1
|
Aikawa C, Shimizu A, Nakakido M, Murase K, Nozawa T, Tsumoto K, Nakagawa I. Group A Streptococcus cation diffusion facilitator proteins contribute to immune evasion by regulating intracellular metal concentrations. Biochem Biophys Res Commun 2023; 676:141-148. [PMID: 37516031 DOI: 10.1016/j.bbrc.2023.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters with broad specificities that contribute to intracellular metal homeostasis and toxicity in bacterial pathogens. Streptococcus pyogenes (Group A Streptococcus [GAS]) expresses two homologous CDF efflux transporters, MntE and CzcD, which selectively transport Mn and Zn, respectively. We discovered that the MntE- and CzcD-deficient strains exhibited a marked decrease in the viability of macrophage-differentiated THP-1 cells and neutrophils. In addition, the viability of mice infected with both deficient strains markedly increased. Consistent with a previous study, our results suggest that MntE regulates the PerR-dependent oxidative stress response by maintaining intracellular Mn levels and contributing to the growth of GAS. The maturation and proteolytic activity of streptococcal cysteine protease (SpeB), an important virulence factor in GAS, has been reported to be abrogated by zinc and copper. Zn inhibited the maturation and proteolytic activity of SpeB in the culture supernatant of the CzcD-deficient strain. Furthermore, Mn inhibited SpeB maturation and proteolytic activity in a MntE-deficient strain. Since the host pathogenicity of the SpeB-deficient strain was significantly reduced, maintenance of intracellular manganese and zinc levels in the GAS via MntE and CzcD may not only confer metal resistance to the bacterium, but may also play an essential role in its virulence. These findings provide new insights into the molecular mechanisms of pathogenicity, which allow pathogens to survive under stressful conditions associated with elevated metal ion concentrations during host infection.
Collapse
Affiliation(s)
- Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Akihide Shimizu
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
3
|
Barber-Zucker S, Moran A, Zarivach R. Metal transport mechanism of the cation diffusion facilitator (CDF) protein family - a structural perspective on human CDF (ZnT)-related diseases. RSC Chem Biol 2021; 2:486-498. [PMID: 34458794 PMCID: PMC8341793 DOI: 10.1039/d0cb00181c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
Divalent d-block metal cations (DDMCs) participate in many cellular functions; however, their accumulation in cells can be cytotoxic. The cation diffusion facilitator (CDF) family is a ubiquitous family of transmembrane DDMC exporters that ensures their homeostasis. Severe diseases, such as type II diabetes, Parkinson's and Alzheimer's disease, were linked to dysfunctional human CDF proteins, ZnT-1-10 (SLC30A1-10). Each member of the CDF family reduces the cytosolic concentration of a specific DDMC by transporting it from the cytoplasm to the extracellular environment or into intracellular compartments. This process is usually achieved by utilizing the proton motive force. In addition to their activity as DDMC transporters, CDFs also have other cellular functions such as the regulation of ion channels and enzymatic activity. The combination of structural and biophysical studies of different bacterial and eukaryotic CDF proteins led to significant progress in the understanding of the mutual interaction among CDFs and DDMCs, their involvement in ion binding and selectivity, conformational changes and the consequent transporting mechanisms. Here, we review these studies, provide our mechanistic interpretation of CDF proteins based on the current literature and relate the above to known human CDF-related diseases. Our analysis provides a common structure-function relationship to this important protein family and closes the gap between eukaryote and prokaryote CDFs.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences, the National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel +972-8-6472970 +972-8-6472970 +972-8-6428447 +972-8-6461999
| | - Arie Moran
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel
| | - Raz Zarivach
- Department of Life Sciences, the National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev P.O.B. 653 Beer Sheva 8410501 Israel +972-8-6472970 +972-8-6472970 +972-8-6428447 +972-8-6461999
| |
Collapse
|