1
|
Bachler ZT, Brown MF. Hidden water's influence on rhodopsin activation. Biophys J 2024; 123:4167-4179. [PMID: 39550612 DOI: 10.1016/j.bpj.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.
Collapse
Affiliation(s)
- Zachary T Bachler
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
2
|
Zameer MZ, Jou E, Middleton M. The role of circulating tumor DNA in melanomas of the uveal tract. Front Immunol 2024; 15:1509968. [PMID: 39697328 PMCID: PMC11652350 DOI: 10.3389/fimmu.2024.1509968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Melanoma of the uveal tract or uveal melanoma (UM) originates from melanocytes of the eye and is the most common intraocular malignancy in adults. Despite considerable advances in diagnostic procedures and treatments, prognosis remains poor in those with advanced disease. Accordingly, although current treatments have an excellent local disease control rate, approximately 50% of patients develop metastatic relapse within 10 years. The high risk for metastatic disease with a variable and often long latency period is thought to be due to early spread of cancer cells disseminating into organs such as the liver, followed by a period of dormancy, before the eventual emergence of radiologically measurable disease. Early detection of disease relapse or metastasis is therefore crucial to allow timely treatment and ultimately improve patient outcome. Recently, advances in minimally-invasive liquid biopsy techniques and biomarkers such as circulating tumor DNA (ctDNA) have demonstrated potential to transform the field of cancer care by aiding diagnosis, prognosis and monitoring of various cancer types. UM is particularly suitable for ctDNA-based approaches due to the relatively well-characterized spectrum of genetic mutations, along with the inherent difficulties and risks associated with getting sufficient tumor samples via traditional biopsy methods. Key potential advantage of ctDNA are the detection of molecular residual disease (MRD) in patients post definitive treatment, and in the early identification of metastasis. This is particularly relevant contemporarily with the recent demonstration of tebentafusp improving survival in metastatic UM patients, and opens avenues for further research to investigate the potential utilization of tebentafusp combined with ctDNA-based strategies in adjuvant settings and early intervention for MRD. The present review illustrates the current understanding of ctDNA-based strategies in UM, discusses the potential clinical applications, explores the potential of utilizing ctDNA in UM MRD in the context of an ongoing clinical trial, and highlights the challenges that need to be overcome prior to routine clinical implementation.
Collapse
Affiliation(s)
- Mohammed Zeeshan Zameer
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Eric Jou
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Kellogg College, University of Oxford, Oxford, United Kingdom
| | - Mark Middleton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Fouillen A, Couvineau P, Gaibelet G, Riché S, Orcel H, Mendre C, Kanso A, Lanotte R, Nguyen J, Dimon J, Urbach S, Sounier R, Granier S, Bonnet D, Cong X, Mouillac B, Déméné H. Biased activation of the vasopressin V2 receptor probed by molecular dynamics simulations, NMR and pharmacological studies. Comput Struct Biotechnol J 2024; 23:3784-3799. [PMID: 39525085 PMCID: PMC11550766 DOI: 10.1016/j.csbj.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) control critical cell signaling. Their response to extracellular stimuli involves conformational changes to convey signals to intracellular effectors, among which the most important are G proteins and β-arrestins (βArrs). Biased activation of one pathway is a field of intense research in GPCR pharmacology. Combining NMR, site-directed mutagenesis, molecular pharmacology, and molecular dynamics (MD) simulations, we studied the conformational diversity of the vasopressin V2 receptor (V2R) bound to different types of ligands: the antagonist Tolvaptan, the endogenous unbiased agonist arginine-vasopressin, and MCF14, a partial Gs protein-biased agonist. A double-labeling NMR scheme was developed to study the receptor conformational changes and ligand binding: V2R was subjected to lysine 13CH3 methylation for complementary NMR studies, whereas the agonists were tagged with a paramagnetic probe. Paramagnetic relaxation enhancements and site-directed mutagenesis validated the ligand binding modes in the MD simulations. We found that the bias for the Gs protein over the βArr pathway involves interactions between the conserved NPxxY motif in the transmembrane helix 7 (TM7) and TM3, compacting helix 8 (H8) toward TM1 and likely inhibiting βArr signaling. A similar mechanism was elicited for the pathogenic mutation I130N, which constitutively activates the Gs proteins without concomitant βArr recruitment. The findings suggest common patterns of biased signaling in class A GPCRs, as well as a rationale for the design of G protein-biased V2R agonists.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Pierre Couvineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Gérald Gaibelet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Stéphanie Riché
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Christiane Mendre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Ali Kanso
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Romain Lanotte
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Julie Nguyen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Juliette Dimon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 67412 Illkirch-Graffenstaden, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Hélène Déméné
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, 34090, Montpellier, France
| |
Collapse
|
4
|
Huber T, Horioka-Duplix M, Chen Y, Saca VR, Ceraudo E, Chen Y, Sakmar TP. The role of signaling pathways mediated by the GPCRs CysLTR1/2 in melanocyte proliferation and senescence. Sci Signal 2024; 17:eadp3967. [PMID: 39288219 DOI: 10.1126/scisignal.adp3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
In contrast with sun exposure-induced melanoma, rarer melanocytic tumors and neoplasms with low mutational burden present opportunities to study isolated signaling mechanisms. These include uveal melanoma and blue nevi, which are often driven by mutations within the G protein-coupled signaling cascade downstream of cysteinyl leukotriene receptor 2. Here, we review how the same mutations within this pathway drive the growth of melanocytes in one tissue but can inhibit the growth of those in another, exemplifying the role of the tissue environment in the delicate balance between uncontrolled cell growth and senescence.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
5
|
Kotliar IB, Bendes A, Dahl L, Chen Y, Saarinen M, Ceraudo E, Dodig-Crnković T, Uhlén M, Svenningsson P, Schwenk JM, Sakmar TP. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. SCIENCE ADVANCES 2024; 10:eado9959. [PMID: 39083597 PMCID: PMC11290489 DOI: 10.1126/sciadv.ado9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Receptor activity-modifying proteins (RAMPs) form complexes with G protein-coupled receptors (GPCRs) and may regulate their cellular trafficking and pharmacology. RAMP interactions have been identified for about 50 GPCRs, but only a few GPCR-RAMP complexes have been studied in detail. To elucidate a comprehensive GPCR-RAMP interactome, we created a library of 215 dual epitope-tagged (DuET) GPCRs representing all GPCR subfamilies and coexpressed each GPCR with each of the three RAMPs. Screening the GPCR-RAMP pairs with customized multiplexed suspension bead array (SBA) immunoassays, we identified 122 GPCRs that showed strong evidence for interaction with at least one RAMP. We screened for interactions in three cell lines and found 23 endogenously expressed GPCRs that formed complexes with RAMPs. Mapping the GPCR-RAMP interactome expands the current system-wide functional characterization of RAMP-interacting GPCRs to inform the design of selective therapeutics targeting GPCR-RAMP complexes.
Collapse
Affiliation(s)
- Ilana B. Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Annika Bendes
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Yuanhuang Chen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Basal and Clinical Neuroscience, King’s College London, London, UK
| | - Jochen M. Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Trogdon M, Abbott K, Arang N, Lande K, Kaur N, Tong M, Bakhoum M, Gutkind JS, Stites EC. Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation. NPJ Syst Biol Appl 2024; 10:75. [PMID: 39013872 PMCID: PMC11252164 DOI: 10.1038/s41540-024-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT2R was impaired at activating the FAK/YAP/TAZ pathway relative to Gαq/11. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.
Collapse
Affiliation(s)
- Michael Trogdon
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Pfizer, La Jolla, CA, 92037, USA
| | - Kodye Abbott
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kathryn Lande
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Melinda Tong
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathieu Bakhoum
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward C Stites
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Mattheisen JM, Rasmussen VA, Ceraudo E, Kolodzinski A, Horioka-Duplix M, Sakmar TP, Huber T. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. Anal Biochem 2024; 684:115361. [PMID: 37865268 DOI: 10.1016/j.ab.2023.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
We report a bioluminescence resonance energy transfer (BRET) assay to quantitate the fraction of an engineered membrane protein at the cell surface versus inside the cell. As test cases, we engineered two different G protein-coupled receptors (GPCRs) in which a NanoLuc luciferase (NLuc) and a HaloTag are fused to the extracellular amino-terminal tail of the receptors. We then employed a pulse-chase labeling approach relying on two different fluorescent dyes with distinctive cell permeability properties. The dyes are efficiently excited by luminescence from NLuc, but are spectrally distinct. Measuring BRET from the chemiluminescence of the NLuc to the fluorophores bound to the HaloTag minimizes the limitations of in-cell fluorescence resonance energy transfer (FRET)-based approaches such as photobleaching and autofluorescence. The BRET surface expression assay can quantitatively differentiate between the labeling of receptors at the cell surface and receptors inside of the cell. The assay is shown to be quantitative and robust compared with other approaches to measure cell surface expression of membrane proteins such as enzyme-linked immunosorbent assay or immunoblotting, and significantly increases the throughput because the assay is designed to be carried out in microtiter plate format.
Collapse
Affiliation(s)
- Jordan M Mattheisen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA
| | - Victoria A Rasmussen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA
| | - Arielle Kolodzinski
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Luginina A, Gusach A, Lyapina E, Khorn P, Safronova N, Shevtsov M, Dmitirieva D, Dashevskii D, Kotova T, Smirnova E, Borshchevskiy V, Cherezov V, Mishin A. Structural diversity of leukotriene G-protein coupled receptors. J Biol Chem 2023; 299:105247. [PMID: 37703990 PMCID: PMC10570957 DOI: 10.1016/j.jbc.2023.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Dihydroxy acid leukotriene (LTB4) and cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are inflammatory mediators derived from arachidonic acid via the 5-lipoxygenase pathway. While structurally similar, these two types of leukotrienes (LTs) exert their functions through interactions with two distinct G protein-coupled receptor (GPCR) families, BLT and CysLT receptors, which share low sequence similarity and belong to phylogenetically divergent GPCR groups. Selective antagonism of LT receptors has been proposed as a promising strategy for the treatment of many inflammation-related diseases including asthma and chronic obstructive pulmonary disease, rheumatoid arthritis, cystic fibrosis, diabetes, and several types of cancer. Selective CysLT1R antagonists are currently used as antiasthmatic drugs, however, there are no approved drugs targeting CysLT2 and BLT receptors. In this review, we highlight recently published structures of BLT1R and CysLTRs revealing unique structural features of the two receptor families. X-ray and cryo-EM data shed light on their overall conformations, differences in functional motifs involved in receptor activation, and details of the ligand-binding pockets. An unexpected binding mode of the selective antagonist BIIL260 in the BLT1R structure makes it the first example of a compound targeting the sodium-binding site of GPCRs and suggests a novel strategy for the receptor activity modulation. Taken together, these recent structural data reveal dramatic differences in the molecular architecture of the two LT receptor families and pave the way to new therapeutic strategies of selective targeting individual receptors with novel tool compounds obtained by the structure-based drug design approach.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia Gusach
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Lyapina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Polina Khorn
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezda Safronova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria Dmitirieva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii Dashevskii
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Tatiana Kotova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ekaterina Smirnova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Joint Institute for Nuclear Research, Dubna, Russia
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| | - Alexey Mishin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
9
|
Henry TA, Ebert JJ, Di Nicola M, Nerad JA, Williams BK. Large extraocular extension of a choroidal melanoma with orbital inflammation. Am J Ophthalmol Case Rep 2023; 31:101862. [PMID: 37273243 PMCID: PMC10239024 DOI: 10.1016/j.ajoc.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose To describe an atypical case of a choroidal melanoma presenting with eyelid edema, chemosis, pain and diplopia and demonstrating significant extraocular extension on ultrasonography and neuroimaging. Observations A 69-year-old woman presented with a headache, eyelid edema, chemosis and pain in the right eye. Upon subsequent onset of diplopia, MRI of the orbits was performed and demonstrated a predominantly extraocular, intraconal mass with a small intraocular component. She was started on corticosteroids and referred to the ocular oncology service for evaluation. On fundus examination, she was noted to have a pigmented choroidal lesion consistent with melanoma, and ultrasound showed a large area of extraocular extension. Enucleation, enucleation with subsequent radiation and exenteration were discussed, and the patient requested an opinion from radiation oncology. A repeat MRI obtained by radiation oncology demonstrated a decrease in the extraocular component after corticosteroid treatment. The improvement was interpreted as suggestive of lymphoma by the radiation oncologist who recommended external beam radiation (EBRT). Fine needle aspiration biopsy was insufficient for cytopathologic diagnosis, and the patient elected to proceed with EBRT in the absence of a definitive diagnosis. Next generation sequencing revealed GNA11 and SF3B1 mutations, which supported the diagnosis of uveal melanoma and led to enucleation. Conclusion and Importance Choroidal melanoma may present with pain and orbital inflammation secondary to tumor necrosis, which may delay diagnosis and decrease the diagnostic yield of fine-needle aspiration biopsy. Next generation sequencing may aid the diagnosis of choroidal melanoma when there is clinical uncertainty and cytopathology is unavailable.
Collapse
Affiliation(s)
| | - Jared J. Ebert
- Ocular Oncology Service, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maura Di Nicola
- Ocular Oncology Service, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Illinois Eye and Ear Infirmary, University of Illinois Chicago, Chicago, IL, USA
| | | | - Basil K. Williams
- Ocular Oncology Service, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Eye Institute, Cincinnati, OH, USA
| |
Collapse
|
10
|
Kotliar IB, Ceraudo E, Kemelmakher-Liben K, Oren DA, Lorenzen E, Dodig-Crnković T, Horioka-Duplix M, Huber T, Schwenk JM, Sakmar TP. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J Biol Chem 2023; 299:104664. [PMID: 37003505 PMCID: PMC10165273 DOI: 10.1016/j.jbc.2023.104664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Emilie Ceraudo
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Kevin Kemelmakher-Liben
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Tea Dodig-Crnković
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Mizuho Horioka-Duplix
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York, USA; Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
11
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
12
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Wei AZ, Maniar AB, Carvajal RD. New targeted and epigenetic therapeutic strategies for the treatment of uveal melanoma. Cancer Gene Ther 2022; 29:1819-1826. [PMID: 35236928 DOI: 10.1038/s41417-022-00443-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Uveal melanoma (UM) is a rare, genetically bland ocular malignancy with excellent local treatment options, but no disease-specific therapies are approved for use in the metastatic setting by the Food and Drug Administration. Metastatic UM (mUM) confers a prognosis of ~15 months. Unlike cutaneous melanoma, UM is poorly responsive to checkpoint inhibitors and cytotoxic chemotherapy highlighting the importance of clarifying vulnerable disease-specific mechanisms, such as cell cycle or metabolic pathways necessary for tumor growth and survival. The elucidation of signaling pathways downstream of the frequently mutated GNA GTPase such as PKC/MAPK/ERK/MEK, PI3K/AKT, and YAP-Hippo have offered potential targets. Potentially druggable epigenetic targets due to BAP1-mutated UM have also been identified, including proteins involved with histone deacetylation and DNA splicing. This review describes the preclinical rationale for the development of targeted therapies and current strategies currently being studied in clinical trials or will be in the near future.
Collapse
Affiliation(s)
- Alexander Z Wei
- Columbia University Irving Medical Center, New York, New York, USA
| | - Ashray B Maniar
- Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
14
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Phenotypic evaluation of constitutive GPCR/G-protein signaling in zebrafish embryos and larvae. Biochem Biophys Res Commun 2022; 602:70-76. [DOI: 10.1016/j.bbrc.2022.02.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
|
16
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
17
|
Hauser AS. Personalized Medicine Through GPCR Pharmacogenomics. COMPREHENSIVE PHARMACOLOGY 2022:191-219. [DOI: 10.1016/b978-0-12-820472-6.00100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Phan HTN, Kim NH, Wei W, Tall GG, Smrcka AV. Uveal melanoma-associated mutations in PLCβ4 are constitutively activating and promote melanocyte proliferation and tumorigenesis. Sci Signal 2021; 14:eabj4243. [PMID: 34905385 DOI: 10.1126/scisignal.abj4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hoa T N Phan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nam Hoon Kim
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenhui Wei
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Lapadula D, Benovic JL. Targeting Oncogenic Gα q/11 in Uveal Melanoma. Cancers (Basel) 2021; 13:6195. [PMID: 34944815 PMCID: PMC8699590 DOI: 10.3390/cancers13246195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36-50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.
Collapse
Affiliation(s)
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
20
|
Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 2021; 118:2106606118. [PMID: 34599099 PMCID: PMC8501799 DOI: 10.1073/pnas.2106606118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional changes induced by alternative splicing of GHRHR is largely unknown. Here, we demonstrate that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The cryogenic electron microscopy structures of SV1 and molecular dynamics simulations reveal the different functionalities between GHRHR and SV1 at the near-atomic level (i.e., the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins). Our findings provide valuable insights into the functional diversity of class B1 GPCRs that may aid in the design of better therapeutic agents against certain cancers. Alternative splicing of G protein–coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone–releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to β-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.
Collapse
|
21
|
de Lange MJ, Nell RJ, van der Velden PA. Scientific and clinical implications of genetic and cellular heterogeneity in uveal melanoma. MOLECULAR BIOMEDICINE 2021; 2:25. [PMID: 35006486 PMCID: PMC8607395 DOI: 10.1186/s43556-021-00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/16/2021] [Indexed: 10/27/2022] Open
Abstract
Here, we discuss the presence and roles of heterogeneity in the development of uveal melanoma. Both genetic and cellular heterogeneity are considered, as their presence became undeniable due to single cell approaches that have recently been used in uveal melanoma analysis. However, the presence of precursor clones and immune infiltrate in uveal melanoma have been described as being part of the tumour already decades ago. Since uveal melanoma grow in the corpus vitreous, they present a unique tumour model because every cell present in the tumour tissue is actually part of the tumour and possibly plays a role. For an effective treatment of uveal melanoma metastasis, it should be clear whether precursor clones and normal cells play an active role in progression and metastasis. We propagate analysis of bulk tissue that allows analysis of tumour heterogeneity in a clinical setting.
Collapse
Affiliation(s)
- Mark J de Lange
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Rogier J Nell
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Pieter A van der Velden
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|