1
|
Myers C, Atkins GR, Villarreal J, Sutton RB, Cornwall GA. The mouse epididymal amyloid matrix is a mammalian counterpart of a bacterial biofilm. iScience 2024; 27:110152. [PMID: 38974467 PMCID: PMC11225826 DOI: 10.1016/j.isci.2024.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/14/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
The mouse epididymis is a long tubule connecting the testis to the vas deferens. Its primary functions are to mature spermatozoa into motile and fertile cells and to protect them from pathogens that ascend the male tract. We previously demonstrated that a functional extracellular amyloid matrix surrounds spermatozoa in the epididymal lumen and has host defense functions, properties not unlike that of an extracellular biofilm that encloses and protects a bacterial community. Here we show the epididymal amyloid matrix also structurally resembles a biofilm by containing eDNA, eRNA, and mucin-like polysaccharides. Further these structural components exhibit comparable behaviors and perform functions such as their counterparts in bacterial biofilms. Our studies suggest that nature has used the ancient building blocks of bacterial biofilms to form an analogous structure that nurtures and protects the mammalian male germline.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Georgia Rae Atkins
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Johanna Villarreal
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - R. Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Ali SA, Chung KHK, Forgham H, Olsen WP, Kakinen A, Balaji A, Otzen DE, Davis TP, Javed I. Alzheimer's Progenitor Amyloid-β Targets and Dissolves Microbial Amyloids and Impairs Biofilm Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301423. [PMID: 37594661 PMCID: PMC10582422 DOI: 10.1002/advs.202301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Indexed: 08/19/2023]
Abstract
Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.
Collapse
Affiliation(s)
- Syed Aoun Ali
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
- Sino‐Danish Center (SDC)Eastern Yanqihu CampusUniversity of Chinese Academy of Sciences380 Huaibeizhuang, Huairou DistrictBeijing101400China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinki00014Finland
| | - Arunpandian Balaji
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
3
|
Sulatsky MI, Belousov MV, Kosolapova AO, Mikhailova EV, Romanenko MN, Antonets KS, Kuznetsova IM, Turoverov KK, Nizhnikov AA, Sulatskaya AI. Amyloid Fibrils of Pisum sativum L. Vicilin Inhibit Pathological Aggregation of Mammalian Proteins. Int J Mol Sci 2023; 24:12932. [PMID: 37629113 PMCID: PMC10454621 DOI: 10.3390/ijms241612932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of β-2-microglobulin fibrils; the number, length and the degree of clustering of β-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (E.V.M.); (I.M.K.); (K.K.T.)
| |
Collapse
|
4
|
van Aalst EJ, Jang J, Halligan TC, Wylie BJ. Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study. JOURNAL OF BIOMOLECULAR NMR 2023; 77:191-202. [PMID: 37493866 PMCID: PMC10838152 DOI: 10.1007/s10858-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2' experiments indicate sample temperatures below - 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of - 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of - 30 °C, corroborated by linewidth analysis in 3D NCACX at - 30 °C compared to - 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between - 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Jun Jang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Ty C Halligan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA.
| |
Collapse
|
5
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|