mRNA processing sites revealed some similarities but also some differences in the spliced leader and different polyadenylation addition sites compared to close related kinetoplastid parasites. Our results also confirm that transcription is bidirectional as occur in other kinetoplastids and the proportion of forward-sense and reverse-sense transcripts is almost equivalent, demonstrating that a strand-specificity does not exist.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Ángel Gutierrez-Nogues
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|