1
|
Chang CF, Bao BY, Hsueh YM, Chen PL, Chang LH, Li CY, Geng JH, Lu TL, Huang CY, Huang SP. Prognostic Significance of VAV3 Gene Variants and Expression in Renal Cell Carcinoma. Biomedicines 2024; 12:1694. [PMID: 39200159 PMCID: PMC11351164 DOI: 10.3390/biomedicines12081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Renal cell carcinoma (RCC) is characterized by high mortality and morbidity rates. Vav guanine nucleotide exchange factors (VAVs), crucial for signal transduction between cell membrane receptors and intracellular mediators, have been implicated in carcinogenesis. However, their potential prognostic value in RCC remains unclear. The impact of 150 common VAV polymorphisms on RCC risk and survival was investigated in a cohort of 630 individuals. Publicly available gene expression datasets were utilized to analyze VAV gene expression in relation to patient outcomes. The VAV3 rs17019888 polymorphism was significantly associated with RCC risk and overall survival after adjusting for false discovery rates. Expression quantitative trait loci analysis revealed that the risk allele of rs17019888 is linked to reduced VAV3 expression. Analysis of 19 kidney cancer gene expression datasets revealed lower VAV3 expression in RCC tissues compared to normal tissues, with higher expression correlating with better prognosis. Gene set enrichment analysis demonstrated that VAV3 negatively regulates the ubiquitin-proteasome system, extracellular matrix and membrane receptors, inflammatory responses, matrix metalloproteinases, and cell cycle pathways. Furthermore, elevated VAV3 expression was associated with increased infiltration of B cells, macrophages, and neutrophils into the RCC tumor microenvironment. Our findings suggest that VAV3 gene variants influence RCC risk and survival, contributing to a favorable prognosis in RCC.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 406, Taiwan; (B.-Y.B.); (T.-L.L.)
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Ling Chen
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Li-Hsin Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 406, Taiwan; (B.-Y.B.); (T.-L.L.)
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
2
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
3
|
Jiang Y, Luo P, Cao Y, Peng D, Huo S, Guo J, Wang M, Shi W, Zhang C, Li S, Lin L, Lv J. The role of STAT3/VAV3 in glucolipid metabolism during the development of HFD-induced MAFLD. Int J Biol Sci 2024; 20:2027-2043. [PMID: 38617550 PMCID: PMC11008271 DOI: 10.7150/ijbs.86465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Accepted: 02/24/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a globally prevalent chronic hepatic disease. Previous studies have indicated that the activation of the signal transducer and activator of transcription3 (STAT3) plays a vital role in MAFLD progression at the very beginning. However, the specific association between STAT3 and abnormal hepatic metabolism remains unclear. In this study, activated inflammation was observed to induce abnormal glucolipid metabolic disorders in the hepatic tissues of high-fat diet (HFD)-fed ApoE-/- mice. Furthermore, we found that the activation of STAT3 induced by HFD might function as a transcriptional factor to suppress the expression of VAV3, which might participate in intracellular glucolipid metabolism and the regulation of glucose transporter 4 (GLUT4) storage vesicle traffic in the development of MAFLD both in vitro and in vivo. We verified that VAV3 deficiency could retard the GLUT4 membrane translocation and impair the glucose homeostasis. Additionally, VAV3 participates in cholesterol metabolism in hepatocytes, eventually resulting in the accumulation of intracellular cholesterol. Moreover, rAAV8-TBG-VAV3 was conducted to restore the expression of VAV3 in HFD-fed ApoE-/- mice. VAV3 overexpression was observed to improve glucose homeostasis as well as attenuate hepatic cholesterol accumulation in vivo. In conclusion, the STAT3/VAV3 signaling pathway might play a significant role in MAFLD by regulating glucose and cholesterol metabolism, and VAV3 might be a potential therapeutic strategy which could consequently ameliorate MAFLD.
Collapse
Affiliation(s)
- Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Cao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ma T, Chen M, Cheng X, Bai Y. Assessment of Bidirectional Relationships between Frailty and Mental Disorders: A Bidirectional Mendelian Randomization Study. J Am Med Dir Assoc 2024; 25:506-513.e29. [PMID: 37979598 DOI: 10.1016/j.jamda.2023.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Although observational studies have reported the association between frailty and mental disorders, the causality remains unclear. We aimed to evaluate the bidirectional causal association between frailty levels and mental disorders using a 2-sample Mendelian randomization (MR) analysis. DESIGN A bidirectional, 2-sample Mendelian randomization (MR) analysis. SETTING AND PARTICIPANTS Instrumental variables were obtained from large-scale genome-wide association study (GWAS) of a European-descent population for frailty index (FI, n = 175,226), Fried Frailty Score (FFS, n = 386,565), major depressive disorder (MDD, n = 674,452), bipolar disorder (n = 353,899), anxiety and stress-related disorder (ASRD, n = 31,880), and schizophrenia (n = 127,906). METHODS Two-sample MR analyses were conducted using inverse variance-weighted method, with sensitivity analyses using MR-Egger, weighted median, and simple median methods. RESULTS Per SD increase in genetically predicted FI and FFS increased the risk of MDD [odds ratio (OR) 1.56, 95% CI 1.27-1.94, P = 3.65 × 10-5, and OR 1.67, 95% CI 1.26-2.20, P = 3.02 × 10-4, respectively]. Per-SD increase in genetically predicted FI also increased the risk of ASRD (OR 2.76, 95% CI 1.36-5.60, P = .005). No significant effect was observed for frailty levels on the risk of bipolar disorder and schizophrenia. In the reverse direction, genetically predicted MDD was associated with higher FI (β 0.182, 95% CI 0.087-0.277, P = 1.79 × 10-4) and FFS (β 0.121, 95% CI 0.087-0.155, P = 4.43 × 10-12). No reliable evidence supported the effects of genetically predicted bipolar disorder, ASRD, or schizophrenia on frailty levels. CONCLUSIONS AND IMPLICATIONS A bidirectionally causal association exists between frailty levels and MDD, and higher FI is associated with a higher risk of ASRD. No reliable evidence suggested the causal associations of other mental disorders with frailty. Our findings provided evidence for introduction of psychological-related strategies in management of frailty.
Collapse
Affiliation(s)
- Tianqi Ma
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Minghong Chen
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xunjie Cheng
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, China; Department of Geriatric Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Al-Hawary SIS, Alsalamy A, Gupta R, Alsaab HO, Hjazi A, Edilboyev U, Ramadan MF, Hussien BM, Ahmed M, Hosseini-Fard SR. VAV3 in human cancers: Mechanism and clinical implication. Pathol Res Pract 2023; 248:154681. [PMID: 37467637 DOI: 10.1016/j.prp.2023.154681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) are primarily involved in signal transmission between cell membrane receptors and intracellular mediators. Upon replacing GDP with GTP, GEFs can alter their conformation, resulting in their binding to downstream effectors, such as GTPases like Ras homologous (Rho). VAV GEF family are versatile proteins working as an adaptor mediator and GEF for Rho GTPase. They act as a phosphorylation-dependent molecular switcher, fluctuating between active (tyrosine phosphorylated) and inactive (non-phosphorylated) conformation in cell signaling. Accumulating data showed that VAV3 is implicated in cancer progression. The higher levels of VAV3 in human cancers proposed that it may have an oncogenic role in cancer progression. Available studies demonstrated that VAV3 promoted cell proliferation, epithelial-mesenchymal transition (EMT), colony formation, cell cycle, survival, migration and invasion, and suppressed cell apoptosis. In addition, other studies indicated that VAV3 may have a prognostic value in cancer as well as it may act as a mediator in cancer chemoresistance. Here, we aimed to investigate the underlying molecular mechanism of VAV3 in cancer progression as well as to review its value as a prognostic biomarker and chemoresistance mediator in human cancers.
Collapse
Affiliation(s)
| | - Ali Alsalamy
- College of Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U.P., 281406, India
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Unarbek Edilboyev
- Department of Engineering Graphics and Design Theory, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Long C, Li G, Meng Y, Huang X, Chen J, Liu J. Weighted gene co-expression network analysis identifies the prognosis-related models of left- and right-sided colon cancer. Medicine (Baltimore) 2023; 102:e33390. [PMID: 37144998 PMCID: PMC10158920 DOI: 10.1097/md.0000000000033390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Left-sided colon cancer (LC) and right-sided colon cancer (RC) are 2 essentially different diseases, and the potential mechanisms regulating them remain unidentified. In this study, we applied weighted gene co-expression network analysis (WGCNA) to confirm a yellow module, mainly enriched in metabolism-related signaling pathways related to LC and RC. Based on the RNA-seq data of colon cancer in The Cancer Genome Atlas (TCGA) and GSE41258 dataset with their corresponding clinical information, a training set (TCGA: LC: n = 171; RC: n = 260) and a validation set (GSE41258: LC: n = 94; RC: n = 77) were divided. Least absolute shrinkage and selection operator (LASSO) penalized COX regression analysis identified 20 prognosis-related genes (PRGs) and helped constructed 2 risk (LC-R and RC-R) models in LC and RC, respectively. The model-based risk scores accurately performed in risk stratification for colon cancer patients. The high-risk group of the LC-R model showed associations with ECM-receptor interaction, focal adhesion, and PI3K-AKT signaling pathway. Interestingly, the low-risk group of the LC-R model showed associations with immune-related signaling pathways like antigen processing and presentation. On the other hand, the high-risk group of the RC-R model showed enrichment for cell adhesion molecules and axon guidance signaling pathways. Furthermore, we identified 20 differentially expressed PRGs between LC and RC. Our findings provide new insights into the difference between LC and RC, and uncover the potential biomarkers for the treatment of LC and RC.
Collapse
Affiliation(s)
- Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Yongsheng Meng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jianhong Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| |
Collapse
|
7
|
Schäfer I, Bauch J, Wegrzyn D, Roll L, van Leeuwen S, Jarocki A, Faissner A. The guanine nucleotide exchange factor Vav3 intervenes in the migration pathway of oligodendrocyte precursor cells on tenascin-C. Front Cell Dev Biol 2022; 10:1042403. [PMID: 36531963 PMCID: PMC9748482 DOI: 10.3389/fcell.2022.1042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 10/22/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho subfamily. In general, the myelination process requires migration, proliferation and differentiation of OPCs. Presently, these processes are only partially understood. In this study, we analyzed the impact of the guanine nucleotide exchange factor (GEF) Vav3 on the migration behavior of OPCs. Vav3 is known to regulate RhoA, Rac1 and RhoG activity and is therefore a promising candidate with regard to a regulatory role concerning the rearrangement of the cytoskeleton. Our study focused on the Vav3 knockout mouse and revealed an enhanced migration capacity of Vav3 -/- OPCs on the extracellular matrix (ECM) glycoprotein tenascin-C (TnC). The migration behavior of individual OPCs on further ECM molecules such as laminin-1 (Ln1), laminin-2 (Ln2) and tenascin-R (TnR) was not affected by the elimination of Vav3. The migration process was further investigated with regard to intracellular signal transmission by pharmacological blockade of downstream pathways of specific Rho GTPases. Our data suggest that activation of RhoA GTPase signaling compromises migration, as inhibition of RhoA-signaling promoted migration behavior. This study provides novel insights into the control of OPC migration, which could be useful for further understanding of the complex differentiation and myelination process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Zhang Y, Yang X, Liu Y, Ge L, Wang J, Sun X, Wu B, Wang J. Vav2 is a novel APP-interacting protein that regulates APP protein level. Sci Rep 2022; 12:12752. [PMID: 35882892 PMCID: PMC9325707 DOI: 10.1038/s41598-022-16883-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid precursor protein (APP) is a transmembrane protein that plays critical role in the pathogenesis of Alzheimer's disease (AD). It is also involved in many types of cancers. Increasing evidence has shown that the tyrosine phosphorylation site Y682 in the intracellular tail of APP is crucial for APP function. Here, we report that Vav2, a guanine nucleotide exchange factor (GEF) for Rho family GTPase, is a novel interaction partner of APP. We found that Vav2-SH2 domain was able to bind directly to the Y682-phosphorylated intracellular tail of APP through isothermal titration calorimetry and NMR titrating experiments. The crystal structure of Vav2-SH2 in complex with an APP-derived phosphopeptide was determined to understand the structural basis of this recognition specificity. The interaction of APP and Vav2 in a full-length manner was further confirmed in cells by GST pull-down, co-immunoprecipitation and immunofluorescence staining experiments. In addition, we found overexpression of Vav2 could inhibit APP degradation and markedly increase the protein levels of APP and its cleavage productions in 20E2 cells, and this function of Vav2 required a functional SH2 domain.
Collapse
Affiliation(s)
- Youjia Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China.,Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Yongrui Liu
- University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Ge
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jiarong Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China. .,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Bo Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China. .,University of Science and Technology of China, Hefei, Anhui, China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Huang WC, Chi HC, Tung SL, Chen PM, Shih YC, Huang YC, Chu PY. Identification of the Novel Tumor Suppressor Role of FOCAD/miR-491-5p to Inhibit Cancer Stemness, Drug Resistance and Metastasis via Regulating RABIF/MMP Signaling in Triple Negative Breast Cancer. Cells 2021; 10:2524. [PMID: 34685504 PMCID: PMC8534268 DOI: 10.3390/cells10102524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) possesses poor prognosis mainly due to development of chemoresistance and lack of effective endocrine or targeted therapies. MiR-491-5p has been found to play a tumor suppressor role in many cancers including breast cancer. However, the precise role of miR-491-5p in TNBC has never been elucidated. In this study, we reported the novel tumor suppressor function of FOCAD/miR-491-5p in TNBC. High expression of miR-491-5p was found to be associated with better overall survival in breast cancer patients. We found that miR-491-5p could be an intronic microRNA processed form FOCAD gene. We are the first to demonstrate that both miR-491-5p and FOCAD function as tumor suppressors to inhibit cancer stemness, epithelial-mesenchymal transition, drug resistance, cell migration/invasion, and pulmonary metastasis etc. in TNBC. MiR-491-5p was first reported to directly target Rab interacting factor (RABIF) to downregulate RABIF-mediated TNBC cancer stemness, drug resistance, cell invasion, and pulmonary metastasis via matrix metalloproteinase (MMP) signaling. High expression of RABIF was found to be correlated with poor clinical outcomes of breast cancer and TNBC patients. Our data indicated that miR-491-5p and RABIF are potential prognostic biomarkers and targeting the novel FOCAD/miR-491-5p/RABIF/MMP signaling pathway could serve as a promising strategy in TNBC treatment.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan; (W.-C.H.); (H.-C.C.); (P.-M.C.); (Y.-C.S.); (Y.-C.H.)
- Chinese Medicine Research Center, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan; (W.-C.H.); (H.-C.C.); (P.-M.C.); (Y.-C.S.); (Y.-C.H.)
- Chinese Medicine Research Center, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu County 30210, Taiwan;
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan 33858, Taiwan
| | - Po-Ming Chen
- Graduate Institute of Integrated Medicine, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan; (W.-C.H.); (H.-C.C.); (P.-M.C.); (Y.-C.S.); (Y.-C.H.)
| | - Ya-Chi Shih
- Graduate Institute of Integrated Medicine, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan; (W.-C.H.); (H.-C.C.); (P.-M.C.); (Y.-C.S.); (Y.-C.H.)
| | - Yi-Ching Huang
- Graduate Institute of Integrated Medicine, China Medical University, NO91, Hsueh-Shih Road, Taichung 40402, Taiwan; (W.-C.H.); (H.-C.C.); (P.-M.C.); (Y.-C.S.); (Y.-C.H.)
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
10
|
Role of Transportome in the Gills of Chinese Mitten Crabs in Response to Salinity Change: A Meta-Analysis of RNA-Seq Datasets. BIOLOGY 2021; 10:biology10010039. [PMID: 33430106 PMCID: PMC7827906 DOI: 10.3390/biology10010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/22/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chinese mitten crab (CMC) or Eriocheir sinensis is a strong osmoregulator that can keep rigorous cellular homeostasis. CMC can flourish in freshwater, as well as seawater, habitats and represents the most important species for freshwater aquaculture. Salt stress can have direct effects on several stages (e.g., reproduction, molting, growth, etc.) of the CMC life cycle. To get a better overview of the genes involved in the gills of CMC under different salinity conditions, we conducted an RNA-Seq meta-analysis on the transcriptomes of four publicly available datasets. The meta-analysis identified 405 differentially expressed transcripts (DETs), of which 40% were classified into various transporter classes, including accessory factors and primary active transporters as the major transport classes. A network analysis of the DETs revealed that adaptation to salinity is a highly regulated mechanism in which different functional modules play essential roles. To the best of our knowledge, this study is the first to conduct a transcriptome meta-analysis of gills from crab RNA-Seq datasets under salinity. Additionally, this study is also the first to focus on the differential expression of diverse transporters and channels (transportome) in CMC. Our meta-analysis opens new avenues for a better understanding of the osmoregulation mechanism and the selection of potential transporters associated with salinity change.
Collapse
|
11
|
Koivu MKA, Chakroborty D, Tamirat MZ, Johnson MS, Kurppa KJ, Elenius K. Identification of Predictive ERBB Mutations by Leveraging Publicly Available Cell Line Databases. Mol Cancer Ther 2020; 20:564-576. [PMID: 33323455 DOI: 10.1158/1535-7163.mct-20-0590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Although targeted therapies can be effective for a subgroup of patients, identification of individuals who benefit from the treatments is challenging. At the same time, the predictive significance of the majority of the thousands of mutations observed in the cancer tissues remains unknown. Here, we describe the identification of novel predictive biomarkers for ERBB-targeted tyrosine kinase inhibitors (TKIs) by leveraging the genetic and drug screening data available in the public cell line databases: Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Cancer Therapeutics Response Portal. We assessed the potential of 412 ERBB mutations in 296 cell lines to predict responses to 10 different ERBB-targeted TKIs. Seventy-six ERBB mutations were identified that were associated with ERBB TKI sensitivity comparable with non-small cell lung cancer cell lines harboring the well-established predictive EGFR L858R mutation or exon 19 deletions. Fourteen (18.4%) of these mutations were classified as oncogenic by the cBioPortal database, whereas 62 (81.6%) were regarded as novel potentially predictive mutations. Of the nine functionally validated novel mutations, EGFR Y1069C and ERBB2 E936K were transforming in Ba/F3 cells and demonstrated enhanced signaling activity. Mechanistically, the EGFR Y1069C mutation disrupted the binding of the ubiquitin ligase c-CBL to EGFR, whereas the ERBB2 E936K mutation selectively enhanced the activity of ERBB heterodimers. These findings indicate that integrating data from publicly available cell line databases can be used to identify novel, predictive nonhotspot mutations, potentially expanding the patient population benefiting from existing cancer therapies.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mahlet Z Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|