1
|
Machado CM, de-Souza-Ferreira E, Silva GFS, Pimentel FSA, De-Souza EA, Silva-Rodrigues T, Gandara ACP, Zeidler JD, Fernandes-Siqueira LO, De-Queiroz ALFV, Andrade-Silva L, Victória-Martins K, Fernandes-Carvalho C, Chini EN, Passos JF, Da Poian AT, Montero-Lomelí M, Galina A, Masuda CA. Galactose-1-phosphate inhibits cytochrome c oxidase and causes mitochondrial dysfunction in classic galactosemia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167340. [PMID: 38986816 DOI: 10.1016/j.bbadis.2024.167340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.
Collapse
Affiliation(s)
- Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduardo de-Souza-Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thaia Silva-Rodrigues
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana C P Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Julianna D Zeidler
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lorena O Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Letícia Andrade-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Klara Victória-Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Clara Fernandes-Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - João F Passos
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mónica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Antonio Galina
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
2
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Wang J, Saviola AJ, Welty R, Liu S, Vaeth KF, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. RNA (NEW YORK, N.Y.) 2024; 30:1070-1088. [PMID: 38688558 PMCID: PMC11251525 DOI: 10.1261/rna.079917.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex. We replaced the zinc-finger (ZnF) domain of yeast U1C (yU1C) with its human counterpart, which resulted in a cold-sensitive growth phenotype and moderate splicing defects. We next added an auxin-inducible degron to yeast Luc7 (yLuc7) protein (to mimic the lack of Luc7Ls in human U1 snRNP). We found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of Prp40 and Snu71 (two other essential yU1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yU1 snRNP, and splicing plays a major role in the regulation of mitochondrial function in yeast.
Collapse
Affiliation(s)
- Subbaiah Chalivendra
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shasha Shi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Zhiling Kuang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joseph Giovinazzo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Katherine F Vaeth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
3
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Saviola AJ, Wang J, Welty R, Liu S, Vaeth K, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571893. [PMID: 38168357 PMCID: PMC10760170 DOI: 10.1101/2023.12.15.571893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex. We replaced the Zinc-Finger (ZnF) domain of yU1C with its human counterpart, which resulted in cold-sensitive growth phenotype and moderate splicing defects. Next, we added an auxin-inducible degron to yLuc7 protein and found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of PRP40 and Snu71 (two other essential yeast U1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe 2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yeast U1 snRNP, and splicing plays a major role in the regulation of mitochondria function in yeast.
Collapse
|
4
|
Pimentel FSA, Machado CM, De-Souza EA, Fernandes CM, De-Queiroz ALFV, Silva GFS, Del Poeta M, Montero-Lomeli M, Masuda CA. Sphingolipid depletion suppresses UPR activation and promotes galactose hypersensitivity in yeast models of classic galactosemia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166389. [PMID: 35301088 DOI: 10.1016/j.bbadis.2022.166389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
Abstract
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Division of Infectious Diseases, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, New York, USA
| | - Monica Montero-Lomeli
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|