1
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Wang P, Qi S, Wang X, Dou L, Jia MA, Mao T, Guo Y, Wang X. The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. THE PLANT CELL 2023; 35:260-278. [PMID: 36255272 PMCID: PMC9806620 DOI: 10.1093/plcell/koac307] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 05/23/2023]
Abstract
Drought stress triggers abscisic acid (ABA) signaling in guard cells and induces stomatal closure to prevent water loss in land plants. Stomatal movement is accompanied by reorganization of the cytoskeleton. Cortical microtubules disassemble in response to ABA, which is required for stomatal closure. However, how ABA signaling regulates microtubule disassembly is unclear, and the microtubule-associated proteins (MAPs) involved in this process remain to be identified. In this study, we show that OPEN STOMATA 1 (OST1), a central component in ABA signaling, mediates microtubule disassembly during ABA-induced stomatal closure in Arabidopsis thaliana. We identified the MAP SPIRAL1 (SPR1) as the substrate of OST1. OST1 interacts with and phosphorylates SPR1 at Ser6, which promotes the disassociation of SPR1 from microtubules and facilitates microtubule disassembly. Compared with the wild type, the spr1 mutant exhibited significantly greater water loss and reduced ABA responses, including stomatal closure and microtubule disassembly in guard cells. These phenotypes were restored by introducing the phosphorylated active form of SPR1. Our findings demonstrate that SPR1 positively regulates microtubule disassembly during ABA-induced stomatal closure, which depends on OST1-mediated phosphorylation. These findings reveal a specific connection between a core component of ABA signaling and MAPs.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sijia Qi
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liru Dou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng-ao Jia
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Lan M, Liu X, Kang E, Fu Y, Zhu L. ARK2 stabilizes the plus-end of microtubules and promotes microtubule bundling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:100-116. [PMID: 36169006 DOI: 10.1111/jipb.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.
Collapse
Affiliation(s)
- Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Li Y, Huang Y, Wen Y, Wang D, Liu H, Li Y, Zhao J, An L, Yu F, Liu X. The domain of unknown function 4005 (DUF4005) in an Arabidopsis IQD protein functions in microtubule binding. J Biol Chem 2021; 297:100849. [PMID: 34058197 PMCID: PMC8246641 DOI: 10.1016/j.jbc.2021.100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022] Open
Abstract
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yujia Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yunze Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuanfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|