1
|
Weaver SR, Peralta-Herrera E, Torres HM, Jessen E, Bradley EW, Westendorf JJ. Phlpp1 alters the murine chondrocyte phospho-proteome during endochondral bone formation. Bone 2024; 189:117265. [PMID: 39349089 PMCID: PMC11549792 DOI: 10.1016/j.bone.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Appendicular skeletal growth and bone mass acquisition are controlled by a variety of growth factors, hormones, and mechanical forces in a dynamic process called endochondral ossification. In long bones, chondrocytes in the growth plate proliferate and undergo hypertrophy to drive bone lengthening and mineralization. Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 and 2 (Phlpp1 and Phlpp2) are serine/threonine protein phosphatases that regulate cell proliferation, survival, and maturation via Akt, PKC, Raf1, S6k, and other intracellular signaling cascades. Germline deletion of Phlpp1 suppresses bone lengthening in growth plate chondrocytes. Here, we demonstrate that Phlpp2 does not regulate endochondral ossification, and we define the molecular differences between Phlpp1 and Phlpp2 in chondrocytes. Phlpp2-/- mice were phenotypically indistinguishable from their wildtype (WT) littermates, with similar bone length, bone mass, and growth plate dynamics. Deletion of Phlpp2 had moderate effects on the chondrocyte transcriptome and proteome compared to WT cells. By contrast, Phlpp1/2-/- (double knockout) mice resembled Phlpp1-/- mice phenotypically and molecularly, as the chondrocyte phospho-proteomes of Phlpp1-/- and Phlpp1/2-/- chondrocytes had similarities and were significantly different from WT and Phlpp2-/- chondrocyte phospho-proteomes. Data integration via multiparametric analysis showed that the transcriptome explained less variation in the data as a result of Phlpp1 or Phlpp2 deletion than proteome or phospho-proteome. Alterations in cell proliferation, collagen fibril organization, and Pdpk1 and Pak1/2 signaling pathways were identified in chondrocytes lacking Phlpp1, while cell cycle processes and Akt1 and Aurka signaling pathways were altered in chondrocytes lacking Phlpp2. These data demonstrate that Phlpp1, and to a lesser extent Phlpp2, regulate multiple and complex signaling cascades across the chondrocyte transcriptome, proteome, and phospho-proteome and that multi-omic data integration can reveal novel putative kinase targets that regulate endochondral ossification.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | | | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
2
|
Koroth J, Karkache IY, Vu EK, Mansky KC, Bradley EW. CD11B+CD36+ cells are bone anabolic macrophages that limit age-associated bone loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612932. [PMID: 39314303 PMCID: PMC11419144 DOI: 10.1101/2024.09.13.612932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Disruptions in the bone remodeling cycle that occur with increasing age lead to degeneration of the skeleton and increased risk of fragility fractures. Our understanding of how bone remodeling within cortical bone is controlled and altered with age in males and females is limited. Here, we generated bone marrow chimeric mice to understand the impacts of age and sex on bone remodeling. We demonstrate that transplantation of aged male or female bone marrow into young, lethally irradiated male hosts unexpectedly enhances cortical bone mass without impacting cancellous bone. Our single cell RNA-sequencing data show that mice reconstituted with aged bone marrow exhibited subsets of cells marked by CD11B/CD36 expression that demonstrate enhanced production of anabolic cytokines as compared to young counterparts, and that these myeloid subsets exist under conditions of normal physiology in aged mice. Importantly, CD11B+CD36+ cells do not differentiate into osteoclasts in vitro, and CD36 does not mark TRAP+ cells in vivo. Instead, CD36+ cells localize to resorption sites, including within cortical bone defects, suggesting their involvement in cortical bone remodeling and healing. CD11B+CD36+ cells also express elevated levels of bone anabolic WNT ligands, especially Wnt6. In functional assays, we demonstrate that soluble factors produced by CD11B+CD36+ cells enhance osteoblast progenitor commitment, mineralization, and activation of WNT signaling in vitro. Moreover, CD11B/CD36 exquisitely mark a subset of anabolic myeloid cells within human bone marrow. In conclusion, our studies identified a novel population of aged macrophages that limit cortical bone loss.
Collapse
|
3
|
Weaver SR, Torres HM, Arnold KM, Zars EL, Peralta-Herrera E, Taylor EL, Yu K, Marron Fernandez de Velasco E, Wickman K, McGee-Lawrence ME, Bradley EW, Westendorf JJ. Girk3 deletion increases osteoblast maturation and bone mass accrual in adult male mice. JBMR Plus 2024; 8:ziae108. [PMID: 39228688 PMCID: PMC11370632 DOI: 10.1093/jbmrpl/ziae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoporosis and other metabolic bone diseases are prevalent in the aging population. While bone has the capacity to regenerate throughout life, bone formation rates decline with age and contribute to reduced bone density and strength. Identifying mechanisms and pathways that increase bone accrual in adults could prevent fractures and accelerate healing. G protein-gated inwardly rectifying K+ (GIRK) channels are key effectors of G protein-coupled receptor signaling. Girk3 was recently shown to regulate endochondral ossification. Here, we demonstrate that deletion of Girk3 increases bone mass after 18 weeks of age. Male 24-week-old Girk3 -/- mice have greater trabecular bone mineral density and bone volume fraction than wildtype (WT) mice. Osteoblast activity is moderately increased in 24-week-old Girk3 -/- mice compared to WT mice. In vitro, Girk3-/- bone marrow stromal cells (BMSCs) are more proliferative than WT BMSCs. Calvarial osteoblasts and BMSCs from Girk3 -/- mice are also more osteogenic than WT cells, with altered expression of genes that regulate the wingless-related integration site (Wnt) family. Wnt inhibition via Dickkopf-1 (Dkk1) or β-catenin inhibition via XAV939 prevents enhanced mineralization, but not proliferation, in Girk3 -/- BMSCs and slows these processes in WT cells. Finally, selective ablation of Girk3 from cells expressing Cre recombinase from the 2.3 kb-Col1a1 promoter, including osteoblasts and osteocytes, is sufficient to increase bone mass and bone strength in male mice at 24 weeks of age. Taken together, these data demonstrate that Girk3 regulates progenitor cell proliferation, osteoblast differentiation, and bone mass accrual in adult male mice.
Collapse
Affiliation(s)
- Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | - Elizabeth L Zars
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States
| | - Elizabeth W Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
4
|
Vu EK, Karkache IY, Pham A, Koroth J, Bradley EW. Hdac3 deficiency limits periosteal reaction associated with Western diet feeding in female mice. J Cell Mol Med 2024; 28:e70081. [PMID: 39261913 PMCID: PMC11390340 DOI: 10.1111/jcmm.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Diet-induced obesity is associated with enhanced systemic inflammation that limits bone regeneration. HDAC inhibitors are currently being explored as anti-inflammatory agents. Prior reports show that myeloid progenitor-directed Hdac3 ablation enhances intramembranous bone healing in female mice. In this study, we determined if Hdac3 ablation increased intramembranous bone regeneration in mice fed a high-fat/high-sugar (HFD) diet. Micro-CT analyses demonstrated that HFD-feeding enhanced the formation of periosteal reaction tissue of control littermates, reflective of suboptimal bone healing. We confirmed enhanced bone volume within the defect of Hdac3-ablated females and showed that Hdac3 ablation reduced the amount of periosteal reaction tissue following HFD feeding. Osteoblasts cultured in a conditioned medium derived from Hdac3-ablated cells exhibited a four-fold increase in mineralization and enhanced osteogenic gene expression. We found that Hdac3 ablation elevated the secretion of several chemokines, including CCL2. We then confirmed that Hdac3 deficiency increased the expression of Ccl2. Lastly, we show that the proportion of CCL2-positve cells within bone defects was significantly higher in Hdac3-deficient mice and was further enhanced by HFD. Overall, our studies demonstrate that Hdac3 deletion enhances intramembranous bone healing in a setting of diet-induced obesity, possibly through increased production of CCL2 by macrophages within the defect.
Collapse
Affiliation(s)
- Elizabeth K. Vu
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ismael Y. Karkache
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
| | - Anthony Pham
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Jinsha Koroth
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
| | - Elizabeth W. Bradley
- Department of Orthopedic SurgeryMedical School, University of MinnesotaMinneapolisMNUSA
- Comparative Molecular BiosciencesSchool of Veterinary MedicineSt. PaulMNUSA
- Stem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
5
|
Yu Y, Lee S, Bock M, An SB, Shin HE, Rim JS, Kwon JO, Park KS, Han I. Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:8174. [PMID: 39125746 PMCID: PMC11311643 DOI: 10.3390/ijms25158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) are the most prevalent fractures among patients with osteoporosis, leading to severe pain, deformities, and even death. This study explored the use of ectopic embryonic calvaria derived mesenchymal stem cells (EE-cMSCs), which are known for their superior differentiation and proliferation capabilities, as a potential treatment for bone regeneration in OVCFs. We evaluated the impact of EE-cMSCs on osteoclastogenesis in a RAW264.7 cell environment, which was induced by the receptor activator of nuclear factor kappa-beta ligand (RANKL), using cytochemical staining and quantitative real-time PCR. The osteogenic potential of EE-cMSCs was evaluated under various hydrogel conditions. An osteoporotic vertebral body bone defect model was established by inducing osteoporosis in rats through bilateral ovariectomy and creating defects in their coccygeal vertebral bodies. The effects of EE-cMSCs were examined using micro-computed tomography (μCT) and histology, including immunohistochemical analyses. In vitro, EE-cMSCs inhibited osteoclast differentiation and promoted osteogenesis in a 3D cell culture environment using fibrin hydrogel. Moreover, μCT and histological staining demonstrated increased new bone formation in the group treated with EE-cMSCs and fibrin. Immunostaining showed reduced osteoclast activity and bone resorption, alongside increased angiogenesis. Thus, EE-cMSCs can effectively promote bone regeneration and may represent a promising therapeutic approach for treating OVCFs.
Collapse
Affiliation(s)
- Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Jong Seop Rim
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Jun-oh Kwon
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
6
|
Koroth J, Chitwood C, Kumar R, Lin WH, Reves BT, Boyce T, Reineke TM, Ellingson AM, Johnson CP, Stone LS, Chaffin KC, Simha NK, Ogle BM, Bradley EW. Identification of a novel, MSC-induced macrophage subtype via single-cell sequencing: implications for intervertebral disc degeneration therapy. Front Cell Dev Biol 2024; 11:1286011. [PMID: 38274272 PMCID: PMC10808728 DOI: 10.3389/fcell.2023.1286011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-β signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-β neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-β-dependent mechanisms.
Collapse
Affiliation(s)
- Jinsha Koroth
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Casey Chitwood
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Wei-Han Lin
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Theresa M. Reineke
- Department of Chemistry, College of Science and Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Arin M. Ellingson
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Casey P. Johnson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Laura S. Stone
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Brenda M. Ogle
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, Medical School, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Karkache IY, Molstad DHH, Vu E, Jensen ED, Bradley EW. Phlpp1 Expression in Osteoblasts Plays a Modest Role in Bone Homeostasis. JBMR Plus 2023; 7:e10806. [PMID: 38130760 PMCID: PMC10731110 DOI: 10.1002/jbm4.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 12/23/2023] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters limb length and bone mass, but the cell types involved and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within bone-forming osteoblasts, we crossed Phlpp1 floxed mice with mice harboring type 1 collagen (Col1a12.3kb)-Cre. Mineralization of bone marrow stromal cell cultures derived from Phlpp1 cKOCol1a1 was unchanged, but levels of inflammatory genes (eg, Ifng, Il6, Ccl8) and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratios were enhanced by either Phlpp1 ablation or chemical inhibition. Micro-computed tomography of the distal femur and L5 vertebral body of 12-week-old mice revealed no alteration in bone volume per total volume, but compromised femoral bone microarchitecture within Phlpp1 cKOCol1a1 conditional knockout females. Bone histomorphometry of the proximal tibia documented no changes in osteoblast or osteoclast number per bone surface but slight reductions in osteoclast surface per bone surface. Overall, our data show that deletion of Phlpp1 in type 1 collagen-expressing cells does not significantly alter attainment of peak bone mass of either males or females, but may enhance inflammatory gene expression and the ratio of RANKL/OPG. Future studies examining the role of Phlpp1 within models of advanced age, inflammation, or osteocytes, as well as functional redundancy with the related Phlpp2 isoform are warranted. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
| | - David HH Molstad
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | - Elizabeth Vu
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
| | | | - Elizabeth W Bradley
- Department of OrthopedicsUniversity of MinnesotaMinneapolisMNUSA
- College of Veterinary SciencesUniversity of MinnesotaMinneapolisMNUSA
- Department of Orthopedic SurgeryStem Cell Institute, University of MinnesotaMinneapolisMNUSA
| |
Collapse
|
8
|
Amaral SS, Lima BSDS, Avelino SOM, Spirandeli BR, Campos TMB, Thim GP, Trichês EDS, Prado RFD, Vasconcellos LMRD. β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications. Bioengineering (Basel) 2023; 10:bioengineering10050597. [PMID: 37237667 DOI: 10.3390/bioengineering10050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American Type Culture Collection reference strains were used to determine the scaffold's antimicrobial potential. Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4 group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group. The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Simões Amaral
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Beatriz Samara de Sousa Lima
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Sarah Oliveira Marco Avelino
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Bruno Roberto Spirandeli
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Tiago Moreira Bastos Campos
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Gilmar Patrocínio Thim
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Renata Falchete do Prado
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
9
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
10
|
Zhang C, Joseph KM, Khan NM, Diaz‐Hernandez ME, Drissi H, Illien‐Junger S. PHLPP1 deficiency protects against age-related intervertebral disc degeneration. JOR Spine 2022; 5:e1224. [PMID: 36601379 PMCID: PMC9799085 DOI: 10.1002/jsp2.1224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is strongly associated with low back pain and is highly prevalent in the elderly population. Hallmarks of IVD degeneration include cell loss and extracellular matrix degradation. The PH domain leucine-rich-repeats protein phosphatase (PHLPP1) is highly expressed in diseased cartilaginous tissues where it is linked to extracellular matrix degradation. This study explored the ability of PHLPP1 deficiency to protect against age-related spontaneous IVD degeneration. Methods Lumbar IVDs of global Phlpp1 knockout (KO) and wildtype (WT) mice were collected at 5 months (young) and 20 months (aged). Picrosirius red-alcian blue staining (PR-AB) was performed to examine IVD structure and histological score. The expression of aggrecan, ADAMTS5, KRT19, FOXO1 and FOXO3 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human nucleus pulposus (NP) samples were obtained from patients diagnosed with IVD degeneration. PHLPP1 knockdown in human degenerated NP cells was conducted using small interfering RNA (siRNA) transfection. The expression of PHLPP1 regulated downstream targets was analyzed via immunoblot and real time quantitative PCR. Results Histological analysis showed that Phlpp1 KO decreased the prevalence and severity of age-related IVD degeneration. The deficiency of PHLPP1 promoted the increased expression of NP phenotypic marker KRT19, aggrecan and FOXO1, and decreased levels of ADMATS5 and cell apoptosis in the NP of aged mice. In degenerated human NP cells, PHLPP1 knockdown induced FOXO1 protein levels while FOXO1 inhibition offset the beneficial effects of PHLPP1 knockdown on KRT19 gene and protein expression. Conclusions Our findings indicate that Phlpp1 deficiency protected against NP phenotypic changes, extracellular matrix degradation, and cell apoptosis in the process of IVD degeneration, probably through FOXO1 activation, making PHLPP1 a promising therapeutic target for treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nazir M. Khan
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | |
Collapse
|
11
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
12
|
Tan Y, Li T, Hu M, Wang B, Zhou Q, Jiang Y, Zhang S, Duan X, Yang J, Liu X, Zhan Z. PHLPP1 deficiency ameliorates cardiomyocyte death and cardiac dysfunction through inhibiting Mcl-1 degradation. Cell Signal 2022; 92:110281. [DOI: 10.1016/j.cellsig.2022.110281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
|
13
|
Yuan Y, Guo M, Gu C, Yang Y. The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). Am J Transl Res 2021; 13:9932-9949. [PMID: 34650674 PMCID: PMC8507016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a refractory hematological malignancy characterized by aberrant accumulation of plasma cells. Patients with MM are susceptible to becoming resistant to chemotherapy, eventually leading to relapse. Progression of MM is largely dependent on the bone marrow microenvironment. Stromal cells in the bone marrow microenvironment secrete Wnt ligands to activate Wnt signaling in MM, which is mediated through the transcription regulator β-catenin. In addition, Wnt/β-catenin pathway encourages osteoblast differentiation and bone formation, dysregulation of which is responsible for proliferation and drug resistance of MM cells. As a result, direct inhibition or silencing of β-catenin or associated genes in the Wnt/β-catenin pathway has been proposed to be an effective therapeutic anti-MM strategy. However, the underlying regulatory mechanism of the Wnt/β-catenin pathway in MM remains to be fully elucidated. Herein, we summarized research advances on the specific genes and molecular biology process of Wnt/β-catenin pathway involved in tumorigenesis of MM, as well as the interaction with bone marrow microenvironment. Additionally, comprehensive summaries of drugs or small molecule inhibitors acting on Wnt/β-catenin pathway and targeting MM were introduced. This review intends to provide an overview of theoretical supports for novel Wnt/β-catenin pathway based treatment strategies in MM.
Collapse
Affiliation(s)
- Yuxia Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
14
|
Karkache IY, Damodaran JR, Molstad DHH, Mansky KC, Bradley EW. Myeloid Lineage Ablation of Phlpp1 Regulates M-CSF Signaling and Tempers Bone Resorption in Female Mice. Int J Mol Sci 2021; 22:9702. [PMID: 34575866 PMCID: PMC8468863 DOI: 10.3390/ijms22189702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Prior work demonstrated that Phlpp1 deficiency alters trabecular bone mass and enhances M-CSF responsiveness, but the cell types and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within myeloid lineage cells, we crossed Phlpp1 floxed mice with mice harboring LysM-Cre. Micro-computed tomography of the distal femur of 12-week-old mice revealed a 30% increase in bone volume per total volume of Phlpp1 female conditional knockouts, but we did not observe significant changes within male Phlpp1 cKOLysM mice. Bone histomorphmetry of the proximal tibia further revealed that Phlpp1 cKOLysM females exhibited elevated osteoclast numbers, but conversely had reduced levels of serum markers of bone resorption as compared to littermate controls. Osteoblast number and serum markers of bone formation were unchanged. In vitro assays confirmed that Phlpp1 ablation enhanced osteoclast number and area, but limited bone resorption. Additionally, reconstitution with exogenous Phlpp1 suppressed osteoclast numbers. Dose response assays demonstrated that Phlpp1-/- cells are more responsive to M-CSF, but reconstitution with Phlpp1 abrogated this effect. Furthermore, small molecule-mediated Phlpp inhibition enhanced osteoclast numbers and size. Enhanced phosphorylation of Phlpp substrates-including Akt, ERK1/2, and PKCζ-accompanied these observations. In contrast, actin cytoskeleton disruption occurred within Phlpp inhibitor treated osteoclasts. Moreover, Phlpp inhibition reduced resorption of cells cultured on bovine bone slices in vitro. Our results demonstrate that Phlpp1 deficiency within myeloid lineage cells enhances bone mass by limiting bone resorption while leaving osteoclast numbers intact; moreover, we show that Phlpp1 represses osteoclastogenesis and controls responses to M-CSF.
Collapse
Affiliation(s)
- Ismael Y. Karkache
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Jeyaram R. Damodaran
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - David H. H. Molstad
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Services, Institute for Virology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.K.); (J.R.D.); (D.H.H.M.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Phlpp1 is induced by estrogen in osteoclasts and its loss in Ctsk-expressing cells does not protect against ovariectomy-induced bone loss. PLoS One 2021; 16:e0251732. [PMID: 34143773 PMCID: PMC8213150 DOI: 10.1371/journal.pone.0251732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Prior studies demonstrated that deletion of the protein phosphatase Phlpp1 in Ctsk-Cre expressing cells enhances bone mass, characterized by diminished osteoclast activity and increased coupling to bone formation. Due to non-specific expression of Ctsk-Cre, the definitive mechanism for this observation was unclear. To further define the role of bone resorbing osteoclasts, we performed ovariectomy (Ovx) and Sham surgeries on Phlpp1 cKOCtsk and WT mice. Micro-CT analyses confirmed enhanced bone mass of Phlpp1 cKOCtsk Sham females. In contrast, Ovx induced bone loss in both groups, with no difference between Phlpp1 cKOCtsk and WT mice. Histomorphometry demonstrated that Ovx mice lacked differences in osteoclasts per bone surface, suggesting that estradiol (E2) is required for Phlpp1 deficiency to have an effect. We performed high throughput unbiased transcriptional profiling of Phlpp1 cKOCtsk osteoclasts and identified 290 differentially expressed genes. By cross-referencing these differentially expressed genes with all estrogen response element (ERE) containing genes, we identified IGFBP4 as potential estrogen-dependent target of Phlpp1. E2 induced PHLPP1 expression, but reduced IGFBP4 levels. Moreover, genetic deletion or chemical inhibition of Phlpp1 was correlated with IGFBP4 levels. We then assessed IGFBP4 expression by osteoclasts in vivo within intact 12-week-old females. Modest IGFBP4 immunohistochemical staining of TRAP+ osteoclasts within WT females was observed. In contrast, TRAP+ bone lining cells within intact Phlpp1 cKOCtsk females robustly expressed IGFBP4, but levels were diminished within TRAP+ bone lining cells following Ovx. These results demonstrate that effects of Phlpp1 conditional deficiency are lost following Ovx, potentially due to estrogen-dependent regulation of IGFBP4.
Collapse
|
16
|
Weaver SR, Taylor EL, Zars EL, Arnold KM, Bradley EW, Westendorf JJ. Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. J Bone Miner Res 2021; 36:986-999. [PMID: 33434347 PMCID: PMC8131217 DOI: 10.1002/jbmr.4248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Hedvičáková V, Žižková R, Buzgo M, Rampichová M, Filová E. The Effect of Alendronate on Osteoclastogenesis in Different Combinations of M-CSF and RANKL Growth Factors. Biomolecules 2021; 11:biom11030438. [PMID: 33809737 PMCID: PMC8035832 DOI: 10.3390/biom11030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are compounds resembling the pyrophosphate structure. BPs bind the mineral component of bones. During the bone resorption by osteoclasts, nitrogen-containing BPs are released and internalized, causing an inhibition of the mevalonate pathway. As a consequence, osteoclasts are unable to execute their function. Alendronate (ALN) is a bisphosphonate used to treat osteoporosis. Its administration could be associated with adverse effects. The purpose of this study is to evaluate four different ALN concentrations, ranging from 10−6 to 10−10 M, in the presence of different combinations of M-CSF and RANKL, to find out the effect of low ALN concentrations on osteoclastogenesis using rat and human peripheral blood mononuclear cells. The cytotoxic effect of ALN was evaluated based on metabolic activity and DNA concentration measurement. The alteration in osteoclastogenesis was assessed by the activity of carbonic anhydrase II (CA II), tartrate-resistant acid phosphatase staining, and actin ring formation. The ALN concentration of 10−6 M was cytotoxic. Low ALN concentrations of 10−8 and 10−10 M promoted proliferation, osteoclast-like cell formation, and CA II activity. The results indicated the induction of osteoclastogenesis with low ALN concentrations. However, when high doses of ALN were administered, their cytotoxic effect was demonstrated.
Collapse
Affiliation(s)
- Věra Hedvičáková
- Department of Tissue Engineering, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.Ž.); (M.B.); (M.R.); (E.F.)
- Correspondence: ; Tel.: +420-241-062-387
| | - Radmila Žižková
- Department of Tissue Engineering, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.Ž.); (M.B.); (M.R.); (E.F.)
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Matěj Buzgo
- Department of Tissue Engineering, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.Ž.); (M.B.); (M.R.); (E.F.)
- InoCure, Politických Vězňů 935/13, 110 00 Praha, Czech Republic
| | - Michala Rampichová
- Department of Tissue Engineering, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.Ž.); (M.B.); (M.R.); (E.F.)
| | - Eva Filová
- Department of Tissue Engineering, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.Ž.); (M.B.); (M.R.); (E.F.)
| |
Collapse
|
18
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
19
|
Molstad DHH, Zars E, Norton A, Mansky KC, Westendorf JJ, Bradley EW. Hdac3 deletion in myeloid progenitor cells enhances bone healing in females and limits osteoclast fusion via Pmepa1. Sci Rep 2020; 10:21804. [PMID: 33311522 PMCID: PMC7733476 DOI: 10.1038/s41598-020-78364-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Previous studies examining the role of the histone deacetylase Hdac3 within myeloid cells demonstrated that Hdac3 promotes M2 activation and tissue healing in inflammatory conditions. Since myeloid lineage cells are required for proper bone formation and regeneration, in this study we examined the functions of Hdac3 during bone healing. Conditional deletion of Hdac3 within myeloid progenitors accelerates healing of cortical bone defects. Moreover, reduced osteoclast numbers within the defect site are correlated with Hdac3 suppression. Ex vivo osteoclastogenesis assays further demonstrate that Hdac3 deficiency limits osteoclastogenesis, the number of nuclei per cell and bone resorption, suggesting a defect in cell fusion. High throughput RNA sequencing identified the transmembrane protein Pmepa1 as a differentially expressed gene within osteoclast progenitor cells. Knockdown of Pmepa1 partially restores defects in osteoclastogenesis induced by Hdac3 deficiency. These results show that Hdac3 is required for optimal bone healing and osteoclast fusion, potentially via its regulation of Pmepa1 expression.
Collapse
Affiliation(s)
- David H H Molstad
- Department of Orthopedics, University of Minnesota, Elizabeth W. Bradley, 100 Church St. S.E., Minneapolis, MN, 55455, USA
| | - Elizabeth Zars
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andrew Norton
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kim C Mansky
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer J Westendorf
- Departments of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth W Bradley
- Department of Orthopedics, University of Minnesota, Elizabeth W. Bradley, 100 Church St. S.E., Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Pan Q, Li Y, Xu J, Kang Y, Li Y, Wang B, Yang YP, Lin S, Li G. The effects of tubular structure on biomaterial aided bone regeneration in distraction osteogenesis. J Orthop Translat 2020. [DOI: 10.1016/j.jot.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
21
|
Zhang X, Lu Y, He N, Wang F. Downregulation of PHLPP1 ameliorates high glucose-evoked injury in retinal ganglion cells by attenuating apoptosis and oxidative stress through enhancement of Nrf2 activation. Exp Cell Res 2020; 397:112344. [PMID: 33164862 DOI: 10.1016/j.yexcr.2020.112344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
High glucose (HG)-induced oxidative stress contributes significantly to the pathogenesis of diabetic retinopathy. Pleckstrin homology domain and leucine rich repeat protein phosphatase 1 (PHLPP1) has emerged as a key regulator of oxidative stress implicated in various pathological processes. However, whether PHLPP1 participates in the regulation of HG-induced oxidative stress injury of retinal ganglion cells (RGCs) in diabetic retinopathy is undetermined. The purpose of this study was to explore the potential role and molecular mechanism of PHLPP1 in regulating HG-induced injury of RGCs. Our data showed that PHLPP1 expression was markedly elevated in RGCs from diabetic rats and HG-exposed RGCs. Our functional assay elucidated that knockdown of PHLPP1 improved cell viability and decreased cell apoptosis and reactive oxygen species (ROS) production in HG-exposed RGCs. Additionally, upregulation of PHLPP1 lowered cell viability and increased cell apoptosis and ROS production in HG-exposed RGCs. Mechanistically, knockdown of PHLPP1 resulted in an increase in nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear expression and Nrf2/antioxidant response element (ARE)-mediated transcription associated with upregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. Moreover, inhibition of GSK-3β significantly reversed the suppressive effect of PHLPP1 overexpression on Nrf2/ARE activation. Notably, the protective effect of PHLPP1 knockdown on HG-induced injury in RGCs was markedly abolished by Nrf2 inhibition. In conclusion, Our findings demonstrate that downregulation of PHLPP1 activates Nrf2/ARE signaling to protect RGCs from HG-induced apoptosis and oxidative stress. This study indicates a potential role of PHLPP1 in regulating HG-induced injury of RGCs during the development and progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Ye Lu
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Na He
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Feng Wang
- Ophthalmology Department, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, 710004, PR China.
| |
Collapse
|