1
|
Cranston AL, Kraev I, Stewart MG, Horsley D, Santos RX, Robinson L, Dreesen E, Armstrong P, Palliyil S, Harrington CR, Wischik CM, Riedel G. Rescue of synaptosomal glutamate release defects in tau transgenic mice by the tau aggregation inhibitor hydromethylthionine. Cell Signal 2024; 121:111269. [PMID: 38909930 DOI: 10.1016/j.cellsig.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Mike G Stewart
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - David Horsley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Renato X Santos
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Paul Armstrong
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Foresterhill AB25 2ZP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK.
| |
Collapse
|
2
|
Schwab K, Lauer D, Magbagbeolu M, Theuring F, Gasiorowska A, Zadrozny M, Harrington CR, Wischik CM, Niewiadomska G, Riedel G. Hydromethylthionine rescues synaptic SNARE proteins in a mouse model of tauopathies: Interference by cholinesterase inhibitors. Brain Res Bull 2024; 212:110955. [PMID: 38677558 DOI: 10.1016/j.brainresbull.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
In clinical trials for Alzheimer's disease (AD), hydromethylthionine mesylate (HMTM) showed reduced efficacy when administered as an add-on to symptomatic treatments, while it produced a significant improvement of cognitive function when taken as monotherapy. Interference of cholinesterase inhibition with HMTM was observed also in a tau transgenic mouse model, where rivastigmine reduced the pharmacological activity of HMTM at multiple brain levels including hippocampal acetylcholine release, synaptosomal glutamate release and mitochondrial activity. Here, we examined the effect of HMTM, given alone or in combination with the acetylcholinesterase inhibitor, rivastigmine, at the level of expression of selected pre-synaptic proteins (syntaxin-1; SNAP-25, VAMP-2, synaptophysin-1, synapsin-1, α-synuclein) in brain tissue harvested from tau-transgenic Line 1 (L1) and wild-type mice using immunohistochemistry. L1 mice overexpress the tau-core unit that induces tau aggregation and results in an AD-like phenotype. Synaptic proteins were lower in hippocampus and cortex but greater in basal forebrain regions in L1 compared to wild-type mice. HMTM partially normalised the expression pattern of several of these proteins in basal forebrain. This effect was diminished when HMTM was administered in combination with rivastigmine, where mean protein expression seemed supressed. This was further confirmed by group-based correlation network analyses where important levels of co-expression correlations in basal forebrain regions were lost in L1 mice and partially re-established when HMTM was given alone but not in combination with rivastigmine. These data indicate a reduction in pharmacological activity of HMTM when given as an add-on therapy, a result that is consistent with the responses observed in the clinic. Attenuation of the therapeutic effects of HMTM by cholinergic treatments may have important implications for other potential AD therapies.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Dilyara Lauer
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, Berlin 10115, Germany
| | - Anna Gasiorowska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Zadrozny
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Grażyna Niewiadomska
- Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
3
|
Rubido N, Riedel G, Vuksanović V. Genetic basis of anatomical asymmetry and aberrant dynamic functional networks in Alzheimer's disease. Brain Commun 2023; 6:fcad320. [PMID: 38173803 PMCID: PMC10763534 DOI: 10.1093/braincomms/fcad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/14/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Genetic associations with macroscopic brain networks can provide insights into healthy and aberrant cortical connectivity in disease. However, associations specific to dynamic functional connectivity in Alzheimer's disease are still largely unexplored. Understanding the association between gene expression in the brain and functional networks may provide useful information about the molecular processes underlying variations in impaired brain function. Given the potential of dynamic functional connectivity to uncover brain states associated with Alzheimer's disease, it is interesting to ask: How does gene expression associated with Alzheimer's disease map onto the dynamic functional brain connectivity? If genetic variants associated with neurodegenerative processes involved in Alzheimer's disease are to be correlated with brain function, it is essential to generate such a map. Here, we investigate how the relation between gene expression in the brain and dynamic functional connectivity arises from nodal interactions, quantified by their role in network centrality (i.e. the drivers of the metastability), and the principal component of genetic co-expression across the brain. Our analyses include genetic variations associated with Alzheimer's disease and also genetic variants expressed within the cholinergic brain pathways. Our findings show that contrasts in metastability of functional networks between Alzheimer's and healthy individuals can in part be explained by the two combinations of genetic co-variations in the brain with the confidence interval between 72% and 92%. The highly central nodes, driving the brain aberrant metastable dynamics in Alzheimer's disease, highly correlate with the magnitude of variations from two combinations of genes expressed in the brain. These nodes include mainly the white matter, parietal and occipital brain regions, each of which (or their combinations) are involved in impaired cognitive function in Alzheimer's disease. In addition, our results provide evidence of the role of genetic associations across brain regions in asymmetric changes in ageing. We validated our findings on the same cohort using alternative brain parcellation methods. This work demonstrates how genetic variations underpin aberrant dynamic functional connectivity in Alzheimer's disease.
Collapse
Affiliation(s)
- Nicolás Rubido
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Vesna Vuksanović
- Health Data Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Kondak C, Leith M, Baddeley TC, Santos RX, Harrington CR, Wischik CM, Riedel G, Klein J. Mitochondrial Effects of Hydromethylthionine, Rivastigmine and Memantine in Tau-Transgenic Mice. Int J Mol Sci 2023; 24:10810. [PMID: 37445987 DOI: 10.3390/ijms241310810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tau protein aggregations are important contributors to the etiology of Alzheimer's disease (AD). Hydromethylthionine (HMT) is a potent inhibitor of tau aggregation in vitro and in vivo and is being developed as a possible anti-dementia medication. HMT was also shown to affect the cholinergic system and to interact with mitochondria. Here, we used tau-transgenic (L1 and L66) and wild-type NMRI mice that were treated with HMT, rivastigmine and memantine and with combinations thereof, for 2-4 weeks. We measured HMT concentrations in both brain homogenates and isolated mitochondria and concentrations of glucose, lactate and pyruvate in brain by microdialysis. In isolated brain mitochondria, we recorded oxygen consumption of mitochondrial complexes by respirometry. While rivastigmine and memantine lowered mitochondrial respiration, HMT did not affect respiration in wild-type animals and increased respiration in tau-transgenic L1 mice. Glucose and lactate levels were not affected by HMT administration. The presence of HMT in isolated mitochondria was established. In summary, traditional anti-dementia drugs impair mitochondrial function while HMT has no adverse effects on mitochondrial respiration in tau-transgenic mice. These results support the further development of HMT as an anti-dementia drug.
Collapse
Affiliation(s)
- Constantin Kondak
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Michael Leith
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Thomas C Baddeley
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3UE, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Renato X Santos
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Vijayaragavan K, Cannon BJ, Tebaykin D, Bossé M, Baranski A, Oliveria JP, Bukhari SA, Mrdjen D, Corces MR, McCaffrey EF, Greenwald NF, Sigal Y, Marquez D, Khair Z, Bruce T, Goldston M, Bharadwaj A, Montine KS, Angelo RM, Montine TJ, Bendall SC. Single-cell spatial proteomic imaging for human neuropathology. Acta Neuropathol Commun 2022; 10:158. [PMID: 36333818 PMCID: PMC9636771 DOI: 10.1186/s40478-022-01465-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are characterized by phenotypic changes and hallmark proteopathies. Quantifying these in archival human brain tissues remains indispensable for validating animal models and understanding disease mechanisms. We present a framework for nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing neuropathological features. MIBI facilitated simultaneous, quantitative imaging of 36 proteins on archival human hippocampus from individuals spanning cognitively normal to dementia. Customized analysis strategies identified cell types and proteopathies in the hippocampus across stages of Alzheimer's disease (AD) neuropathologic change. We show microglia-pathologic tau interactions in hippocampal CA1 subfield in AD dementia. Data driven, sample independent creation of spatial proteomic regions identified persistent neurons in pathologic tau neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging and data-driven approaches for neuropathologic analysis and serves broadly as a methodology for spatial proteomic analysis of archival human neuropathology. TEASER: Multiplex Ion beam Imaging enables deep spatial phenotyping of human neuropathology-associated cellular and disease features.
Collapse
Affiliation(s)
| | - Bryan J Cannon
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitry Tebaykin
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bossé
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alex Baranski
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - J P Oliveria
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Syed A Bukhari
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Erin F McCaffrey
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Diana Marquez
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Trevor Bruce
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mako Goldston
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anusha Bharadwaj
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kathleen S Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - R Michael Angelo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Xie J, Zhang Y, Li S, Wei H, Yu H, Zhou Q, Wei L, Ke D, Wang Q, Yang Y, Wang J. P301S-hTau acetylates KEAP1 to trigger synaptic toxicity via inhibiting NRF2/ARE pathway: A novel mechanism underlying hTau-induced synaptic toxicities. Clin Transl Med 2022; 12:e1003. [PMID: 35917404 PMCID: PMC9345400 DOI: 10.1002/ctm2.1003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Human Tau (hTau) accumulation and synapse loss are two pathological hallmarks of tauopathies. However, whether and how hTau exerts toxic effects on synapses remain elusive. METHODS Mutated hTau (P301S) was overexpressed in the N2a cell line, primary hippocampal neurons and hippocampal CA3. Western blotting and quantitative polymerase chain reaction were applied to examine the protein and mRNA levels of synaptic proteins. The protein interaction was tested by co-immunoprecipitation and proximity ligation assays. Memory and emotion status were evaluated by a series of behavioural tests. The transcriptional activity of nuclear factor-erythroid 2-related factor 2 (NRF2) was detected by dual luciferase reporter assay. Electrophoresis mobility shift assay and chromosome immunoprecipitation were conducted to examine the combination of NRF2 to specific anti-oxidative response element (ARE) sequences. Neuronal morphology was analysed after Golgi staining. RESULTS Overexpressing P301S decreased the protein levels of post-synaptic density protein 93 (PSD93), PSD95 and synapsin 1 (SYN1). Simultaneously, NRF2 was decreased, whereas Kelch-like ECH-associated protein 1 (KEAP1) was elevated. Further, we found that NRF2 could bind to the specific AREs of DLG2, DLG4 and SYN1 genes, which encode PSD93, PSD95 and SYN1, respectively, to promote their expression. Overexpressing NRF2 ameliorated P301S-reduced synaptic proteins and synapse. By means of acetylation at K312, P301S increased the protein level of KEAP1 via inhibiting KEAP1 degradation from ubiquitin-proteasome pathway, thereby decreasing NRF2 and reducing synapse. Blocking the P301S-KEAP1 interaction at K312 rescued the P301S-suppressed expression of synaptic proteins and memory deficits with anxiety efficiently. CONCLUSIONS P301S-hTau could acetylate KEAP1 to trigger synaptic toxicity via inhibiting the NRF2/ARE pathway. These findings provide a novel and potential target for the therapeutic intervention of tauopathies.
Collapse
Affiliation(s)
- Jia‐Zhao Xie
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Endocrine Department of Liyuan HospitalKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi‐Hong Li
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Ling Yu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiu‐Zhi Zhou
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lin‐Yu Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qun Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Yang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
8
|
Schwab K, Melis V, Harrington CR, Wischik CM, Magbagbeolu M, Theuring F, Riedel G. Proteomic Analysis of Hydromethylthionine in the Line 66 Model of Frontotemporal Dementia Demonstrates Actions on Tau-Dependent and Tau-Independent Networks. Cells 2021; 10:2162. [PMID: 34440931 PMCID: PMC8391171 DOI: 10.3390/cells10082162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abnormal aggregation of tau is the pathological hallmark of tauopathies including frontotemporal dementia (FTD). We have generated tau-transgenic mice that express the aggregation-prone P301S human tau (line 66). These mice present with early-onset, high tau load in brain and FTD-like behavioural deficiencies. Several of these behavioural phenotypes and tau pathology are reversed by treatment with hydromethylthionine but key pathways underlying these corrections remain elusive. In two proteomic experiments, line 66 mice were compared with wild-type mice and then vehicle and hydromethylthionine treatments of line 66 mice were compared. The brain proteome was investigated using two-dimensional electrophoresis and mass spectrometry to identify protein networks and pathways that were altered due to tau overexpression or modified by hydromethylthionine treatment. Overexpression of mutant tau induced metabolic/mitochondrial dysfunction, changes in synaptic transmission and in stress responses, and these functions were recovered by hydromethylthionine. Other pathways, such as NRF2, oxidative phosphorylation and protein ubiquitination were activated by hydromethylthionine, presumably independent of its function as a tau aggregation inhibitor. Our results suggest that hydromethylthionine recovers cellular activity in both a tau-dependent and a tau-independent fashion that could lead to a wide-spread improvement of homeostatic function in the FTD brain.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
- TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, UK
| | - Mandy Magbagbeolu
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Franz Theuring
- Charité—Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; (M.M.); (F.T.)
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.S.); (V.M.); (C.R.H.); (C.M.W.)
| |
Collapse
|