1
|
Miyamoto D, Takeuchi K, Chihara K, Fujieda S, Sada K. Protein tyrosine kinase Abl promotes hepatitis C virus particle assembly via interaction with viral substrate activator NS5A. J Biol Chem 2022; 298:101804. [PMID: 35257746 PMCID: PMC8980994 DOI: 10.1016/j.jbc.2022.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that knockdown of Abl protein tyrosine kinase by shRNA or pharmacological inhibition suppresses particle assembly of J6/JFH1 strain–derived hepatitis C virus (HCV) in Huh-7.5 cells. However, the detailed mechanism by which Abl regulates HCV replication remained unclear. In this study, we established Abl-deficient (Abl−) cells through genome editing and compared HCV production between Abl− cells expressing WT or kinase-dead Abl and parental Huh-7.5 cells. Our findings revealed that Abl expression was not required from the stages of virus attachment and entry to viral gene expression; however, the kinase activity of Abl was necessary for the assembly of HCV particles. Reconstitution experiments using human embryonic kidney 293T cells revealed that phosphorylation of Tyr412 in the activation loop of Abl was enhanced by coexpression with the viral nonstructural protein 5A (NS5A) and was abrogated by the substitution of NS5A Tyr330 with Phe (Y330F), suggesting that NS5A functions as a substrate activator of Abl. Abl–NS5A association was also attenuated by the Y330F mutation of NS5A or the kinase-dead Abl, and Abl Tyr412 phosphorylation was not enhanced by NS5A bearing a mutation disabling homodimerization, although the association of Abl with NS5A was still observed. Taken together, these results demonstrate that Abl forms a phosphorylation-dependent complex with dimeric NS5A necessary for viral particle assembly, but that Abl is capable of complex formation with monomeric NS5A regardless of tyrosine phosphorylation. Our findings provide the foundation of a molecular basis for a new hepatitis C treatment strategy using Abl inhibitors.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Takeuchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Kazuyasu Chihara
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Organization for Life Science Advancement Programs, University of Fukui, Fukui, Japan.
| |
Collapse
|
2
|
Alkhatib M, Di Maio VC, De Murtas V, Polilli E, Milana M, Teti E, Fiorentino G, Calvaruso V, Barbaliscia S, Bertoli A, Scutari R, Carioti L, Cento V, Santoro MM, Orro A, Maida I, Lenci I, Sarmati L, Craxì A, Pasquazzi C, Parruti G, Babudieri S, Milanesi L, Andreoni M, Angelico M, Perno CF, Ceccherini-Silberstein F, Svicher V, Salpini R. Genetic Determinants in a Critical Domain of NS5A Correlate with Hepatocellular Carcinoma in Cirrhotic Patients Infected with HCV Genotype 1b. Viruses 2021; 13:v13050743. [PMID: 33922732 PMCID: PMC8146897 DOI: 10.3390/v13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain-1 interacts with cellular proteins inducing pro-oncogenic pathways. Thus, we explore genetic variations in NS5A domain-1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype-1b infected DAA-naïve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of ≥1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC-group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell-cycle regulation (p53, p85-PIK3, and β-catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV-mediated oncogenesis. The role of these NS5A domain-1 mutations in triggering pro-oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina De Murtas
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ennio Polilli
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Martina Milana
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Elisabetta Teti
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Gianluca Fiorentino
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Vincenza Calvaruso
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Alessandro Orro
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ilaria Lenci
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Loredana Sarmati
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Antonio Craxì
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Caterina Pasquazzi
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Luciano Milanesi
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Massimo Andreoni
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Mario Angelico
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesu’, Pediatric Hospital, 60165 Rome, Italy;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Correspondence: ; Tel.: +39-06-72596564
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | | |
Collapse
|
3
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
4
|
Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins. Nat Commun 2020; 11:1725. [PMID: 32265442 PMCID: PMC7138851 DOI: 10.1038/s41467-020-15441-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 11/08/2022] Open
Abstract
Class I glutaredoxins are enzymatically active, glutathione-dependent oxidoreductases, whilst class II glutaredoxins are typically enzymatically inactive, Fe-S cluster-binding proteins. Enzymatically active glutaredoxins harbor both a glutathione-scaffold site for reacting with glutathionylated disulfide substrates and a glutathione-activator site for reacting with reduced glutathione. Here, using yeast ScGrx7 as a model protein, we comprehensively identified and characterized key residues from four distinct protein regions, as well as the covalently bound glutathione moiety, and quantified their contribution to both interaction sites. Additionally, we developed a redox-sensitive GFP2-based assay, which allowed the real-time assessment of glutaredoxin structure-function relationships inside living cells. Finally, we employed this assay to rapidly screen multiple glutaredoxin mutants, ultimately enabling us to convert enzymatically active and inactive glutaredoxins into each other. In summary, we have gained a comprehensive understanding of the mechanistic underpinnings of glutaredoxin catalysis and have elucidated the determinant structural differences between the two main classes of glutaredoxins. Glutaredoxins play a central role in numerous biological processes including cellular redox homeostasis and Fe-S cluster biogenesis. Here the authors establish the molecular basis for glutaredoxin redox catalysis through comprehensive biochemical and structural analyses.
Collapse
|
5
|
Ancuceanu R, Tamba B, Stoicescu CS, Dinu M. Use of QSAR Global Models and Molecular Docking for Developing New Inhibitors of c-src Tyrosine Kinase. Int J Mol Sci 2019; 21:ijms21010019. [PMID: 31861445 PMCID: PMC6981969 DOI: 10.3390/ijms21010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
A prototype of a family of at least nine members, cellular Src tyrosine kinase is a therapeutically interesting target because its inhibition might be of interest not only in a number of malignancies, but also in a diverse array of conditions, from neurodegenerative pathologies to certain viral infections. Computational methods in drug discovery are considerably cheaper than conventional methods and offer opportunities of screening very large numbers of compounds in conditions that would be simply impossible within the wet lab experimental settings. We explored the use of global quantitative structure-activity relationship (QSAR) models and molecular ligand docking in the discovery of new c-src tyrosine kinase inhibitors. Using a dataset of 1038 compounds from ChEMBL database, we developed over 350 QSAR classification models. A total of 49 models with reasonably good performance were selected and the models were assembled by stacking with a simple majority vote and used for the virtual screening of over 100,000 compounds. A total of 744 compounds were predicted by at least 50% of the QSAR models as active, 147 compounds were within the applicability domain and predicted by at least 75% of the models to be active. The latter 147 compounds were submitted to molecular ligand docking using AutoDock Vina and LeDock, and 89 were predicted to be active based on the energy of binding.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (R.A.); (M.D.)
| | - Bogdan Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa, University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
- Correspondence:
| | - Cristina Silvia Stoicescu
- Department of Chemical Thermodynamics, Institute of Physical Chemistry “Ilie Murgulescu”, 060021 Bucharest, Romania;
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (R.A.); (M.D.)
| |
Collapse
|