1
|
Di Iacovo A, D'Agostino C, Bhatt M, Romanazzi T, Giovannardi S, Cinquetti R, Roseti C, Bossi E. The kinase LRRK2 is required for the physiological function and expression of the glial glutamate transporter EAAT2 (SLC1A2). J Neurochem 2025; 169:e16265. [PMID: 39655696 PMCID: PMC11629453 DOI: 10.1111/jnc.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
Neurotransmitter transporters (NTTs) control synaptic responses by modulating the concentration of neurotransmitters at the synaptic cleft. Glutamate is the most abundant excitatory neurotransmitter in the brain and needs to be finely tuned in time and space to maintain a healthy brain and precise neurotransmission. The glutamate transporter EAAT2 (SLC1A2) is primarily responsible for glutamate clearance. EAAT2 impairment has been associated with Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to both monogenic and sporadic forms of PD, of which the common substitution Gly2019Ser is associated with a significant deficit in EAAT2 expression. The role of pathological mutants of the LRRK2 is intensively studied and reviewed. Here we have focused the attention on the physiological role of LRRK2 on EAAT2, comparing the activity of NTTs with or without the LRRK2 kinase. By heterologous expression in Xenopus laevis oocytes and two-electrode voltage clamp, the current amplitudes of the selected NTTs and kinetic parameters have been collected in the presence and absence of LRRK2. The results show that EAAT2 expression and function are impaired in the absence of the kinase and also under its pharmacological inhibition via MLi-2 treatment. LRRK2 stabilizes EAAT2 expression increasing the amount of transporter at the plasma membrane. Interestingly, the LRRK2 action is EAAT2-specific, as we observed no significant changes in the transport current amplitude and kinetic parameters obtained for the other excitatory and inhibitory NTTs studied. This study, for the first time, demonstrates the physiological importance of LRRK2 in EAAT2 function, highlighting the specificity of LRRK2-mediated modulation of EAAT2 and suggesting a potential role for the kinase as a checkpoint for preserving neurons from excitotoxicity. In brain conditions associated with impaired glutamate clearance, targeting LRRK2 for EAAT2 regulation may offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Angela Di Iacovo
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Chiara D'Agostino
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
- PhD School of Experimental and Translational MedicineUniversity of InsubriaVareseItaly
| | - Manan Bhatt
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Stefano Giovannardi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
| | - Cristina Roseti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular PhysiologyUniversity of InsubriaVareseItaly
- Centre for NeuroscienceUniversity of InsubriaVareseItaly
| |
Collapse
|
2
|
Thoreson WB, Bartol TM, Conoan NH, Diamond JS. Geometric tortuosity at invaginating rod synapses slows glutamate diffusion and shapes synaptic responses: insights from anatomically realistic Monte Carlo simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621088. [PMID: 39554003 PMCID: PMC11565802 DOI: 10.1101/2024.10.30.621088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
At the first synapse in the vertebrate retina, rod photoreceptor terminals form deep invaginations occupied by multiple second-order rod bipolar and horizontal cell (RBP and HC) dendrites. Synaptic vesicles are released into this invagination at multiple sites beneath an elongated presynaptic ribbon. We investigated the impact of this complex architecture on the diffusion of synaptic glutamate and activity of postsynaptic receptors. We obtained serial electron micrographs of mouse retina and reconstructed four rod terminals along with their postsynaptic RBP and HC dendrites. We incorporated these structures into an anatomically realistic Monte Carlo simulation of neurotransmitter diffusion and receptor activation. We compared passive diffusion of glutamate in these realistic structures to existing, geometrically simplified models of the synapse and found that glutamate exits anatomically realistic synapses ten times more slowly than previously predicted. By comparing simulations with electrophysiological recordings, we modeled synaptic activation of EAAT5 glutamate transporters in rods, AMPA receptors on HC dendrites, and metabotropic glutamate receptors (mGluR6) on RRBP dendrites. Our simulations suggested that ~3,000 EAAT5 transporters populate the rod presynaptic membrane and that, while uptake by surrounding glial Müller cells retrieves much of the glutamate released by rods, binding and uptake by EAAT5 influences RBP response kinetics. The long lifetime of glutamate within the cleft allows mGluR6 on RBP dendrites to temporally integrate the steady stream of vesicles released at this synapse in darkness. Glutamate's tortuous diffusional path through realistic synaptic geometry confers quantal variability, as release from nearby ribbon sites exerts larger effects on RBP and HC receptors than release from more distant sites. While greater integration may allow slower sustained release rates, added quantal variability complicates the challenging task of detecting brief decreases in release produced by rod light responses at scotopic threshold.
Collapse
|
3
|
Takahashi K, Sato K. The Conventional and Breakthrough Tool for the Study of L-Glutamate Transporters. MEMBRANES 2024; 14:77. [PMID: 38668105 PMCID: PMC11052088 DOI: 10.3390/membranes14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In our recent report, we clarified the direct interaction between the excitatory amino acid transporter (EAAT) 1/2 and polyunsaturated fatty acids (PUFAs) by applying electrophysiological and molecular biological techniques to Xenopus oocytes. Xenopus oocytes have a long history of use in the scientific field, but they are still attractive experimental systems for neuropharmacological studies. We will therefore summarize the pharmacological significance, advantages (especially in the study of EAAT2), and experimental techniques that can be applied to Xenopus oocytes; our new findings concerning L-glutamate (L-Glu) transporters and PUFAs; and the significant outcomes of our data. The data obtained from electrophysiological and molecular biological studies of Xenopus oocytes have provided us with further important questions, such as whether or not some PUFAs can modulate EAATs as allosteric modulators and to what extent docosahexaenoic acid (DHA) affects neurotransmission and thereby affects brain functions. Xenopus oocytes have great advantages in the studies about the interactions between molecules and functional proteins, especially in the case when the expression levels of the proteins are small in cell culture systems without transfections. These are also proper to study the mechanisms underlying the interactions. Based on the data collected in Xenopus oocyte experiments, we can proceed to the next step, i.e., the physiological roles of the compounds and their significances. In the case of EAAT2, the effects on the neurotransmission should be examined by electrophysiological approach using acute brain slices. For new drug development, pharmacokinetics pharmacodynamics (PKPD) data and blood brain barrier (BBB) penetration data are also necessary. In order not to miss the promising candidate compounds at the primary stages of drug development, we should reconsider using Xenopus oocytes in the early phase of drug development.
Collapse
Grants
- a Research Grant on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from AMED, Japan Japan Agency for Medical Research and Development
- KAKENHI 18700373, 21700422, 17K08330 Ministry of Education, Culture, Sports, Science and Technology
- a Grant for the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO National Institute of Biomedical Innovation, Health and Nutrition
- a grant for Research on Risks of Chemicals, a Labor Science Research Grant for Research on New Drug Development MHLW
- a Grant-in-Aid from Hoansha Foundation Hoansha Foundation
Collapse
Affiliation(s)
| | - Kaoru Sato
- Laboratory of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan;
| |
Collapse
|
4
|
Suslova M, Kortzak D, Machtens JP, Kovermann P, Fahlke C. Apo state pore opening as functional basis of increased EAAT anion channel activity in episodic ataxia 6. Front Physiol 2023; 14:1147216. [PMID: 37538371 PMCID: PMC10394623 DOI: 10.3389/fphys.2023.1147216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
SLC1A2 and SLC1A3 encode the glial glutamate transporters EAAT2 and EAAT1, which are not only the predominant glutamate uptake carriers in our brain, but also function as anion channels. Two homologous mutations, which predict substitutions of prolines in the center of the fifth transmembrane helix by arginine (P289R EAAT2, P290R EAAT1), have been identified in patients with epileptic encephalopathy (SLC1A2) or with episodic ataxia type 6 (SLC1A3). Both mutations have been shown to impair glutamate uptake and to increase anion conduction. The molecular processes that link the disease-causing mutations to two major alterations of glutamate transporter function remain insufficiently understood. The mutated proline is conserved in every EAAT. Since the pathogenic changes mainly affect the anion channel function, we here study the functional consequences of the homologous P312R mutation in the neuronal glutamate transporter EAAT4, a low capacity glutamate transporter with predominant anion channel function. To assess the impact of charge and structure of the inserted amino acid for the observed functional changes, we generated and functionally evaluated not only P312R, but also substitutions of P312 with all other amino acids. However, only exchange of proline by arginine, lysine, histidine and asparagine were functionally tolerated. We compared WT, P312R and P312N EAAT4 using a combination of cellular electrophysiology, fast substrate application and kinetic modelling. We found that WT and mutant EAAT4 anion currents can be described with a 11-state model of the transport cycle, in which several states are connected to branching anion channel states to account for the EAAT anion channel function. Substitutions of P312 modify various transitions describing substrate binding/unbinding, translocation or anion channel opening. Most importantly, P312R generates a new anion conducting state that is accessible in the outward facing apo state and that is the main determinant of the increased anion conduction of EAAT transporters carrying this mutation. Our work provides a quantitative description how a naturally occurring mutation changes glutamate uptake and anion currents in two genetic diseases.
Collapse
|
5
|
Chen I, Wu Q, Font J, Ryan RM. The twisting elevator mechanism of glutamate transporters reveals the structural basis for the dual transport-channel functions. Curr Opin Struct Biol 2022; 75:102405. [PMID: 35709614 DOI: 10.1016/j.sbi.2022.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Glutamate transporters facilitate the removal of this excitatory neurotransmitter from the synapse. Increasing evidence indicates that this process is linked to intrinsic chloride channel activity that is thermodynamically uncoupled from substrate transport. A recent cryo-EM structure of GltPh - an archaeal homolog of the glutamate transporters - in an open channel state has shed light on the structural basis for channel opening formed at the interface of two domains within the transporter which is gated by two clusters of hydrophobic residues. These transporters cycle through several conformational states during the transport process, including the chloride conducting state, which appears to be stabilised by protein-membrane interactions and membrane deformation. Several point mutations that perturb the chloride conductance can have detrimental effects and are linked to the pathogenesis of the neurological disorder, episodic ataxia type 6.
Collapse
Affiliation(s)
- Ichia Chen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Qianyi Wu
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Josep Font
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Renae M Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|
6
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
7
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
8
|
Kovermann P, Kolobkova Y, Franzen A, Fahlke C. Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 2021; 63:388-401. [PMID: 34961934 DOI: 10.1111/epi.17154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS G82R and L85P exchange amino acid residues contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.
Collapse
Affiliation(s)
- Peter Kovermann
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Yulia Kolobkova
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| |
Collapse
|
9
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|