1
|
Szyjka CE, Kelly SL, Strobel EJ. Sequential structure probing of cotranscriptional RNA folding intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618260. [PMID: 39464030 PMCID: PMC11507761 DOI: 10.1101/2024.10.14.618260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cotranscriptional RNA folding pathways typically involve the sequential formation of folding intermediates. Existing methods for cotranscriptional RNA structure probing map the structure of nascent RNA in the context of a terminally arrested transcription elongation complex. Consequently, the rearrangement of RNA structures as nucleotides are added to the transcript can be inferred but is not assessed directly. To address this limitation, we have developed linked-multipoint Transcription Elongation Complex RNA structure probing (TECprobe-LM), which assesses the cotranscriptional rearrangement of RNA structures by sequentially positioning E. coli RNAP at two or more points within a DNA template so that nascent RNA can be chemically probed. We validated TECprobe-LM by measuring known folding events that occur within the E. coli signal recognition particle RNA, Clostridium beijerinckii pfl ZTP riboswitch, and Bacillus cereus crcB fluoride riboswitch folding pathways. Our findings establish TECprobe-LM as a strategy for detecting cotranscriptional RNA folding events directly using chemical probing.
Collapse
Affiliation(s)
- Courtney E. Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Hien EDM, St-Pierre P, Penedo JC, Lafontaine DA. Cotranscriptional Folding of a 5' Stem-loop in the Escherichia coli tbpA Riboswitch at Single-nucleotide Resolution. J Mol Biol 2024; 436:168771. [PMID: 39218381 DOI: 10.1016/j.jmb.2024.168771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Transcription elongation is one of the most important processes in the cell. During RNA polymerase elongation, the folding of nascent transcripts plays crucial roles in the genetic decision. Bacterial riboswitches are prime examples of RNA regulators that control gene expression by altering their structure upon metabolite sensing. It was previously revealed that the thiamin pyrophosphate-sensing tbpA riboswitch in Escherichia coli cotranscriptionally adopts three main structures leading to metabolite sensing. Here, using single-molecule FRET, we characterize the transition in which the first nascent structure, a 5' stem-loop, is unfolded during transcription elongation to form the ligand-binding competent structure. Our results suggest that the structural transition occurs in a relatively abrupt manner, i.e., within a 1-2 nucleotide window. Furthermore, a highly dynamic structural exchange is observed, indicating that riboswitch transcripts perform rapid sampling of nascent co-occurring structures. We also observe that the presence of the RNAP stabilizes the 5' stem-loop along the elongation process, consistent with RNAP interacting with the 5' stem-loop. Our study emphasizes the role of early folding stem-loop structures in the cotranscriptional formation of complex RNA molecules involved in genetic regulation.
Collapse
Affiliation(s)
- Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Patrick St-Pierre
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. Andrews, St Andrews, UK; Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
3
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573115. [PMID: 38187752 PMCID: PMC10769408 DOI: 10.1101/2023.12.22.573115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of 32,768 variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Szyjka CE, Strobel EJ. Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing. Nat Commun 2023; 14:7839. [PMID: 38030633 PMCID: PMC10687018 DOI: 10.1038/s41467-023-43395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates. Cotranscriptional RNA chemical probing methods accomplish this by systematically probing the structure of nascent RNA that is displayed from an RNA polymerase. Here, we describe a concise, high-resolution cotranscriptional RNA chemical probing procedure called variable length Transcription Elongation Complex RNA structure probing (TECprobe-VL). We demonstrate the accuracy and resolution of TECprobe-VL by replicating and extending previous analyses of ZTP and fluoride riboswitch folding and mapping the folding pathway of a ppGpp-sensing riboswitch. In each system, we show that TECprobe-VL identifies coordinated cotranscriptional folding events that mediate transcription antitermination. Our findings establish TECprobe-VL as an accessible method for mapping cotranscriptional RNA folding pathways.
Collapse
Affiliation(s)
- Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
5
|
Hao N, Donnelly AJ, Dodd IB, Shearwin KE. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophys Rev 2023; 15:355-366. [PMID: 37396453 PMCID: PMC10310618 DOI: 10.1007/s12551-023-01064-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Alana J. Donnelly
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
6
|
Strobel EJ. Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization. Methods Enzymol 2023; 691:223-250. [PMID: 37914448 PMCID: PMC10950060 DOI: 10.1016/bs.mie.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The ability to prepare defined transcription elongation complexes (TECs) is a fundamental tool for investigating the interplay between RNA polymerases (RNAPs) and nascent RNA. To facilitate the preparation of defined TECs that contain arbitrarily long and complex transcripts, we developed a procedure for isolating roadblocked E. coli TECs from an in vitro transcription reaction using solid-phase photoreversible immobilization. Our approach uses a modified DNA template that contains both a 5' photocleavable biotin tag and an internal biotin-TEG transcription stall site. Because the footprint of a TEC at the stall site sequesters the biotin-TEG tag, DNA template molecules that contain a TEC can be reversibly immobilized on streptavidin-coated magnetic beads by the 5' photocleavable biotin tag. In contrast, DNA template molecules that do not contain a TEC are retained on the beads because the biotin-TEG tag is exposed and can bind streptavidin. In this way, DNA template molecules that contain a TEC are gently separated from free DNA and DNA that contains non-productive transcription complexes. This procedure yields precisely positioned TECs that are >95% pure with >30% yield relative to the amount of input DNA template. The resulting complexes are >99% stable for at least 3 h and can be used for biochemical investigations of nascent RNA structure and function in the context of E. coli RNAP. The procedure is likely generalizable to any RNAP that arrests at and sequesters the internal biotin-TEG stall site.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
7
|
Szyjka CE, Strobel EJ. Observation of coordinated cotranscriptional RNA folding events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529405. [PMID: 36865203 PMCID: PMC9980086 DOI: 10.1101/2023.02.21.529405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
RNA begins to fold as it is transcribed by an RNA polymerase. Consequently, RNA folding is constrained by the direction and rate of transcription. Understanding how RNA folds into secondary and tertiary structures therefore requires methods for determining the structure of cotranscriptional folding intermediates. Cotranscriptional RNA chemical probing methods accomplish this by systematically probing the structure of nascent RNA that is displayed from RNA polymerase. Here, we have developed a concise, high-resolution cotranscriptional RNA chemical probing procedure called Transcription Elongation Complex RNA structure probing-Multilength (TECprobe-ML). We validated TECprobe-ML by replicating and extending previous analyses of ZTP and fluoride riboswitch folding, and mapped the folding pathway of a ppGpp-sensing riboswitch. In each system, TECprobe-ML identified coordinated cotranscriptional folding events that mediate transcription antitermination. Our findings establish TECprobe-ML as an accessible method for mapping cotranscriptional RNA folding pathways.
Collapse
Affiliation(s)
- Courtney E. Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Site-specific photolabile roadblocks for the study of transcription elongation in biologically complex systems. Commun Biol 2022; 5:457. [PMID: 35552496 PMCID: PMC9098449 DOI: 10.1038/s42003-022-03382-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Transcriptional pausing is crucial for the timely expression of genetic information. Biochemical methods quantify the half-life of paused RNA polymerase (RNAP) by monitoring restarting complexes across time. However, this approach may produce apparent half-lives that are longer than true pause escape rates in biological contexts where multiple consecutive pause sites are present. We show here that the 6-nitropiperonyloxymethyl (NPOM) photolabile group provides an approach to monitor transcriptional pausing in biological systems containing multiple pause sites. We validate our approach using the well-studied his pause and show that an upstream RNA sequence modulates the pause half-life. NPOM was also used to study a transcriptional region within the Escherichia coli thiC riboswitch containing multiple consecutive pause sites. We find that an RNA hairpin structure located upstream to the region affects the half-life of the 5′ most proximal pause site—but not of the 3′ pause site—in contrast to results obtained using conventional approaches not preventing asynchronous transcription. Our results show that NPOM is a powerful tool to study transcription elongation dynamics within biologically complex systems. Transcriptional pausing can be achieved by 6-nitropiperonyloxymethyl modification, which can halt RNAP without causing backtracking and be efficiently removed by short illumination with a moderately intense UV light.
Collapse
|
9
|
Kelly SL, Szyjka CE, Strobel EJ. Purification of synchronized E. coli transcription elongation complexes by reversible immobilization on magnetic beads. J Biol Chem 2022; 298:101789. [PMID: 35247385 PMCID: PMC8969151 DOI: 10.1016/j.jbc.2022.101789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 10/26/2022] Open
Abstract
Synchronized transcription elongation complexes (TECs) are a fundamental tool for in vitro studies of transcription and RNA folding. Transcription elongation can be synchronized by omitting one or more nucleoside triphosphates (NTPs) from an in vitro transcription reaction so that RNA polymerase can only transcribe to the first occurrence of the omitted nucleotide(s) in the coding DNA strand. This approach was developed over four decades ago and has been applied extensively in biochemical investigations of RNA polymerase enzymes, but has not been optimized for RNA-centric assays. In this work, we describe the development of a system for isolating synchronized TECs from an in vitro transcription reaction. Our approach uses a custom 5' leader sequence, called C3-SC1, to reversibly capture synchronized TECs on magnetic beads. We first show using electrophoretic mobility shift and high-resolution in vitro transcription assays that complexes isolated by this procedure, called C3-SC1TECs, are >95% pure, >98% active, highly synchronous (94% of complexes chase in <15s upon addition of saturating NTPs), and compatible with solid-phase transcription; the yield of this purification is ∼8%. We then show that C3-SC1TECs perturb, but do not interfere with, the function of ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate)-sensing and ppGpp (guanosine-3',5'-bisdiphosphate)-sensing transcriptional riboswitches. For both riboswitches, transcription using C3-SC1TECs improved the efficiency of transcription termination in the absence of ligand but did not inhibit ligand-induced transcription antitermination. Given these properties, C3-SC1TECs will likely be useful for developing biochemical and biophysical RNA assays that require high-performance, quantitative bacterial in vitro transcription.
Collapse
Affiliation(s)
- Skyler L Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
10
|
Abstract
Cotranscriptional folding is a fundamental step in RNA biogenesis and the basis for many RNA-mediated gene regulation systems. Understanding how RNA folds as it is synthesized requires experimental methods that can systematically identify intermediate RNA structures that form during transcription. Cotranscriptional RNA chemical probing experiments achieve this by applying high-throughput RNA structure probing to an in vitro transcribed array of cotranscriptionally folded intermediate transcripts. In this chapter, we present guidelines and procedures for integrating single-round in vitro transcription using E. coli RNA polymerase with high-throughput RNA chemical probing workflows. We provide an overview of key concepts including DNA template design, transcription roadblocking strategies, single-round in vitro transcription with E. coli RNA polymerase, and RNA chemical probing and describe procedures for DNA template preparation, cotranscriptional RNA chemical probing, RNA purification, and 3' adapter ligation. The end result of these procedures is a purified RNA library that can be prepared for Illumina sequencing using established high-throughput RNA structure probing library construction strategies.
Collapse
Affiliation(s)
- Courtney E Szyjka
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
12
|
Isolation of synchronized E. coli elongation complexes for solid-phase and solution-based in vitro transcription assays. Methods Enzymol 2022; 675:159-192. [DOI: 10.1016/bs.mie.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Strobel EJ. Efficient Linear dsDNA Tagging Using Deoxyuridine Excision*. Chembiochem 2021; 22:3214-3224. [PMID: 34547157 DOI: 10.1002/cbic.202100425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Indexed: 11/06/2022]
Abstract
Site-specific strategies for exchanging segments of dsDNA are important for DNA library construction and molecular tagging. Deoxyuridine (dU) excision is an approach for generating 3' ssDNA overhangs in gene assembly and molecular cloning procedures. Unlike approaches that use a multi-base pair motif to specify a DNA cut site, dU excision requires only a dT→dU substitution. Consequently, excision sites can be embedded in biologically active DNA sequences by placing dU substitutions at non-perturbative positions. In this work, I describe a molecular tagging method that uses dU excision to exchange a segment of a dsDNA strand with a long synthetic oligonucleotide. The core workflow of this method, called deoxyUridine eXcision-tagging (dUX-tagging), is an efficient one-pot reaction: strategically positioned dU nucleotides are excised from dsDNA to generate a 3' overhang so that additional sequence can be appended by annealing and ligating a tagging oligonucleotide. The tagged DNA is then processed by one of two procedures to fill the 5' overhang and remove excess tagging oligo. To facilitate its widespread use, all dUX-tagging procedures exclusively use commercially available reagents. As a result, dUX-tagging is a concise and easily implemented approach for high-efficiency linear dsDNA tagging.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Strobel EJ. Preparation and Characterization of Internally Modified DNA Templates for Chemical Transcription Roadblocking. Bio Protoc 2021; 11:e4141. [PMID: 34604447 DOI: 10.21769/bioprotoc.4141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
Site-specific transcription arrest is the basis of emerging technologies that assess nascent RNA structure and function. Cotranscriptionally folded RNA can be displayed from an arrested RNA polymerase (RNAP) for biochemical manipulations by halting transcription elongation at a defined DNA template position. Most transcription "roadblocking" approaches halt transcription elongation using a protein blockade that is non-covalently attached to the template DNA. I previously developed a strategy for halting Escherichia coli RNAP at a chemical lesion, which expands the repertoire of transcription roadblocking technologies and enables sophisticated manipulations of the arrested elongation complexes. To facilitate this chemical transcription roadblocking approach, I developed a sequence-independent method for preparing internally modified dsDNA using PCR and translesion synthesis. Here, I present a detailed protocol for the preparation and characterization of internally modified dsDNA templates for chemical transcription roadblocking experiments. Graphic abstract: Precise transcription roadblocking using functionalized DNA lesions.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
15
|
Strobel EJ. Preparation of E. coli RNA polymerase transcription elongation complexes by selective photoelution from magnetic beads. J Biol Chem 2021; 297:100812. [PMID: 34023383 PMCID: PMC8212663 DOI: 10.1016/j.jbc.2021.100812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In vitro studies of transcription frequently require the preparation of defined elongation complexes. Defined transcription elongation complexes (TECs) are typically prepared by constructing an artificial transcription bubble from synthetic oligonucleotides and RNA polymerase. This approach is optimal for diverse applications but is sensitive to nucleic acid length and sequence and is not compatible with systems where promoter-directed initiation or extensive transcription elongation is crucial. To complement scaffold-directed approaches for TEC assembly, I have developed a method for preparing promoter-initiated Escherichia coli TECs using a purification strategy called selective photoelution. This approach combines TEC-dependent sequestration of a biotin-triethylene glycol transcription stall site with photoreversible DNA immobilization to enrich TECs from an in vitro transcription reaction. I show that selective photoelution can be used to purify TECs that contain a 273-bp DNA template and 194-nt structured RNA. Selective photoelution is a straightforward and robust procedure that, in the systems assessed here, generates precisely positioned TECs with >95% purity and >30% yield. TECs prepared by selective photoelution can contain complex nucleic acid sequences and will therefore likely be useful for investigating RNA structure and function in the context of RNA polymerases.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|