1
|
Fang F, Zhu Y, Xu W, Zhang Y, Cheng J. Insights into the developmental and cardiovascular toxicity of bixafen using zebrafish embryos and larvae. ENVIRONMENTAL RESEARCH 2024; 262:119916. [PMID: 39233032 DOI: 10.1016/j.envres.2024.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Bixafen (BIX), a member of the succinate dehydrogenase inhibitor (SDHI) class of fungicides, has seen a surge in interest due to its expanding market presence and positive development outlook. However, there is a growing concern about its potential harm to aquatic life, largely due to its resistance to breaking down in the environment. In this study, we thoroughly examined the toxicological impact of BIX on zebrafish as a model organism. Our results revealed that BIX significantly hindered the development of zebrafish embryos, leading to increased mortality, hatching failures, and oxidative stress. Additionally, we observed cardiovascular abnormalities, including dilated cardiac chambers, reduced heart rate, sluggish blood circulation, and impaired vascular function. Notably, BIX also altered the expression of key genes involved in cardiovascular development, such as myl7, vmhc, nkx2.5, tbx5, and flt1. In summary, BIX was found to induce developmental and cardiovascular toxicity in zebrafish, underscoring the risks associated with SDHI pesticides and emphasizing the need for a reassessment of their impact on human health. These findings are crucial for the responsible use of BIX.
Collapse
Affiliation(s)
- Fei Fang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjuan Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Park KH, Choi YJ, Min WK, Lee SH, Kim J, Jeong SH, Lee JH, Choi BM, Kim S. Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115201. [PMID: 37418944 DOI: 10.1016/j.ecoenv.2023.115201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Air pollution is a risk factor that increases cardiovascular morbidity and mortality. In this study, we investigated the cardiotoxicity of particulate matter (PM) exposure using a zebrafish embryo model. We found that PM exposure induced cardiotoxicity, such as arrhythmia, during cardiac development. PM exposure caused cardiotoxicity by altering the expression levels of cardiac development (T-box transcription factor 20, natriuretic peptide A, and GATA-binding protein 4)- and ion-channel (scn5lab, kcnq1, kcnh2a/b, and kcnh6a/b)-related genes. In conclusion, this study showed that PM induces the aberrant expression of cardiac development- and ion channel-related genes, leading to arrhythmia-like cardiotoxicity in zebrafish embryos. Our study provides a foundation for further research on the molecular and genetic mechanisms of cardiotoxicity induced by PM exposure.
Collapse
Affiliation(s)
- Kyu Hee Park
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Won Kee Min
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sun Hwa Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Byung Min Choi
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, the Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea.
| |
Collapse
|
3
|
Abstract
Axenfeld-Rieger syndrome is a rare multi-system disorder associated with cardiac anomalies. All patients with a diagnosis of Axenfeld-Rieger syndrome were identified from our electronic medical record. Chart review was performed to document the presence and types of CHD. Out of 58 patients, 14 (24.1%) had CHD and a wide variety of cardiac lesions were identified.
Collapse
Affiliation(s)
- Nishma Valikodath
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| | - James A Johns
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| | - Justin Godown
- Division of Pediatric Cardiology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, USA
| |
Collapse
|
4
|
Lu J, Wang W, Xu W, Zhang C, Zhang C, Tao L, Li Z, Zhang Y. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos by Emamectin benzoate through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154040. [PMID: 35196543 DOI: 10.1016/j.scitotenv.2022.154040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Emamectin benzoate (EMB) is a widely used pesticide in agriculture, but its potential risks to the environment and health have not been fully evaluated. In this study, we evaluated the toxicity of Emamectin benzoate using zebrafish model, and found that it affected early embryonic development, such as malformations and delayed hatching. Mechanistically, Emamectin benzoate increased oxidative stress by excessive production of reactive oxygen species (ROS) and abnormal activities of the antioxidant enzymes. Moreover, Emamectin benzoate exposure caused abnormalities in zebrafish heart morphology and function, such as long SV-BA distance and slow heart rate. Alterations were induced in the transcription of heart development-related genes (nkx2.5, tbx5, gata4 and myl7). In summary, our data showed that Emamectin benzoate induces developmental toxicity and cardiotoxicity in zebrafish. Our research provides new evidence on the Emamectin benzoate's toxicity and potential risk in human health.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenggong Zhang
- Institute of Forensic Science Shanghai Municipal Public Security Bureau, Shanghai Municipal Bureau of Public Security, Shanghai 200437, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
French CR. Mechanistic Insights into Axenfeld-Rieger Syndrome from Zebrafish foxc1 and pitx2 Mutants. Int J Mol Sci 2021; 22:ijms221810001. [PMID: 34576164 PMCID: PMC8472202 DOI: 10.3390/ijms221810001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axenfeld-Rieger syndrome (ARS) encompasses a group of developmental disorders that affect the anterior segment of the eye, as well as systemic developmental defects in some patients. Malformation of the ocular anterior segment often leads to secondary glaucoma, while some patients also present with cardiovascular malformations, craniofacial and dental abnormalities and additional periumbilical skin. Genes that encode two transcription factors, FOXC1 and PITX2, account for almost half of known cases, while the genetic lesions in the remaining cases remain unresolved. Given the genetic similarity between zebrafish and humans, as well as robust antisense inhibition and gene editing technologies available for use in these animals, loss of function zebrafish models for ARS have been created and shed light on the mechanism(s) whereby mutations in these two transcription factors cause such a wide array of developmental phenotypes. This review summarizes the published phenotypes in zebrafish foxc1 and pitx2 loss of function models and discusses possible mechanisms that may be used to target pharmaceutical development and therapeutic interventions.
Collapse
Affiliation(s)
- Curtis R French
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland and Labrador, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
6
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|