1
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Bhopatkar AA, Bhatt N, Haque MA, Xavier R, Fung L, Jerez C, Kayed R. MAPT mutations associated with familial tauopathies lead to formation of conformationally distinct oligomers that have cross-seeding ability. Protein Sci 2024; 33:e5099. [PMID: 39145409 PMCID: PMC11325167 DOI: 10.1002/pro.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.
Collapse
Affiliation(s)
- Anukool A. Bhopatkar
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md Anzarul Haque
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rhea Xavier
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Leiana Fung
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Neuroscience Graduate Program, UT Southwestern Medical CenterDallasTexasUSA
| | - Cynthia Jerez
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
3
|
Theofilas P, Wang C, Butler D, Morales DO, Petersen C, Ambrose A, Chin B, Yang T, Khan S, Ng R, Kayed R, Karch CM, Miller BL, Gestwicki JE, Gan L, Temple S, Arkin MR, Grinberg LT. iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death. Mol Cell Neurosci 2024; 130:103954. [PMID: 39032719 DOI: 10.1016/j.mcn.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dulce O Morales
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Andrew Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA.
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Brazil.
| |
Collapse
|
4
|
Scaduto P, Marcatti M, Bhatt N, Kayed R, Taglialatela G. Calcineurin inhibition prevents synaptic plasticity deficit induced by brain-derived tau oligomers. Brain Commun 2024; 6:fcae277. [PMID: 39239152 PMCID: PMC11375858 DOI: 10.1093/braincomms/fcae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Compelling evidence suggests that cognitive decline in Alzheimer's disease is associated with the accumulation and aggregation of tau protein, with the most toxic aggregates being in the form of oligomers. This underscores the necessity for direct isolation and analysis of brain-derived tau oligomers from patients with Alzheimer's disease, potentially offering novel perspectives into tau toxicity. Alzheimer's brain-derived tau oligomers are potent inhibitors of synaptic plasticity; however, the involved mechanism is still not fully understood. We previously reported a significantly reduced incidence of Alzheimer's disease in ageing humans chronically treated with a Food and Drug Administration-approved calcineurin inhibitor, FK506 (tacrolimus), used as an immunosuppressant after solid organ transplant. Using a combination of electrophysiological and RNA-sequencing techniques, we provide here evidence that FK506 has the potential to block the acute toxic effect of brain-derived tau oligomers on synaptic plasticity, as well as to restore the levels of some key synaptic mRNAs. These results further support FK506 as a promising novel therapeutic strategy for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
7
|
Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 2024; 20:577-589. [PMID: 37899687 PMCID: PMC10936643 DOI: 10.1080/15548627.2023.2276622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Joel Rodwell-Bullock
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
9
|
Yang L, Jasiqi Y, Zettor A, Vadas O, Chiaravalli J, Agou F, Lashuel HA. Effective Inhibition of TDP-43 Aggregation by Native State Stabilization. Angew Chem Int Ed Engl 2024; 63:e202314587. [PMID: 37949836 DOI: 10.1002/anie.202314587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP-43) is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP-43 is a viable and effective strategy for treating TDP-43 proteinopathies. Firstly, we leveraged the Cryo-EM structures of TDP-43 fibrils to design C-terminal substitutions that disrupt TDP-43 aggregation. Secondly, we showed that these substitutions (S333D/S342D) stabilize monomeric TDP-43 without altering its physiological properties. Thirdly, we demonstrated that binding native oligonucleotide ligands stabilized monomeric TDP-43 and prevented its fibrillization and phase separation in the absence of direct binding to the aggregation-prone C-terminal domain. Fourthly, we showed that the monomeric TDP-43 variant could be induced to aggregate in a controlled manner, which enabled the design and implementation of a high-throughput screening assay to identify native state stabilizers of TDP-43. Altogether, our findings demonstrate that different structural domains in TDP-43 could be exploited and targeted to develop drugs that stabilize the native state of TDP-43 and provide a platform to discover novel drugs to treat TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Lixin Yang
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Agnès Zettor
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211, Geneva, Switzerland
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, Institut Pasteur, Université Paris Cité, CNRS, UMR 3523, C2RT, Paris, France
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Puangmalai N, Bhatt N, Bittar A, Jerez C, Shchankin N, Kayed R. Traumatic brain injury derived pathological tau polymorphs induce the distinct propagation pattern and neuroinflammatory response in wild type mice. Prog Neurobiol 2024; 232:102562. [PMID: 38135105 DOI: 10.1016/j.pneurobio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
The misfolding and aggregation of the tau protein into neurofibrillary tangles constitutes a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs. However, the mechanisms orchestrating the dissemination of TBI brain-derived tau polymorphs (TBI-BDTPs) remain elusive. In this study, we explored whether TBI-BDTPs could initiate pathological tau formation, leading to distinct pathogenic trajectories. Wild-type mice were exposed to TBI-BDTPs from sham, single-blast (SB), or repeated-blast (RB) conditions, and their memory function was assessed through behavioral assays at 2- and 8-month post-injection. Our findings revealed that RB-BDTPs induced cognitive and motor deficits, concurrently fostering the emergence of toxic tau aggregates within the injected hippocampus. Strikingly, this tau pathology propagated to cortical layers, intensifying over time. Importantly, RB-BDTP-exposed animals displayed heightened glial cell activation, NLRP3 inflammasome formation, and increased TBI biomarkers, particularly triggering the aggregation of S100B, which is indicative of a neuroinflammatory response. Collectively, our results shed light on the intricate mechanisms underlying TBI-BDTP-induced tau pathology and its association with neuroinflammatory processes. This investigation enhances our understanding of tauopathies and their interplay with neurodegenerative and inflammatory pathways following traumatic brain injury.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Sengupta U, Kayed R. Tau Oligomers as Pathogenic Seeds: Preparation, Characterization, and Propagation In Vitro and In Vivo. Methods Mol Biol 2024; 2754:147-183. [PMID: 38512666 DOI: 10.1007/978-1-0716-3629-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau oligomers have been shown to be the main toxic tau species in several neurodegenerative disorders. To study tau oligomers, we have developed reagents and established methods for the reliable preparation, isolation, and detection of tau oligomers as well as their seeding and propagation both in vitro and in vivo. Detailed below are methods for isolation of tau oligomers from brain tissues and detection of tau oligomers using tau oligomer-specific antibodies by biochemical, immunohistochemical, and biophysical methods. Further, methods for evaluating the biological activity of the tau oligomers including their effects on synaptic function, seeding, and propagation in cell models and in vivo are also described.
Collapse
Affiliation(s)
- Urmi Sengupta
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Bodily TA, Ramanathan A, Wei S, Karkisaval A, Bhatt N, Jerez C, Haque MA, Ramil A, Heda P, Wang Y, Kumar S, Leite M, Li T, Zhao J, Lal R. In pursuit of degenerative brain disease diagnosis: Dementia biomarkers detected by DNA aptamer-attached portable graphene biosensor. Proc Natl Acad Sci U S A 2023; 120:e2311565120. [PMID: 37956285 PMCID: PMC10666025 DOI: 10.1073/pnas.2311565120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Dementia is a brain disease which results in irreversible and progressive loss of cognition and motor activity. Despite global efforts, there is no simple and reliable diagnosis or treatment option. Current diagnosis involves indirect testing of commonly inaccessible biofluids and low-resolution brain imaging. We have developed a portable, wireless readout-based Graphene field-effect transistor (GFET) biosensor platform that can detect viruses, proteins, and small molecules with single-molecule sensitivity and specificity. We report the detection of three important amyloids, namely, Amyloid beta (Aβ), Tau (τ), and α-Synuclein (αS) using DNA aptamer nanoprobes. These amyloids were isolated, purified, and characterized from the autopsied brain tissues of Alzheimer's Disease (AD) and Parkinson's Disease (PD) patients. The limit of detection (LoD) of the sensor is 10 fM, 1-10 pM, 10-100 fM for Aβ, τ, and αS, respectively. Synthetic as well as autopsied brain-derived amyloids showed a statistically significant sensor response with respect to derived thresholds, confirming the ability to define diseased vs. nondiseased states. The detection of each amyloid was specific to their aptamers; Aβ, τ, and αS peptides when tested, respectively, with aptamers nonspecific to them showed statistically insignificant cross-reactivity. Thus, the aptamer-based GFET biosensor has high sensitivity and precision across a range of epidemiologically significant AD and PD variants. This portable diagnostic system would allow at-home and POC testing for neurodegenerative diseases globally.
Collapse
Affiliation(s)
| | - Anirudh Ramanathan
- Department of Bioengineering, University of California, San Diego, CA92093
| | - Shanhong Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Abhijith Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA92093
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX77555
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX77555
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Disorders, Department of Neurology, University of Texas Medical Branch, Galveston, TX77555
| | - Armando Ramil
- Department of Bioengineering, University of California, San Diego, CA92093
| | - Prachi Heda
- Department of Bioengineering, University of California, San Diego, CA92093
| | - Yi Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Sanjeev Kumar
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL61820
| | - Mikayla Leite
- Department of Bioengineering, University of California, San Diego, CA92093
| | - Tie Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, CA92093
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA92093
- Materials Science and Engineering Program, University of California, San Diego, CA92093
| |
Collapse
|
13
|
Ahn S, Suh JS, Jang YK, Kim H, Han K, Lee Y, Choi G, Kim TJ. TAUCON and TAUCOM: A novel biosensor based on fluorescence resonance energy transfer for detecting tau hyperphosphorylation-associated cellular pathologies. Biosens Bioelectron 2023; 237:115533. [PMID: 37517333 DOI: 10.1016/j.bios.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Tauopathies are neurodegenerative diseases characterized by abnormal conformational changes in tau protein. Early hyperphosphorylation-induced conformational changes are considered a hallmark of tauopathy, but real-time tracking methods are lacking. Here, we present two novel fluorescence resonance energy transfer (FRET)-based tau biosensors that detect such changes with high spatiotemporal resolution at the single-cell level. The TAUCON biosensor measures instantaneous conformational changes in hyperphosphorylated tau within 20 min, while the TAUCOM biosensor detects changes in the paper-clip structure of microtubule-associated tau. Our biosensors provide faster and more precise detection than conventional methods and can serve as valuable tools for investigating the initial causes, mechanisms, progression, and treatment of tauopathies.
Collapse
Affiliation(s)
- Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yoon-Kwan Jang
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Heonsu Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yerim Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan, 46241, Republic of Korea; Institute of System Biology, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
15
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
16
|
Moore K, Sengupta U, Puangmalai N, Bhatt N, Kayed R. Polymorphic Alpha-Synuclein Oligomers: Characterization and Differential Detection with Novel Corresponding Antibodies. Mol Neurobiol 2023; 60:2691-2705. [PMID: 36707462 PMCID: PMC9883140 DOI: 10.1007/s12035-023-03211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
The pathological hallmark of many neurodegenerative diseases is the accumulation of characteristic proteinaceous aggregates. Parkinson's disease and dementia with Lewy bodies can be characterized as synucleinopathies due to the abnormal accumulation of the protein alpha-synuclein (α-Syn). Studies have shown amyloidogenic proteins such as α-Syn and tau can exist as polymorphic aggregates, a theory widely studied mostly in their fibrillar morphology. It is now well understood that an intermediate state of aggregates, oligomers, are the most toxic species. We have shown α-Syn, when modified by different physiological inducers, result in distinct oligomeric conformations of α-Syn. Polymorphic α-Syn oligomers exhibit distinct properties such as aggregate size, conformation, and differentially interact with tau. In this study, we confirm α-Syn oligomeric polymorphs furthermore using in-house novel α-Syn toxic conformation monoclonal antibodies (SynTCs). It is unclear the biological relevance of α-Syn oligomeric polymorphisms. Utilizing a combination of biochemical, biophysical, and cell-based assays, we characterize α-Syn oligomeric polymorphs. We found α-Syn oligomeric polymorphs exhibit distinct immunoreactivity and SynTCs exhibit differential selectivity and binding affinity for α-Syn species. Isothermal titration calorimetry experiments suggest distinct α-Syn:SynTC binding enthalpies in a species-specific manner. Additionally, we found SynTCs differentially reduce α-Syn oligomeric polymorph-mediated neurotoxicity and propagation in primary cortical neurons in a polymorph-specific manner. These studies demonstrate the biological significance of polymorphic α-Syn oligomers along with the importance of polymorph-specific antibodies that target toxic α-Syn aggregates. Monoclonal antibodies that can target the conformational heterogeneity of α-Syn oligomeric species and reduce their mediated toxicity have promising immunotherapeutic potential.
Collapse
Affiliation(s)
- Kenya Moore
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA.
| |
Collapse
|
17
|
Kim HJ, Kim H, Park D, Yoon DS, San Lee J, Hwang KS. Plasma-based diagnostic and screening platform using a combination of biosensing signals in Alzheimer's disease. Biosens Bioelectron 2023; 230:115246. [PMID: 37003061 DOI: 10.1016/j.bios.2023.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Using biosensor to screen for Alzheimer's disease (AD) facilitates early detection of AD with high sensitivity and accuracy. This approach overcomes the limitations of conventional AD diagnostic methods, such as neuropsychological assessment and neuroimaging analysis. Here, we propose a simultaneous analysis of signal combinations generated by four crucial AD biomarkers (Amyloid beta 1-40 (Aβ40), Aβ42, total tau 441 (tTau441), and phosphorylated tau 181 (pTau181)) by inducing a dielectrophoretic (DEP) force on fabricated interdigitated microelectrode (IME) sensor. By applying an optimal DEP force, our biosensor selectively concentrates and filters the plasma-based AD biomarkers, exhibiting high sensitivity (limit of detection <100 fM) and selectivity in the plasma-based AD biomarkers detection (p < 0.0001). Consequently, it is demonstrated that a complex combined signal comprising four AD-specific biomarker signals (Aβ40- Aβ42+ tTau441- pTau181) can differentiate between patients with AD and healthy subjects with high accuracy (78.85%) and precision (80.95%) (p < 0.0001).
Collapse
|
18
|
Lin H, Sandkuhler S, Dunlea C, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527546. [PMID: 36798173 PMCID: PMC9934686 DOI: 10.1101/2023.02.08.527546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially engage specific forms of MAPT and facilitate their clearance. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions were confirmed using in vitro binding assays with purified proteins. We provide direct evidence that NBR1 preferentially binds to monomeric MAPT, while SQSTM1 interacts predominantly with oligomeric MAPT, and that the co-chaperone BAG3 regulates the specificity of these interactions. Using an in vitro pulldown assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its binding to monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer's disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and lead to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| |
Collapse
|
19
|
Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel. Int J Mol Sci 2022; 23:ijms232214374. [PMID: 36430850 PMCID: PMC9694168 DOI: 10.3390/ijms232214374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In vitro antiproliferative assays still represent one of the most important tools in the anticancer drug discovery field, especially to gain insights into the mechanisms of action of anticancer small molecules. The NCI-DTP (National Cancer Institute Developmental Therapeutics Program) undoubtedly represents the most famous project aimed at rapidly testing thousands of compounds against multiple tumor cell lines (NCI60). The large amount of biological data stored in the National Cancer Institute (NCI) database and many other databases has led researchers in the fields of computational biology and medicinal chemistry to develop tools to predict the anticancer properties of new agents in advance. In this work, based on the available antiproliferative data collected by the NCI and the manipulation of molecular descriptors, we propose the new in silico Antiproliferative Activity Predictor (AAP) tool to calculate the GI50 values of input structures against the NCI60 panel. This ligand-based protocol, validated by both internal and external sets of structures, has proven to be highly reliable and robust. The obtained GI50 values of a test set of 99 structures present an error of less than ±1 unit. The AAP is more powerful for GI50 calculation in the range of 4-6, showing that the results strictly correlate with the experimental data. The encouraging results were further supported by the examination of an in-house database of curcumin analogues that have already been studied as antiproliferative agents. The AAP tool identified several potentially active compounds, and a subsequent evaluation of a set of molecules selected by the NCI for the one-dose/five-dose antiproliferative assays confirmed the great potential of our protocol for the development of new anticancer small molecules. The integration of the AAP tool in the free web service DRUDIT provides an interesting device for the discovery and/or optimization of anticancer drugs to the medicinal chemistry community. The training set will be updated with new NCI-tested compounds to cover more chemical spaces, activities, and cell lines. Currently, the same protocol is being developed for predicting the TGI (total growth inhibition) and LC50 (median lethal concentration) parameters to estimate toxicity profiles of small molecules.
Collapse
|
20
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
21
|
Bittar A, Al-Lahham R, Bhatt N, Moore K, Montalbano M, Jerez C, Fung L, McAllen S, Ellsworth A, Kayed R. Passive Immunotherapy Targeting Tau Oligomeric Strains Reverses Tauopathy Phenotypes in Aged Human-Tau Mice in a Mouse Model-Specific Manner. J Alzheimers Dis 2022; 90:1103-1122. [DOI: 10.3233/jad-220518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Tau oligomers are one of the most toxic species, displaying prion-like strains which have different conformations resulting in different tauopathies. Passive immunotherapy targeting different tau species is a promising therapeutic approach. Age is one of the greatest risk factors; however, most immunotherapy studies are done in young to middle-aged mice tauopathy models, which is not representative of the many clinical trials done with older humans with established tauopathies. Objective: We utilized two different clones of tau oligomer monoclonal antibodies (TOMAs) in aged Htau and JNPL3 mouse models to investigate the potential of passive immunotherapy. Methods: Aged mice received a single intravenous injection of 120 μg/animal of either TOMA1, TOMA3 clones or a non-specific IgG. Their cognitive functions were assessed one-week post-injection using Y-maze and novel object recognition tests. Brain tissues were analyzed using biochemical and immunological assays. Results: TOMA 1 and 3 rescues cognitive phenotypes in aged animals in a mouse model-specific manner, indicative by a reduction in tau oligomers levels. The TOMAs were shown to have strong reactivity with different tau oligomeric species in the different mouse models in vitro and ex vivo. Conclusion: This is the first study testing tau passive immunotherapy in aged animals and supports our previous reports on of the role of oligomeric tau in disease progression further validating the potential of TOMAs to rescue the late-stage disease pathology and phenotype. Moreover, this study suggests that multiple tau oligomeric strains exist in aged animals; therefore, it is of great importance to further characterize these strains.
Collapse
Affiliation(s)
- Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rabab Al-Lahham
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenya Moore
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
22
|
Maina MB, Al-Hilaly YK, Oakley S, Burra G, Khanom T, Biasetti L, Mengham K, Marshall K, Harrington CR, Wischik CM, Serpell LC. Dityrosine Cross-links are Present in Alzheimer's Disease-derived Tau Oligomers and Paired Helical Filaments (PHF) which Promotes the Stability of the PHF-core Tau (297-391) In Vitro. J Mol Biol 2022; 434:167785. [PMID: 35961386 DOI: 10.1016/j.jmb.2022.167785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
A characteristic hallmark of Alzheimer's Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aβ plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 - 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297-391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.
Collapse
Affiliation(s)
- Mahmoud B Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Biomedical Science Research and Training Centre, Yobe State University, Nigeria. https://twitter.com/mahmoudbukar
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Chemistry Department, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - Sebastian Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Gunasekhar Burra
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Analytical Development Biologics, Biopharmaceutical Development, Syngene International Limited, Biocon Park, Bommasandra Jigani Link Road, Bangalore 560009, India
| | - Tahmida Khanom
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Kurtis Mengham
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd, Aberdeen, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK.
| |
Collapse
|
23
|
Anti-fibrillization Effects of Sulfonamide Derivatives on α-Synuclein and Hyperphosphorylated Tau Isoform 1N4R. J Mol Struct 2022; 1267. [DOI: 10.1016/j.molstruc.2022.133574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Sivanantharajah L, Mudher A. Curcumin as a Holistic Treatment for Tau Pathology. Front Pharmacol 2022; 13:903119. [PMID: 35662729 PMCID: PMC9160965 DOI: 10.3389/fphar.2022.903119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Global forecasts for prevalence of Alzheimer’s Disease (AD) estimate that 152.8 million people will have dementia in 2050, a sharp rise from 57.4 million in 2019 (GBD 2019). This rise can be attributable to increases in population growth and aging, but in the absence of disease-modifying therapies it poses a huge societal challenge that must be addressed urgently. One way to combat this challenge is to explore the utility of holistic treatments that may protect against AD, including traditional herbs, spices and other nutraceuticals that are pharmacologically safe, inexpensive and readily available. In this light, the spice turmeric, and its active ingredient curcumin, has been investigated as a potential holistic treatment for AD over the past 2 decades; however, promising results with animal studies have not translated to success in clinical trials. One issue is that most animal models examining the effects of curcumin and curcumin derivatives in AD have been done with a focus at ameliorating amyloid pathology. Due to the limited success of Amyloid-β-based drugs in recent clinical trials, tau-focused therapeutics provide a promising alternative. In this article, we aim to provide a clearer picture of what is currently known about the effectiveness of curcumin and curcumin derivatives to ameliorate tau pathology. Tau focused studies may help inform more successful clinical studies by placing greater emphasis on the development and optimised delivery of curcumin derivatives that more effectively target tau pathology.
Collapse
Affiliation(s)
- Lovesha Sivanantharajah
- School of Natural Sciences, Bangor University, Bangor Gwynedd, United Kingdom
- *Correspondence: Lovesha Sivanantharajah,
| | - Amritpal Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
25
|
Puangmalai N, Sengupta U, Bhatt N, Gaikwad S, Montalbano M, Bhuyan A, Garcia S, McAllen S, Sonawane M, Jerez C, Zhao Y, Kayed R. Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer's disease. J Biol Chem 2022; 298:101766. [PMID: 35202653 PMCID: PMC8942844 DOI: 10.1016/j.jbc.2022.101766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-modified tau aggregates are abundantly found in human brains diagnosed with Alzheimer's disease (AD) and other tauopathies. Soluble tau oligomers (TauO) are the most neurotoxic tau species that propagate pathology and elicit cognitive deficits, but whether ubiquitination contributes to tau formation and spreading is not fully understood. Here, we observed that K63-linked, but not K48-linked, ubiquitinated TauO accumulated at higher levels in AD brains compared with age-matched controls. Using mass spectrometry analyses, we identified 11 ubiquitinated sites on AD brain-derived TauO (AD TauO). We found that K63-linked TauO are associated with enhanced seeding activity and propagation in human tau-expressing primary neuronal and tau biosensor cells. Additionally, exposure of tau-inducible HEK cells to AD TauO with different ubiquitin linkages (wild type, K48, and K63) resulted in enhanced formation and secretion of K63-linked TauO, which was associated with impaired proteasome and lysosome functions. Multipathway analysis also revealed the involvement of K63-linked TauO in cell survival pathways, which are impaired in AD. Collectively, our study highlights the significance of selective TauO ubiquitination, which could influence tau aggregation, accumulation, and subsequent pathological propagation. The insights gained from this study hold great promise for targeted therapeutic intervention in AD and related tauopathies.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arijit Bhuyan
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie Garcia
- School of Dentistry, University of Texas Health Science Center, Houston, Texas, USA
| | - Salome McAllen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
26
|
Umeda T, Uekado R, Shigemori K, Eguchi H, Tomiyama T. Nasal Rifampicin Halts the Progression of Tauopathy by Inhibiting Tau Oligomer Propagation in Alzheimer Brain Extract-Injected Mice. Biomedicines 2022; 10:biomedicines10020297. [PMID: 35203506 PMCID: PMC8869211 DOI: 10.3390/biomedicines10020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cell-to-cell transmission of tau aggregates is considered a mechanism underlying the intracerebral spreading of tau pathology in Alzheimer’s disease (AD) and other tauopathies. Recent studies suggest that tau oligomers, rather than fibrils, participate in this process. We previously showed that intranasal rifampicin inhibits tau oligomer accumulation and improves cognition in tauopathy mice. In the present study, we examined the effects of nasal rifampicin on tau propagation in a new mouse model of tauopathy. A tau oligomer-rich fraction prepared from the brain of an AD patient was injected into a unilateral hippocampus of tau264 mice that express both 3-repeat and 4-repeat wild-type human tau. Rifampicin administration was started one week after the injection and performed three times a week for 24 weeks. Cognitive function and tau pathology were assessed by the Morris water maze test and brain section staining. Rifampicin treatment inhibited the spreading of tau oligomers from the injection site to other brain regions and neurofibrillary tangle formation in the entorhinal cortex. Synapse and neuronal loss in the hippocampus were also prevented, and cognitive function remained normal. These results suggest that intranasal rifampicin could be a promising remedy that halts the progression of tauopathy by inhibiting tau oligomer propagation.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Rumi Uekado
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Keiko Shigemori
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
| | - Hiroshi Eguchi
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Ltd., 4-3-2 Asahigaoka, Hino 191-8512, Japan;
| | - Takami Tomiyama
- Department of Translational Neuroscience, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.); (R.U.); (K.S.)
- Correspondence: ; Tel.: +81-6-6645-3921
| |
Collapse
|
27
|
Aillaud I, Kaniyappan S, Chandupatla RR, Ramirez LM, Alkhashrom S, Eichler J, Horn AHC, Zweckstetter M, Mandelkow E, Sticht H, Funke SA. A novel D-amino acid peptide with therapeutic potential (ISAD1) inhibits aggregation of neurotoxic disease-relevant mutant Tau and prevents Tau toxicity in vitro. Alzheimers Res Ther 2022; 14:15. [PMID: 35063014 PMCID: PMC8783508 DOI: 10.1186/s13195-022-00959-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Background Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that mainly affects older adults. One of the pathological hallmarks of AD is abnormally aggregated Tau protein that forms fibrillar deposits in the brain. In AD, Tau pathology correlates strongly with clinical symptoms, cognitive dysfunction, and neuronal death. Methods We aimed to develop novel therapeutic D-amino acid peptides as Tau fibrillization inhibitors. It has been previously demonstrated that D-amino acid peptides are protease stable and less immunogenic than L-peptides, and these characteristics may render them suitable for in vivo applications. Using a phage display procedure against wild type full-length Tau (TauFL), we selected a novel Tau binding L-peptide and synthesized its D-amino acid version ISAD1 and its retro inversed form, ISAD1rev, respectively. Results While ISAD1rev inhibited Tau aggregation only moderately, ISAD1 bound to Tau in the aggregation-prone PHF6 region and inhibited fibrillization of TauFL, disease-associated mutant full-length Tau (TauFLΔK, TauFL-A152T, TauFL-P301L), and pro-aggregant repeat domain Tau mutant (TauRDΔK). ISAD1 and ISAD1rev induced the formation of large high molecular weight TauFL and TauRDΔK oligomers that lack proper Thioflavin-positive β-sheet conformation even at lower concentrations. In silico modeling of ISAD1 Tau interaction at the PHF6 site revealed a binding mode similar to those known for other PHF6 binding peptides. Cell culture experiments demonstrated that ISAD1 and its inverse form are taken up by N2a-TauRDΔK cells efficiently and prevent cytotoxicity of externally added Tau fibrils as well as of internally expressed TauRDΔK. Conclusions ISAD1 and related peptides may be suitable for therapy development of AD by promoting off-pathway assembly of Tau, thus preventing its toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00959-z.
Collapse
Affiliation(s)
- Isabelle Aillaud
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany
| | - Senthilvelrajan Kaniyappan
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | | | - Lisa Marie Ramirez
- Forschungsgruppe Translationale Strukturbiologie, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Sewar Alkhashrom
- Institut für Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Eichler
- Institut für Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institut für Medizinische Genetik, Universität Zürich, Zürich, Switzerland
| | - Markus Zweckstetter
- Forschungsgruppe Translationale Strukturbiologie, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.,Abteilung für NMR-basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany.,CAESAR Research Center, Bonn, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Aileen Funke
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
28
|
Malhis M, Kaniyappan S, Aillaud I, Chandupatla RR, Ramirez LM, Zweckstetter M, Horn AHC, Mandelkow E, Sticht H, Funke SA. Potent Tau Aggregation Inhibitor D-Peptides Selected against Tau-Repeat 2 Using Mirror Image Phage Display. Chembiochem 2021; 22:3049-3059. [PMID: 34375027 PMCID: PMC8596876 DOI: 10.1002/cbic.202100287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/07/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau β-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.
Collapse
Affiliation(s)
- Marwa Malhis
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | - Senthilvelrajan Kaniyappan
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
| | - Isabelle Aillaud
- Institut für BioanalytikHochschule für angewandte WissenschaftenCoburgGermany
| | | | - Lisa Marie Ramirez
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GöttingenGermany
| | | | - Anselm H. C. Horn
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
- Institut für Medizinische GenetikUniversität Zürich SchlierenZürichSwitzerland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)BonnGermany
- Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity of BonnBonnGermany
- CAESAR Research CenterBonnGermany
| | - Heinrich Sticht
- Institut für BiochemieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
| | | |
Collapse
|
29
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
30
|
Chakraborty P, Rivière G, Liu S, de Opakua AI, Dervişoğlu R, Hebestreit A, Andreas LB, Vorberg IM, Zweckstetter M. Co-factor-free aggregation of tau into seeding-competent RNA-sequestering amyloid fibrils. Nat Commun 2021; 12:4231. [PMID: 34244499 PMCID: PMC8270918 DOI: 10.1038/s41467-021-24362-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.
Collapse
Affiliation(s)
| | - Gwladys Rivière
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Shu Liu
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Rıza Dervişoğlu
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alina Hebestreit
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Loren B Andreas
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
31
|
Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. Int J Biol Macromol 2021; 183:1184-1190. [PMID: 33965487 DOI: 10.1016/j.ijbiomac.2021.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
Aggregation of tau protein into the form of insoluble amyloid fibrils is linked with Alzheimer's disease. The identification of potential small molecules that can inhibit tau protein from undergoing aggregation has received a great deal of interest, recently. In the present study, the possible inhibitory effects of liquiritigenin as a member of chiral flavanone family on tau amyloid fibrils formation and their resulting neurotoxicity were assessed by different biophysical and cellular assays. The inhibitory effect of the liquiritigenin against tau amyloid formation was investigated using thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence spectroscopy, Congo red (CR) binding assays, transmission electron microscopy (TEM) analysis, and circular dichroism (CD) spectroscopy. Neurotoxicity assays were also performed against neuron-like cells (SH-SY5Y) using 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS), catalase (CAT) and caspase-3 activity measurements. We found that liquiritigenin served as an efficient inhibitor of tau amyloid fibrils formation through prevention of structural transition in tau structure, exposure of hydrophobic patches and their associated neurotoxicity mediated by decrease in the production of ROS and caspase-3 activity and elevation of CAT activity. These data may finally find applications in the development of promising inhibitors against amyloid fibril formation and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueling Yuan
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
Martinisi A, Flach M, Sprenger F, Frank S, Tolnay M, Winkler DT. Severe oligomeric tau toxicity can be reversed without long-term sequelae. Brain 2021; 144:963-974. [PMID: 33484116 PMCID: PMC8041046 DOI: 10.1093/brain/awaa445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule stabilizing protein that forms abnormal aggregates in many neurodegenerative disorders, including Alzheimer's disease. We have previously shown that co-expression of fragmented and full-length tau in P301SxTAU62on tau transgenic mice results in the formation of oligomeric tau species and causes severe paralysis. This paralysis is fully reversible once expression of the tau fragment is halted, even though P301S tau expression is maintained. Whereas various strategies to target tau aggregation have been developed, little is known about the long-term consequences of reverted tau toxicity. Therefore, we studied the long-term motor fitness of recovered, formerly paralysed P301SxTAU62on-off mice. To assess the seeding competence of oligomeric toxic tau species, we also inoculated ALZ17 mice with brainstem homogenates from paralysed P301SxTAU62on mice. Counter-intuitively, after recovery from paralysis due to oligomeric tau species expression, ageing P301SxTAU62on-off mice did not develop more motor impairment or tau pathology when compared to heterozygous P301S tau transgenic littermates. Thus, toxic tau species causing extensive neuronal dysfunction can be cleared without inducing seeding effects. Moreover, these toxic tau species also lack long-term tau seeding effects upon intrahippocampal inoculation into ALZ17 mice. In conclusion, tau species can be neurotoxic in the absence of seeding-competent tau aggregates, and mice can clear these tau forms permanently without tau seeding or spreading effects. These observations suggest that early targeting of non-fibrillar tau species may represent a therapeutically effective intervention in tauopathies. On the other hand, the absent seeding competence of early toxic tau species also warrants caution when using seeding-based tests for preclinical tauopathy diagnostics.
Collapse
Affiliation(s)
- Alfonso Martinisi
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Martin Flach
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Frederik Sprenger
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Stephan Frank
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David T Winkler
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
- Neurology, Medical University Clinic, Kantonsspital Baselland, 4410 Liestal, Switzerland
| |
Collapse
|
33
|
Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020173. [PMID: 33572457 PMCID: PMC7916200 DOI: 10.3390/biomedicines9020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are one of major public health problems and their impact is continuously growing. Curcumin has been proposed for the treatment of several of these pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD) due to the ability of this molecule to reduce inflammation and aggregation of involved proteins. Nevertheless, the poor metabolic stability and bioavailability of curcumin reduce the possibilities of its practical use. For these reasons, many curcumin derivatives were synthetized in order to overcome some limitations. In this review will be highlighted recent results on modification of curcumin scaffold in the search of new effective therapeutic agents against NDs, with particular emphasis on AD.
Collapse
|
34
|
Montalbano M, McAllen S, Cascio FL, Sengupta U, Garcia S, Bhatt N, Ellsworth A, Heidelman EA, Johnson OD, Doskocil S, Kayed R. TDP-43 and Tau Oligomers in Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Neurobiol Dis 2020; 146:105130. [PMID: 33065281 PMCID: PMC7703712 DOI: 10.1016/j.nbd.2020.105130] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Proteinaceous aggregates are major hallmarks of several neurodegenerative diseases. Aggregates of post-translationally modified transactive response (TAR)-DNA binding protein 43 (TDP-43) in cytoplasmic inclusion bodies are characteristic features in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Recent studies have also reported TDP-43 aggregation in Alzheimer's disease (AD). TDP-43 is an RNA/DNA binding protein (RBP) mainly present in the nucleus. In addition to several RBPs, TDP-43 has also been reported in stress granules in FTD and ALS pathologies. Despite knowledge of cytoplasmic mislocalization of TDP-43, the cellular effects of TDP-43 aggregates and their cytotoxic mechanism(s) remain to be clarified. We hypothesize that TDP-43 forms oligomeric assemblies that associate with tau, another key protein involved in ALS and FTD. However, no prior studies have investigated the interactions between TDP-43 oligomers and tau. It is therefore important to thoroughly investigate the cross-seeding properties and cellular localization of both TDP-43 and tau oligomers in neurodegenerative diseases. Here, we demonstrate the effect of tau on the cellular localization of TDP-43 in WT and P301L tau-inducible cell models (iHEK) and in WT HEK-293 cells treated exogenously with soluble human recombinant tau oligomers (Exo-rTauO). We observed cytoplasmic TDP-43 accumulation o in the presence of tau in these cell models. We also studied the occurrence of TDP-43 oligomers in AD, ALS, and FTD human brain tissue using novel antibodies generated against TDP-43 oligomers as well as generic TDP-43 antibodies. Finally, we examined the cross-seeding property of AD, ALS, and FTD brain-derived TDP-43 oligomers (BDT43Os) on tau aggregation using biochemical and biophysical assays. Our results allow us to speculate that TDP-43/tau interactions might play a role in AD, ALS, and FTD.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric A Heidelman
- School of Medicine, University of Texas Medical Branch, UTMB, Galveston, TX 77555, USA
| | - Omar D Johnson
- School of Medicine, University of Texas Medical Branch, UTMB, Galveston, TX 77555, USA
| | - Samantha Doskocil
- Neuroscience Summer Undergraduate Research Program, NSURP Program 2018, University of Texas Medical Branch, UTMB, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
35
|
Lo CH, Sachs JN. The role of wild-type tau in Alzheimer's disease and related tauopathies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2020; 2:1-17. [PMID: 33665646 PMCID: PMC7929479 DOI: 10.36069/jols/20201201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tau oligomers have recently emerged as the principal toxic species in Alzheimer's disease (AD) and tauopathies. Tau oligomers are spontaneously self-assembled soluble tau proteins that are formed prior to fibrils, and they have been shown to play a central role in neuronal cell death and in the induction of neurodegeneration in animal models. As the therapeutic paradigm shifts to targeting toxic tau oligomers, this suggests the focus to study tau oligomerization in species that are less susceptible to fibrillization. While truncated and mutation containing tau as well as the isolated repeat domains are particularly prone to fibrillization, the wild-type (WT) tau proteins have been shown to be resistant to fibril formation in the absence of aggregation inducers. In this review, we will summarize and discuss the toxicity of WT tau both in vitro and in vivo, as well as its involvement in tau oligomerization and cell-to-cell propagation of pathology. Understanding the role of WT tau will enable more effective biomarker development and therapeutic discovery for treatment of AD and tauopathies.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|