1
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
2
|
Campanero-Rhodes MA, Martí S, Hernández-Ortiz N, Cubero M, Ereño-Orbea J, Ardá A, Jiménez-Barbero J, Ardanuy C, Solís D. Insights into the recognition of hypermucoviscous Klebsiella pneumoniae clinical isolates by innate immune lectins of the Siglec and galectin families. Front Immunol 2024; 15:1436039. [PMID: 39148735 PMCID: PMC11324429 DOI: 10.3389/fimmu.2024.1436039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Klebsiella pneumoniae is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, K. pneumoniae variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the K. pneumoniae surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part. Various capsular and O-chain structures have been described. Of note, production of a thick capsule is frequently observed in HMV variants. Here we examined the surface sugar epitopes of a collection of HMV and non-HMV K. pneumoniae clinical isolates and their recognition by several Siglecs and galectins, two lectin families of the innate immune system, using bacteria microarrays as main tool. No significant differences among isolates in sialic acid content or recognition by Siglecs were observed. In contrast, analysis of the binding of model lectins with diverse carbohydrate-binding specificities revealed striking differences in the recognition by galactose- and mannose-specific lectins, which correlated with the binding or lack of binding of galectins and pointed to the O-chain as the plausible ligand. Fluorescence microscopy and microarray analyses of galectin-9 binding to entire cells and outer membranes of two representative HMV isolates supported the bacteria microarray results. In addition, Western blot analysis of the binding of galectin-9 to outer membranes unveiled protein bands recognized by this galectin, and fingerprint analysis of these bands identified several proteins containing potential O-glycosylation sites, thus broadening the spectrum of possible galectin ligands on the K. pneumoniae surface. Moreover, Siglecs and galectins apparently target different structures on K. pneumoniae surfaces, thereby behaving as non-redundant complementary tools of the innate immune system.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Noelia Hernández-Ortiz
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - June Ereño-Orbea
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ana Ardá
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- CIC bioGUNE - Center for Cooperative Research in Biosciences, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology University of the Basque Country, EHU/UPV, Leioa, Spain
| | - Carmen Ardanuy
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitari Bellvitge, University of Barcelona-Fundación Instituto de Investigación Biomédica de Bellvitge, L’Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Dolores Solís
- Department of Biological Physical Chemistry, Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
van Houtum EJH, Kers-Rebel ED, Looman MW, Hooijberg E, Büll C, Granado D, Cornelissen LAM, Adema GJ. Tumor cell-intrinsic and tumor microenvironmental conditions co-determine signaling by the glycoimmune checkpoint receptor Siglec-7. Cell Mol Life Sci 2023; 80:169. [PMID: 37253806 DOI: 10.1007/s00018-023-04816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
Tumors create an immunosuppressive tumor microenvironment by altering protein expression, but also by changing their glycosylation status, like altered expression of sialoglycans. Sialoglycans are capped with sialic acid sugar residues and are recognized by Siglec immune receptors. Siglec-7 is an inhibitory immune receptor similar to PD-1, and is emerging as glycoimmune checkpoint exploited by cancer cells to evade the immune system. However, the exact cellular and molecular conditions required for Siglec-7-mediated immune cell inhibition remain largely unknown. Here, we report on the development of a chimeric Siglec-7 cell system that enables dissection of Siglec-7 signaling, rather than Siglec-7 binding. Antibody-induced clustering, sialic acid-containing polymers, and highly sialylated erythrocytes effectively induced Siglec-7 signaling, thereby validating functionality of this reporter system. Moreover, the system reveals tumor cell-dependent Siglec-7 signaling. Tumor-associated conditions important for Siglec-7 signaling were defined, such as Siglec-7 ligand expression levels, presence of the known Siglec-7 ligand CD43, and sialic acid availability for sialylation of glycans. Importantly, therapeutic targeting of the Siglec-7/sialic acid axis using a sialyltransferase inhibitor resulted in strong reduction of Siglec-7 signaling. In conclusion, using a newly established cellular tool, we defined a set of tumor-associated conditions that influence Siglec-7 signaling. Moreover, the system allows to assess the efficacy of novel cancer drugs interfering with the Siglec-7/sialic acid axis as immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Eline J H van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Maaike W Looman
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Daniel Granado
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Post 874, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
5
|
Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Med 2023; 90:101117. [PMID: 35989204 PMCID: PMC9905256 DOI: 10.1016/j.mam.2022.101117] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Immunoglobulin (Ig) superfamily proteins play diverse roles in vertebrates, including regulation of cellular responses by sensing endogenous or exogenous ligands. Siglecs are a family of glycan-recognizing proteins belonging to the Ig superfamily (i.e., I-type lectins). Siglecs are expressed on various leukocyte types and are involved in diverse aspects of immunity, including the regulation of inflammatory responses, leukocyte proliferation, host-microbe interaction, and cancer immunity. Sialoadhesin/Siglec-1, CD22/Siglec-2, and myelin-associated glycoprotein/Siglec-4 were among the first to be characterized as members of the Siglec family, and along with Siglec-15, they are relatively well-conserved among tetrapods. Conversely, CD33/Siglec-3-related Siglecs (CD33rSiglecs, so named as they show high sequence similarity with CD33/Siglec-3) are encoded in a gene cluster with many interspecies variations and even intraspecies variations within some lineages such as humans. The rapid evolution of CD33rSiglecs expressed on leukocytes involved in innate immunity likely reflects the selective pressure by pathogens that interact and possibly exploit these Siglecs. Human Siglecs have several additional unique and/or polymorphic properties as compared with closely related great apes, changes possibly related to the loss of the sialic acid Neu5Gc, another distinctly human event in sialobiology. Multiple changes in human CD33rSiglecs compared to great apes include many examples of human-specific expression in non-immune cells, coinciding with human-specific diseases involving such cell types. Some Siglec gene polymorphisms have dual consequences-beneficial in a situation but detrimental in another. The association of human Siglec gene polymorphisms with several infectious and non-infectious diseases likely reflects the ongoing competition between the host and microbial pathogens.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Abstract
The term "lectin" is derived from the Latin word lego- (aggregate) (Boyd & Shapleigh, 1954). Indeed, lectins' folds can flexibly alter their pocket structures just like Lego blocks, which enables them to grab a wide-variety of substances. Thus, this useful fold is well-conserved among various organisms. Through evolution, prototypic soluble lectins acquired transmembrane regions and signaling motifs to become C-type lectin receptors (CLRs). While CLRs seem to possess certain intrinsic affinity to self, some CLRs adapted to efficiently recognize glycoconjugates present in pathogens as pathogen-associated molecular patterns (PAMPs) and altered self. CLRs further extended their diversity to recognize non-glycosylated targets including pathogens and self-derived molecules. Thus, CLRs seem to have developed to monitor the internal/external stresses to maintain homeostasis by sensing various "unfamiliar" targets. In this review, we will summarize recent advances in our understanding of CLRs, their ligands and functions and discuss future perspectives.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Akiyama M, Eura Y, Kokame K. Siglec-5 and Siglec-14 mediate the endocytosis of ADAMTS13. Thromb Res 2022; 219:49-59. [PMID: 36116391 DOI: 10.1016/j.thromres.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND The plasma metalloprotease ADAMTS13 regulates the thrombotic activity of the von Willebrand factor (VWF). ADAMTS13 is highly glycosylated and its carbohydrate chains are capped with sialic acid (SA). Thus, ADAMTS13 may interact with carbohydrate- and/or SA-binding plasma membrane receptors that are involved in the clearance of various plasma proteins. We have investigated ADAMTS13 endocytosis via Siglecs, which were originally identified as SA-binding immunoreceptor family proteins expressed on leukocytes and are also known as endocytic receptors. MATERIALS AND METHODS Endocytic internalization of fluorescently labeled ADAMTS13 into HEK293 cells expressing Siglecs was examined via fluorescence microscopy. In vitro binding of ADAMTS13 to the extracellular region of Siglec-5 was examined. Plasma ADAMTS13 activity in human Siglec-5-expressing mice was measured. RESULTS AND CONCLUSIONS Siglec-5- and Siglec-14-expressing cells internalized not only full-length ADAMTS13 (FL) but also the truncated form (MDTCS) at least partly in an SA-independent manner. Replacement of the V-set domain of Siglec-14 with that of Siglec-3 abrogated the internalization of ADAMTS13. ADAMTS13 directly bound to the extracellular region of Siglec-5 in vitro. Expression of Siglec-5 in the mouse liver resulted in a significant decrease in plasma ADAMTS13 activity. These results suggest that Siglec-5 and Siglec-14, which have nearly identical ligand-binding domains, may contribute to the regulation of plasma ADAMTS13 levels as endocytic receptors for ADAMTS13.
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| |
Collapse
|
8
|
van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021; 12:790317. [PMID: 34966391 PMCID: PMC8710542 DOI: 10.3389/fimmu.2021.790317] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors that recognize sialoglycans - sialic acid containing glycans that are abundantly present on cell membranes. Siglecs are expressed on most immune cells and can modulate their activity and function. The majority of Siglecs contains immune inhibitory motifs comparable to the immune checkpoint receptor PD-1. In the tumor microenvironment (TME), signaling through the Siglec-sialoglycan axis appears to be enhanced through multiple mechanisms favoring tumor immune evasion similar to the PD-1/PD-L1 signaling pathway. Siglec expression on tumor-infiltrating immune cells appears increased in the immune suppressive microenvironment. At the same time, enhanced Siglec ligand expression has been reported for several tumor types as a result of aberrant glycosylation, glycan modifications, and the increased expression of sialoglycans on proteins and lipids. Siglec signaling has been identified as important regulator of anti-tumor immunity in the TME, but the key factors contributing to Siglec activation by tumor-associated sialoglycans are diverse and poorly defined. Among others, Siglec activation and signaling are co-determined by their expression levels, cell surface distribution, and their binding preferences for cis- and trans-ligands in the TME. Siglec binding preference are co-determined by the nature of the proteins/lipids to which the sialoglycans are attached and the multivalency of the interaction. Here, we review the current understanding and emerging conditions and factors involved in Siglec signaling in the TME and identify current knowledge gaps that exist in the field.
Collapse
Affiliation(s)
- Eline J. H. van Houtum
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Büll
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lenneke A. M. Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Riecan M, Paluchova V, Lopes M, Brejchova K, Kuda O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol Ther 2021; 231:107972. [PMID: 34453998 DOI: 10.1016/j.pharmthera.2021.107972] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) represent a complex lipid class that contains both signaling mediators and structural components of lipid biofilms in humans. The majority of endogenous FAHFAs share a common chemical architecture, characterized by an estolide bond that links the hydroxy fatty acid (HFA) backbone and the fatty acid (FA). Two structurally and functionally distinct FAHFA superfamilies are recognized based on the position of the estolide bond: omega-FAHFAs and in-chain branched FAHFAs. The existing variety of possible HFAs and FAs combined with the position of the estolide bond generates a vast quantity of unique structures identified in FAHFA families. In this review, we discuss the anti-diabetic and anti-inflammatory effects of branched FAHFAs and the role of omega-FAHFA-derived lipids as surfactants in the tear film lipid layer and dry eye disease. To emphasize potential pharmacological targets, we recapitulate the biosynthesis of the HFA backbone within the superfamilies together with the degradation pathways and the FAHFA regioisomer distribution in human and mouse adipose tissue. We propose a theoretical involvement of cytochrome P450 enzymes in the generation and degradation of saturated HFA backbones and present an overview of small-molecule inhibitors used in FAHFA research. The FAHFA lipid class is huge and largely unexplored. Besides the unknown biological effects of individual FAHFAs, also the enigmatic enzymatic machinery behind their synthesis could provide new therapeutic approaches for inflammatory metabolic or eye diseases. Therefore, understanding the mechanisms of (FA)HFA synthesis at the molecular level should be the next step in FAHFA research.
Collapse
Affiliation(s)
- Martin Riecan
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Paluchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Magno Lopes
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
10
|
Aryal P, Syed I, Lee J, Patel R, Nelson AT, Siegel D, Saghatelian A, Kahn BB. Distinct biological activities of isomers from several families of branched fatty acid esters of hydroxy fatty acids (FAHFAs). J Lipid Res 2021; 62:100108. [PMID: 34418413 PMCID: PMC8479484 DOI: 10.1016/j.jlr.2021.100108] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids with antidiabetic and anti-inflammatory effects. Each FAHFA family consists of esters with different acyl chains and multiple isomers with branch points at different carbons. Some FAHFAs, including palmitic acid hydroxy stearic acids (PAHSAs), improve insulin sensitivity and glucose tolerance in mice by enhancing glucose-stimulated insulin secretion (GSIS), insulin-stimulated glucose transport, and insulin action to suppress hepatic glucose production and reducing adipose tissue inflammation. However, little is known about the biological effects of other FAHFAs. Here, we investigated whether PAHSAs, oleic acid hydroxy stearic acid, palmitoleic acid hydroxy stearic acid, and stearic acid hydroxy stearic acid potentiate GSIS in β-cells and human islets, insulin-stimulated glucose uptake in adipocytes, and anti-inflammatory effects in immune cells. We also investigated whether they activate G protein-coupled receptor 40, which mediates the effects of PAHSAs on insulin secretion and sensitivity in vivo. We show that many FAHFAs potentiate GSIS, activate G protein-coupled receptor 40, and attenuate LPS-induced chemokine and cytokine expression and secretion and phagocytosis in immune cells. However, fewer FAHFAs augment insulin-stimulated glucose uptake in adipocytes. S-9-PAHSA, but not R-9-PAHSA, potentiated GSIS and glucose uptake, while both stereoisomers had anti-inflammatory effects. FAHFAs containing unsaturated acyl chains with higher branching from the carboxylate head group are more likely to potentiate GSIS, whereas FAHFAs with lower branching are more likely to be anti-inflammatory. This study provides insight into the specificity of the biological actions of different FAHFAs and could lead to the development of FAHFAs to treat metabolic and immune-mediated diseases.
Collapse
Affiliation(s)
- Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ismail Syed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rucha Patel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew T Nelson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Brejchova K, Balas L, Paluchova V, Brezinova M, Durand T, Kuda O. Understanding FAHFAs: From structure to metabolic regulation. Prog Lipid Res 2020; 79:101053. [PMID: 32735891 DOI: 10.1016/j.plipres.2020.101053] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 01/01/2023]
Abstract
The discovery of branched fatty acid esters of hydroxy fatty acids (FAHFAs) in humans draw attention of many researches to their biological effects. Although FAHFAs were originally discovered in insects and plants, their introduction into the mammalian realm opened new horizons in bioactive lipid research. Hundreds of isomers from different families have been identified so far and their role in (patho) physiological processes is currently being explored. The family of palmitic acid esters of hydroxy stearic acids (PAHSAs), especially 5-PAHSA and 9-PAHSA regioisomers, stands out in the crowd of other FAHFAs for their anti-inflammatory and anti-diabetic effects. Beneficial effects of PAHSAs have been linked to metabolic disorders such as type 1 and type 2 diabetes, colitis, and chronic inflammation. Besides PAHSAs, a growing family of polyunsaturated FAHFAs exerts mainly immunomodulatory effects and biological roles of many other FAHFAs remain currently unknown. Therefore, FAHFAs represent unique lipid messengers capable of affecting many immunometabolic processes. The objective of this review is to summarize the knowledge concerning the diversity of FAHFAs, nomenclature, and their analysis and detection. Special attention is paid to the total syntheses of FAHFAs, optimal strategies, and to the formation of the stereocenter required for optically active molecules. Biosynthetic pathways of saturated and polyunsaturated FAHFAs in mammals and plants are reviewed together with their metabolism and degradation. Moreover, an overview of biological effects of branched FAHFAs is provided and many unanswered questions regarding FAHFAs are discussed.
Collapse
Affiliation(s)
- Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Veronika Paluchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Marie Brezinova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| |
Collapse
|