1
|
Olvera-Lucio FH, Riveros-Rosas H, Quintero-Martínez A, Hernández-Santoyo A. Tandem-repeat lectins: structural and functional insights. Glycobiology 2024; 34:cwae041. [PMID: 38857376 PMCID: PMC11186620 DOI: 10.1093/glycob/cwae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
Multivalency in lectins plays a pivotal role in influencing glycan cross-linking, thereby affecting lectin functionality. This multivalency can be achieved through oligomerization, the presence of tandemly repeated carbohydrate recognition domains, or a combination of both. Unlike lectins that rely on multiple factors for the oligomerization of identical monomers, tandem-repeat lectins inherently possess multivalency, independent of this complex process. The repeat domains, although not identical, display slightly distinct specificities within a predetermined geometry, enhancing specificity, affinity, avidity and even oligomerization. Despite the recognition of this structural characteristic in recently discovered lectins by numerous studies, a unified criterion to define tandem-repeat lectins is still necessary. We suggest defining them multivalent lectins with intrachain tandem repeats corresponding to carbohydrate recognition domains, independent of oligomerization. This systematic review examines the folding and phyletic diversity of tandem-repeat lectins and refers to relevant literature. Our study categorizes all lectins with tandemly repeated carbohydrate recognition domains into nine distinct folding classes associated with specific biological functions. Our findings provide a comprehensive description and analysis of tandem-repeat lectins in terms of their functions and structural features. Our exploration of phyletic and functional diversity has revealed previously undocumented tandem-repeat lectins. We propose research directions aimed at enhancing our understanding of the origins of tandem-repeat lectin and fostering the development of medical and biotechnological applications, notably in the design of artificial sugars and neolectins.
Collapse
Affiliation(s)
- Francisco H Olvera-Lucio
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | | |
Collapse
|
2
|
Bensing BA, Stubbs HE, Agarwal R, Yamakawa I, Luong K, Solakyildirim K, Yu H, Hadadianpour A, Castro MA, Fialkowski KP, Morrison KM, Wawrzak Z, Chen X, Lebrilla CB, Baudry J, Smith JC, Sullam PM, Iverson TM. Origins of glycan selectivity in streptococcal Siglec-like adhesins suggest mechanisms of receptor adaptation. Nat Commun 2022; 13:2753. [PMID: 35585145 PMCID: PMC9117288 DOI: 10.1038/s41467-022-30509-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial binding to host receptors underlies both commensalism and pathogenesis. Many streptococci adhere to protein-attached carbohydrates expressed on cell surfaces using Siglec-like binding regions (SLBRs). The precise glycan repertoire recognized may dictate whether the organism is a strict commensal versus a pathogen. However, it is currently not clear what drives receptor selectivity. Here, we use five representative SLBRs and identify regions of the receptor binding site that are hypervariable in sequence and structure. We show that these regions control the identity of the preferred carbohydrate ligand using chimeragenesis and single amino acid substitutions. We further evaluate how the identity of the preferred ligand affects the interaction with glycoprotein receptors in human saliva and plasma samples. As point mutations can change the preferred human receptor, these studies suggest how streptococci may adapt to changes in the environmental glycan repertoire.
Collapse
Affiliation(s)
- Barbara A Bensing
- Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, CA, USA
- the Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
| | - Haley E Stubbs
- Graduate Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rupesh Agarwal
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Izumi Yamakawa
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- School of Nursing, Belmont University, Nashville, TN, 37212, USA
| | - Kelvin Luong
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kemal Solakyildirim
- Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Azadeh Hadadianpour
- Department of Microbiology, Pathology, and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kevin P Fialkowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - KeAndreya M Morrison
- Department of Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zdzislaw Wawrzak
- LS-CAT Synchrotron Research Center, Northwestern University, Argonne, IL, 60439, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Paul M Sullam
- Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, CA, USA
- the Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Di Carluccio C, Forgione RE, Bosso A, Yokoyama S, Manabe Y, Pizzo E, Molinaro A, Fukase K, Fragai M, Bensing BA, Marchetti R, Silipo A. Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: toward the shape of specific inhibitors. RSC Chem Biol 2021; 2:1618-1630. [PMID: 34977577 PMCID: PMC8637897 DOI: 10.1039/d1cb00173f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis, commensal bacteria present in the oral cavity of healthy individuals, upon entry into the bloodstream can become pathogenic, causing infective endocarditis (IE). Sialic acid-binding serine-rich repeat adhesins on the microbial surface represent an important factor of successful infection to cause IE. They contain Siglec-like binding regions (SLBRs) that variously recognize different repertoires of O-glycans, with some strains displaying high selectivity and others broader specificity. We here dissect at an atomic level the mechanism of interaction of SLBR-B and SLBR-H from S. gordonii with a multivarious approach that combines NMR spectroscopy and computational and biophysical studies. The binding pockets of both SLBRs are broad enough to accommodate extensive interactions with sialoglycans although with key differences related to strain specificity. Furthermore, and significantly, the pattern of interactions established by the SLBRs are mechanistically very different from those reported for mammalian Siglecs despite them having a similar fold. Thus, our detailed description of the binding modes of streptococcal Siglec-like adhesins sparks the development of tailored synthetic inhibitors and therapeutics specific for Streptococcal adhesins to counteract IE, without impairing the interplay between Siglecs and glycans. We here present a detailed molecular description of sialoglycans recognition by Siglec-like adhesins from S. gordonii opening the venue for the design of specific inhibitors to influence the propensity of streptococci to cause infective endocarditis.![]()
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Rosa Ester Forgione
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Shinji Yokoyama
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy .,Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Barbara A Bensing
- Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California San Francisco California 94121 USA.,Northern California Institute for Research and Education San Francisco California 94121 USA
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|