1
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
2
|
Maltarollo VG, Shevchenko E, Lima IDDM, Cino EA, Ferreira GM, Poso A, Kronenberger T. Do Go Chasing Waterfalls: Enoyl Reductase (FabI) in Complex with Inhibitors Stabilizes the Tetrameric Structure and Opens Water Channels. J Chem Inf Model 2022; 62:5746-5761. [PMID: 36343333 DOI: 10.1021/acs.jcim.2c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.
Collapse
Affiliation(s)
- Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Igor Daniel de Miranda Lima
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av Prof Lineu Prestes 580, 05508-000 São Paulo, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Abstract
Antibiotic resistance is a serious public health concern, and new drugs are needed to ensure effective treatment of many bacterial infections. Bacterial type II fatty acid synthesis (FASII) is a vital aspect of bacterial physiology, not only for the formation of membranes but also to produce intermediates used in vitamin production. Nature has evolved a repertoire of antibiotics inhibiting different aspects of FASII, validating these enzymes as potential targets for new antibiotic discovery and development. However, significant obstacles have been encountered in the development of FASII antibiotics, and few FASII drugs have advanced beyond the discovery stage. Most bacteria are capable of assimilating exogenous fatty acids. In some cases they can dispense with FASII if fatty acids are present in the environment, making the prospects for identifying broad-spectrum drugs against FASII targets unlikely. Single-target, pathogen-specific FASII drugs appear the best option, but a major drawback to this approach is the rapid acquisition of resistance via target missense mutations. This complication can be mitigated during drug development by optimizing the compound design to reduce the potential impact of on-target missense mutations at an early stage in antibiotic discovery. The lessons learned from the difficulties in FASII drug discovery that have come to light over the last decade suggest that a refocused approach to designing FASII inhibitors has the potential to add to our arsenal of weapons to combat resistance to existing antibiotics.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; ,
| |
Collapse
|
4
|
Radka CD, Miller DJ, Frank MW, Rock CO. Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. J Biol Chem 2022; 298:102195. [PMID: 35760102 PMCID: PMC9304779 DOI: 10.1016/j.jbc.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022] Open
Abstract
Sulfonolipids are unusual lipids found in the outer membranes of Gram-negative bacteria in the phylum Bacteroidetes. Sulfonolipid and its deacylated derivative, capnine, are sulfur analogs of ceramide-1-phosphate and sphingosine-1-phosphate, respectively; thus, sulfonolipid biosynthesis is postulated to be similar to the sphingolipid biosynthetic pathway. Here, we identify the first enzyme in sulfonolipid synthesis in Alistipes finegoldii, an anaerobic gut commensal bacterium, as the product of the alfi_1224 gene, cysteate acyl-acyl carrier protein (ACP) transferase (SulA). We show SulA catalyzes the condensation of acyl-ACP and cysteate (3-sulfo-alanine) to form 3-ketocapnine. Acyl-CoA is a poor substrate. We show SulA has a bound pyridoxal phosphate (PLP) cofactor that undergoes a spectral redshift in the presence of cysteate, consistent with the transition of the lysine-aldimine complex to a substrate-aldimine complex. Furthermore, the SulA crystal structure shows the same prototypical fold found in bacterial serine palmitoyltransferases (Spt), enveloping the PLP cofactor bound to Lys251. We observed the SulA and Spt active sites are identical except for Lys281 in SulA, which is an alanine in Spt. Additionally, SulA(K281A) is catalytically inactive, but binds cysteate and forms the external aldimine normally, highlighting the structural role of the Lys281 side chain in walling off the active site from bulk solvent. Finally, the electropositive groove on the protein surface adjacent to the active site entrance provides a landing pad for the electronegative acyl-ACP surface. Taken together, these data identify the substrates, products, and mechanism of SulA, the PLP-dependent condensing enzyme that catalyzes the first step in sulfonolipid synthesis in a gut commensal bacterium.
Collapse
Affiliation(s)
- Christopher D Radka
- Departments of, Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, 38015, USA.
| | - Darcie J Miller
- Departments of, Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, 38015, USA
| | - Matthew W Frank
- Departments of, Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, 38015, USA
| | - Charles O Rock
- Departments of, Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, 38015, USA
| |
Collapse
|
5
|
Katiki M, Neetu N, Pratap S, Kumar P. Biochemical and structural basis for Moraxella catarrhalis enoyl-acyl carrier protein reductase (FabI) inhibition by triclosan and estradiol. Biochimie 2022; 198:8-22. [PMID: 35276316 DOI: 10.1016/j.biochi.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
The enoyl-acyl carrier protein reductase (ENR) is an established drug target and catalyzes the last reduction step of the fatty acid elongation cycle. Here, we report the crystal structures of FabI from Moraxella catarrhalis (McFabI) in the apo form, binary complex with NAD+ and ternary complex with NAD + -triclosan (TCL) determined at 2.36, 2.12 and 2.22 Å resolutions, respectively. The comparative study of these three structures revealed three different conformational states for the substrate-binding loop (SBL), including an unstructured intermediate, a structured intermediate and a closed conformation in the apo, binary and ternary complex forms, respectively; indicating the flexibility of SBL during the ligand binding. Virtual screening has suggested that estradiol cypionate may be a potential inhibitor of McFabI. Subsequently, estradiol (EST), the natural form of estradiol cypionate, was assessed for its FabI-binding and -inhibition properties. In vitro studies demonstrated that TCL and EST bind to McFabI with high affinity (KD = 0.038 ± 0.004 and 5 ± 0.06 μM respectively) and inhibit its activity (Ki = 62.93 ± 3.95 nM and 25.97 ± 1.93 μM respectively) and suppress the growth of M. catarrhalis. These findings reveal that TCL and EST inhibit the McFabI activity and thereby affect cell growth. This study suggests that estradiol may be exploited as a novel scaffold for the designing and development of more potential FabI inhibitors.
Collapse
Affiliation(s)
- Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
6
|
González-Thuillier I, Venegas-Calerón M, Moreno-Pérez AJ, Salas JJ, Garcés R, von Wettstein-Knowles P, Martínez-Force E. Sunflower (Helianthus annuus) fatty acid synthase complex: β-Ketoacyl-[acyl carrier protein] reductase genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:689-699. [PMID: 34214779 DOI: 10.1016/j.plaphy.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Fatty acids play many roles in plants, but the function of some key genes involved in fatty acid biosynthesis in plant development are not yet properly understood. Here, we clone two β-ketoacyl-[ACP] reductase (KAR) genes from sunflower, HaKAR1 and HaKAR2, and characterize their functional roles. The enzymes cloned were the only two copies present in the sunflower genome. Both displayed a high degree of similarity, but their promoters infer different regulation. The two sunflower KAR genes were constitutively expressed in all tissues examined, being maximum in developing cotyledons at the start of oil synthesis. Over-expression of HaKAR1 in E. coli changed the fatty acid composition by promoting the elongation of C16:0 to C18:0 fatty acids. The enzymatic characterization of HaKAR1 revealed similar kinetic parameters to homologues from other oil accumulating species. The results point to a partially functional redundancy between HaKAR1 and HaKAR2. This study clearly revealed that these genes play a prominent role in de novo fatty acids synthesis in sunflower seeds.
Collapse
Affiliation(s)
- Irene González-Thuillier
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Biosciences, Jealotts Hill Research Station, Warfield, Bracknell, RG42 6EY, UK
| | - Mónica Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| | - Antonio J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | | | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|